
Discrete Math in CS Boolean Formulas and Game Trees
CS 280 Fall 2005 (Kleinberg)

When we begin a course on computer programming, we have to take some time to learn
the programming language we’ll be using. Similarly, in a course on mathematical models,
we have to start by laying out the mathematical language we’ll be using. We know, of
course, that mathematics involves numbers, arithmetic operations, and so forth; but at
a more fundamental level, mathematical discourse takes place in the language of Boolean

expressions.

1 Boolean Expressions and Search Engine Query Lan-

guages

Boolean expressions are also the foundation on which a number of common CS tools are
built, including Internet search engines. At the most basic level, the language of a search
engine is built from query terms, combined using and, or, and not. For example:

• The query “laptop” returns all pages containing the word “laptop.”

• The query “laptop and linux” returns all pages containing both of the words “laptop”
and “linux.”

• The query “laptop or notebook” returns all pages containing at least one of the words
“laptop” or “notebook.”

• The query “laptop and (not windows)” returns all pages that contain the word “laptop”
and do not contain the word “windows.”

• Using these connectives, one can create very complicated queries: “(laptop or note-
book) and (mac or (ibm and (not windows)))”

Of course, in practice, search engines build on this basic query model in numerous ways;
they tweak endless with exactly what the text that you type in their query boxes actually
means. For example, in response to the query “laptop,” Google will return pages that do
not actually contain the word “laptop,” provided that the word appears in the anchor of a
hyperlink that points to the page. Also, notice that this discussion of search engine queries
does not touch on the complicated problem of ranking: of the millions of pages that contain
the word “laptop,” which are the top ten that you should show to a user?

One other interesting observation, before we move on. A research problem that is quite
wide open is to try automatically inferring some model of a user’s “intent” as they succes-
sively reformulate a sequence of queries to a search engine. For example, suppose we knew
that the above sequence of queries had been issued, in order, by a single user over a span
of a few minutes. Then we’d be able to infer something about what they were trying to do

1



— presumably buying a laptop, with Linux or some other non-Windows operating systems,
maybe from IBM, intermittently including the synonym “notebook” because they weren’t
happy with the search results, etc. Some sense of this “intent” would help in figuring out
which pages, and which ads, to be showing this user. But how should a search engine do
such a thing automatically, for an arbitrary sequence of user queries?

2 Propositions, Predicates, and Boolean Formulas

But for now, let’s go back to the underlying Boolean language, and discuss it more formally.
The basic object is a proposition, a statement that is either true or false. For example, the
statements

• www.ibm.com contains the word “laptop.”

• www.apple.com contains the word “linux.”

are propositions.
Now, a search engine tends to deal with statements of the form: Find all pages x such

that x contains the word “laptop.” The latter half of this sentence,

• x contains the word “laptop.”

is a statement whose truth or falsehood we can’t evaluate, because we don’t know what x is.
We’ll call this a predicate — a statement containing some number of variables whose values
need to be filled in. We can represent the predicate above using the notation P (x), where
the x denotes the variable that needs to be filled in. When we fill in a specific value for x,
we obtain a proposition.

Building up more complex statements. Now, given two propositions p and q, “p and
q” denotes the proposition that is true when both p and q are true. We write this as p ∧ q,
and sometimes refer to it as the conjunction of p and q. “p or q” denotes the proposition
that is true when at least one of p or q is true; we write it as p ∨ q. and sometimes refer to
it as the disjunction of p and q. We can represent the values of p ∧ q and p ∨ q in terms of
values of p and q using a truth table, as follows.

p q p ∧ q p ∨ q

T T T T
T F F T
F T F T
F F F F

We also write p to denote “not p,” the proposition that is true when p is false.

2



Using nested parentheses, we can now write more complicated expressions very easily:

p ∨ (p ∧ q) ∨ (p ∨ q).

Or, for an example with more variables,

(p1 ∨ p2) ∧ (p3 ∨ p4).

Boolean formulas. It is also useful to think of such expressions in a closely related but
slightly different way. Rather than thinking of the base-level units p1, p2, . . . as propositions
whose truth or falsehood is already set, we think of them as variables for which we can plug
in true/false values. Thus we consider Boolean formulas: these are expressions built from
individual Boolean variables — each of which can take the one of the two values T (true) or
F (false) — and combined using ∧, ∨, and . Once values are specified for all the variables
in the formula, then the value of the formula itself can be determined.

