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CS 5800                                  Highest Safe Rung Problem                                          

Spring 2014 

Karl Lieberherr 

Zhengxing Chen 

 

Knowledge needed: 

Algorithmic: Linear search, Binary Search, Binary Search Trees, Recurrence Relations, 

Dynamic Programming, Memoization, Pascal’s Triangle, Binomial Coefficients. 

Logic Game: Semantic game with Exists, ForAll , and, !. 

Technical: JSON notation, programming. 

 

1. (See Kleinberg and Tardos, Addison Wesley, Chapter 2, ex. 8.)  You are doing some 

stress-testing on various models of glass jars to determine the height from which they 

can be dropped and still not break.  The setup for this experiment, on a particular type 

of jar, is as follows.  You have a ladder with n rungs, and you want to find the highest 

rung from which you can drop a jar and not have it break.  We call this the highest safe 

rung. 

 

It might be natural to try binary search: drop a jar from the middle rung, see if it breaks, 

and then recursively try from rung / 4n or 3 / 4n  depending on the outcome.  But this 

has the drawback that you could break a lot of jars in finding the answer. 

 

If your primary goal were to conserve jars, on the other hand, you could try the 

following strategy.  Start by dropping a jar from the first rung, then the second rung, 

and so forth, climbing one higher each time until the jar breaks.  In this way, you only 

need a single jar – at the moment it breaks, you have the correct answer – but you may 

have to drop it n times (rather than lg n as in the binary search solution). 

 

So here is the trade-off: it seems you can perform fewer drops if you are willing to 

break more jars.  To study this trade-off, let k be the number of jars you are given, and 

let n be the actual highest safe rung.  Give the minimum number of drops needed to 

find the highest safe rung, as a function of k and .n  When the minimum number of 

drops needed is x, we write HSRnk-min(n,k)=x. In other words, HSRnk-min(n,k) is the 

smallest number of questions needed in the worst-case for a ladder with rungs 0..n-1 

and a jar budget of k. Your goal is to find an algorithm for  HSRnk-min(n,k).   Hint: 

consider the case 2,k   and then think about what happens when k  increases.   

 

With HSR(n,k,q) we denote the claim: there exists an experimental plan for a ladder 

with n rungs, k jars and a maximum of q questions to determine the highest safe rung. 

 

Logical Formalism 

 

Above is an informal description of the problem we want to solve. To eliminate 

potential ambiguities, we write a problem description using predicate logic. This logical 

description also becomes the blueprint for debates about HSR. See: 
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http://www.ccs.neu.edu/home/lieber/courses/algorithms/cs5800/sp14/team-based-

learning-with-debates/slides/ExplainingSemanticGames-final.pptx 

 

 

Claim MinHSR() = ForAll n in Nat ForAll k <= log(2,n) Exists q<n: MinHSR(n,k,q). 

MinHSR(n,k,q) = HSR(n,k,q) and (ForAll p<q: !HSR(n,k,p)). 

HSR(n,k,q)= Exists T:DecisionTree(n,k,q)  ForAll m in [0..n-1]: T correctly finds m 

(the highest safe rung) with at most q decisions. 

DecisionTree(n.k.q): A decision tree for HSR(n,k,q) must satisfy the following 

properties: 

1) there are at most k yes from the root to any leaf. 

2) the longest root-leaf path has q edges. 

3) each rung 1..n-1 appears exactly once as internal node of the tree. 

4) each rung 0..n-1 appears exactly once as a leaf. 

 

 

Interesting small claims to start with: 

 

HSR(9,2,4), HSR(9,2,5),HSR(9,2,6),HSR(9,2,7)  

2. Defining a common language for the scientific discourse about HSR. To represent an 

algorithm, i.e., an experimental plan, for finding the highest safe rung for fixed n,k, and 

q, we use a restricted programming language that is powerful enough to express what 

we need. We use the programming language of binary decision trees. The nodes 

represent questions such as 7 (representing the question: does the jar break at rung 7?).  

The edges represent yes/no answers. We use the following simple syntax for decision 

trees based on JSON. The reason we use JSON notation is that you can get parsers from 

the web and it is a widely used notation. 

 

A decision tree is either a leaf or a compound decision tree. 

 

The supporting code written by Zhengxing is here: 

https://github.com/czxttkl/ValidateHSRDecisionTree 

{ 

  "rung": 4, 

  "breakNode": { 

    "rung": 2, 

    "breakNode": { 

      "rung": 1, 

      "breakNode": { 

http://www.ccs.neu.edu/home/lieber/courses/algorithms/cs5800/sp14/team-based-learning-with-debates/slides/ExplainingSemanticGames-final.pptx
http://www.ccs.neu.edu/home/lieber/courses/algorithms/cs5800/sp14/team-based-learning-with-debates/slides/ExplainingSemanticGames-final.pptx
https://github.com/czxttkl/ValidateHSRDecisionTree
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        "h": 0 

      }, 

      "surviveNode": { 

        "h": 1 

      } 

    }, 

    "surviveNode": { 

      "rung": 3, 

      "breakNode": { 

        "h": 2 

      }, 

      "surviveNode": { 

        "h": 3 

      } 

    } 

  }, 

  "surviveNode": { 

    "rung": 6, 

    "breakNode": { 

      "rung": 5, 

      "breakNode": { 

        "h": 4 

      }, 

      "surviveNode": { 

        "h": 5 
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      } 

    }, 

    "surviveNode": { 

      "rung": 7, 

      "breakNode": { 

        "h": 6 

      }, 

      "surviveNode": { 

        "rung": 8, 

        "breakNode": { 

          "h": 7 

        }, 

        "surviveNode": { 

          "h": 8 

        } 

      } 

    } 

  } 

} 

 

 

 

The grammar and object structure would be in an EBNF-like notation: 

 

DTH = "{"  "\"decision_tree\""  ":" <dt> DT. 

DT = Compound | Leaf. 

Compound = “{“ "rung" “:” <q> int "breakNode" “:”<yes> DT "surviveNode" “:”<no> 

DT "}". 

Leaf = "\"h\" " ":" <leaf> int . 
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This approach is useful for many algorithmic problems: define a simple computational 

model in which to define the algorithm. The decision trees must satisfy certain rules to be 

correct.  

 

 

 

 

 


