Super-resolution for MAX-SAT

November 15, 2006

We use N to keep track of the best assignment so far. N is a complete assignment, and is assigned arbitrarily at the beginning.

1. Unit-Propagation:

$$M||F, C + k||N \Rightarrow Mk||F, C + k||N$$

if $C + k$ is a super-resolvent, and

$M \vdash \neg C$, and

k is undefined in M.

or if $C + k$ is not a super-resolvent, and

$M \vdash \neg C$, and

k is undefined in M, and

unsat($M\neg k; F, C + k$) \geq unsat($N; F, C + k$).

2. Semi-Super-resolution:

$$I||F||N \Rightarrow I||F,(\text{the disjunction of the negated decision literals in } I)||N$$

if $R = \text{Contradiction}(I, F) \neq \emptyset$, and

unsat($IR; F$) \geq unsat($N; F$).

Informal: Intuitively, since R is driven by I through unit-propagation, thus, the fact that ”unsat($IR; F$) \geq unsat($N; F$)” implies that we have made a mistake by setting the partial interpretation to I, which is the reason why we add the negated decision literals in I to F so that we won’t make the same mistake again.

$\text{Contradiction}(I, F)$: there is a sequence of transitions from the state $I||F||N$ by Unit-Propagation to a state $IR||F||N$ where some clause(s) is unsatisfied by (IR). Contradiction returns R if there is a contradiction and \emptyset otherwise.
3. Decide:

\[M || F || N \Rightarrow Mk^* || F || N \]

if \(k \) is undefined in \(M \), and
\(k \) and \(\neg k \) occur in some clause(s) of \(F \).

4. Finale:

\[M || F || N \Rightarrow M || F || N \]

if \(\text{unsat}(M; F) = \text{unsat}(N; F) \), and
\(M \) is complete, and
\(M \) contains no decision literals.

5. Restart:

\[M || F || N \Rightarrow \emptyset || F || N \]

6. Update:

\[M || F || N \Rightarrow M || F || M \]

if \(M \) is complete, and
\(\text{unsat}(M; F) < \text{unsat}(N; F) \).

7. Subsumption:

\[M || F, SR_1, SR_2 || N \Rightarrow M || F, SR_2 || N \]

if \(SR_1 \) and \(SR_2 \) are super-resolvents, and
\(SR_2 \) is a subset of \(SR_1 \).