There is a useful way to write complex Boolean formulas, emphasizing their nested struc-
ture, that we show by example in Figure 1. The representation in the figure depicts the
formula

(p1 ∨ p2) ∧ (p3 ∨ p4).

p p p p
1 2 3 4

Figure 1: A Boolean formula on four variables.

Assignments. Given a Boolean formula B over some Boolean variables p1, p2, . . . , pn, we
say that a truth assignment is a function A that maps each variable pi to a value A(pi) that
is either T (true) or F (false).

Given an assignment A and a formula B, we can evaluate B with respect to A in the
natural way, obtaining a truth value for the formula. We say that an assignment A satisfies

a formula B if the value of B with respect to A is T (true).

3



3 Game Trees

The kind of reasoning we were applying to Boolean formulas in the previous sections forms a
good starting point for thinking about a related problem: how to design a computer program
for a two-player game. We’ll start by thinking about this at an intuitive level, and then see
how formulas built up from ∨ and ∧ correspond naturally to the underlying problem.

A lot of research in artificial intelligence has gone into the design of programs to play
chess, checkers, go, and other games. To keep this discussion at a level where we can work
out examples by hand, we’ll focus on a much, much simpler game: 2-by-2 tic-tac-toe. This
is like 3-by-3 tic-tac-toe, except that (a) the board is only 2-by-2, and (b) you need to get
two consecutive X’s or O’s in a row or column — diagonally isn’t good enough.

This game is also laughably simple to win: as the first player, I go anywhere; if you block
me in my row, I get two consecutively in my column; and if you block me in my column, I
get two consecutively in my row.

That’s an intuitive, English description of how to win. How would we get a computer
program to reason about this game? We can do this using a brute-force approach based on
a structure known as a game tree. At the root, we have an empty board. There is a child of
the root for each possible move by the first player; and in general, each node of the tree is
labeled with a board position, and its children are labeled with the board positions after all
possible next moves.

We can now view the play of the game as follows: starting from the root, players alternate
turns choosing a child of the current node in the tree, with each player trying to “steer” the
path down the tree to a board position that represents a win for them.

Figure 2 shows one-quarter of the game tree for 2-by-2 tic-tac-toe — everything following
a single choice of opening move by the X player. (Since the four possibilities for the opening
move are completely symmetric, it’s enough to show this part of the tree.) Looking at the
tree, we see that it contains the “plain English” argument above for why the X player can
force a win: regardless of which child the O player selects, the X player can select the next
child so as to get to a board position representing a win.

3.1 The Relation to Boolean Formulas.

Suppose we have a game tree (say, for 2-by-2 tic-tac-toe) and we want to decide whether
Player 1 can force a win. We can do this as follows.

• For each node in the tree corresponding to a final position, label it as a variable with
the value T if it represents a win for Player 1, and with the value F if it represents a
loss or draw for Player 1.

• For each node in the tree corresponding to a non-final position, label it with ∨ if it
corresponds to a move by Player 1, and label it with ∧ if it corresponds to a move by
Player 2.

Figure 3 shows this construction for 2-by-2 tic-tac-toe.

4



Figure 2: A portion of the game tree for two-by-two tic-tac-toe.

Now we evaluate the resulting Boolean formula as usual, working our way up the tree.
We now make the following claim, which expresses how the formula encodes the game: at
every node of the tree, Player 1 can force a win starting from that intermediate position if
the node evaluates to T as part of the Boolean formula; and Player 1 can’t force a win if it
evaluates to F . Applying this to the root node, the claim says that Player 1 can force a win
from the starting position precisely when the overall formula evaluates to T .

Let’s argue, somewhat informally, why this is true. (Our argument can be made more
formal using induction, which we’ll be getting to soon.) Our argument will also expose how
Player 1 can use the formula to define a strategy for choosing moves.

The key points are the following. Suppose it’s Player 1’s turn to move, and the node
evaluates to T . Since it’s labeled ∨ in the formula, this means that at least one of the node’s
children also evaluates to T . Player 1 should move to this node. It’s now Player 2’s turn to
move, and we’re at an ∧ node that evaluates to T . This means that every child evaluates to
T , so Player 2 has no choice but to move to a node that evaluates to T . We’re now back to
Player 1’s move, again at an ∨ node that evaluates to T . Player 1 can thus force the game
down the tree, always staying on nodes that evaluate to T . When this finally reaches the
bottom of the tree, we’re at a final node labeled T — which is a win for Player 1.

5



Figure 3: Converting the game tree for two-by-two tic-tac-toe into a Boolean formula.

So the point is that when it’s Player 1’s turn to move at a node evaluating to T , it
is completely within his or her power to keep the game always on nodes evaluating to T ,
eventually reaching a win.

A completely analogous argument applies if it’s Player 1’s turn to move at a node labeled
F . Since the node is labeled ∨ in the formula, this means that every one of its children
evaluates to F , so Player 1’s move will lead to a node evaluating to F . Player 2, from this
node labeled ∧, can choose a child also labeled F , and continuing this way, it is within
Player 2’s power to keep the game always on nodes evaluating to F , eventually reaching a
final position that is not a win for Player 1.

An interpretation using Max and Min. Notice that instead of T , F , ∨, and ∧, we
could have used a different but equivalent encoding. We could label each T node with 1,
each F node with −1, each ∨ node with max, and each ∧ node with min.

A node labeled min will take the value 1 precisely when all of its children have the value
1 — just as ∧ takes the value T precisely when all of its children have the value T . A node
labeled max will take the value 1 precisely when at least one of its children has the value 1
— just as ∨ takes the value T precisely when at least one of its children have the value T .

Thus, this is an equivalent way to represent the Boolean formula.

6



3.2 What About Chess?

The full game tree for chess is so enormous that there’s no hope of representing even a minute
portion of it in a computer’s memory. In other words, we could try to build the full game
tree as above, but in any feasible amount of time (e.g. the lifetime of the program’s human
opponent) we wouldn’t be able to finish constructing it.

So how is the approach above relevant? This is a situation that is typical in computer
science: we have a method that doesn’t scale above small problems. To tackle large-scale
problems, do we have to throw it away completely, or can we learn from it, and adapt it
somehow? In this case, we can extend the approach, and in fact this extension serves as the
standard basis for designing chess programs. For example, IBM’s Deep Blue, which defeated
the human world champion Garry Kasparov in 1997, was based on this approach.

To begin with, we start from the max/min representation of the tree, but we cut the tree
off when time or memory is exhausted — for example, at the end of Deep Blue’s alloted three
minutes to make its next move. At this point, we have a tree whose leaves correspond to
intermediate positions in the game, not final positions, so they can’t just be assigned values
of 1 or −1 as above. Instead, we use a carefully tuned evaluation function that analyzes the
position on the board, estimates who is winning, and by how much, and assigns a fractional
number between −1 and 1 to each leaf in the tree. Numbers close to 1 mean Player 1 is
winning, and numbers close to −1 mean Player 2 is winning. These quantities are then
propagated up the tree, just as we would have evaluated the Boolean formula by working up
the tree.

And the strategies for each player work the same as before. Player 1, at a node labeled
max, chooses the child that evaluates to as large a number as possible — just as, in the
Boolean case, he or she chose a child that evaluated to T , or 1, when possible. Similarly,
Player 2, at a node labeled min, chooses the child that evaluates to as low a number as
possible — just as, in the Boolean case, he or she chose a child that evaluated to F , or
−1, when possible. Figure 4 illustrates this process in a two-level tree, with the bold path
indicating how the best play by each side would proceed.

There are two further points worth mentioning here.

• First, where does the evaluation function come from? After all, Deep Blue on its
own doesn’t know anything about what makes for a good chess position. In general,
designers of chess-playing program recruit chess experts to identify the characteristics
of a good position, and encode this into the evaluation function. So in looking at a
position, the program will add up not just the amount of material (number of pieces)
on each side, but also give additional weight for having a position in which one’s pieces
have a lot of mobility, in which they’re well-centralized, in which there are attacking
possibilities, and so forth. The Deep Blue team hired professional chess grandmasters
as consultants for this purpose.

• Even with all this chess expertise, and running on an IBM SP/2 supercomputer, Deep
Blue would still have played at a relatively weak level were it not for a further bit
of sophistication. Rather than simply expand the tree uniformly, trying all nodes at

7



Figure 4: A game tree with fractional evaluations for the positions.

depth 1, then depth 2, then depth 3, and so forth, world-class programs like Deep Blue
search in a very unbalanced way: they go very, very deeply down some parts of the
tree (where the outcome is unclear), and only shallowly in other parts (where it’s very
clear who’s going to win).

This corresponds to something human players do: you spend a long time thinking about
the scenarios that are unclear and/or most likely to occur, whereas you don’t waste
much time investigating scenarios in which, for example, you give up an important piece
for no reason. To get a computer program to do this well requires further heuristics for
assessing not just who’s winning in a position, but how much it merits deeper search
into the game tree.

8


