
1

CS 5800 Highest Safe Rung Problem

Spring 2014

Karl Lieberherr

Zhengxing Chen

Knowledge needed:

Algorithmic: Linear search, Binary Search, Binary Search Trees, Recurrence Relations,

Dynamic Programming, Memoization, Pascal’s Triangle, Binomial Coefficients.

Logic Game: Semantic game with Exists, ForAll , and, !.

Technical: JSON notation, programming.

1. (See Kleinberg and Tardos, Addison Wesley, Chapter 2, ex. 8.) You are doing some

stress-testing on various models of glass jars to determine the height from which they

can be dropped and still not break. The setup for this experiment, on a particular type

of jar, is as follows. You have a ladder with n rungs, and you want to find the highest

rung from which you can drop a jar and not have it break. We call this the highest safe

rung.

It might be natural to try binary search: drop a jar from the middle rung, see if it breaks,

and then recursively try from rung / 4n or 3 / 4n depending on the outcome. But this

has the drawback that you could break a lot of jars in finding the answer.

If your primary goal were to conserve jars, on the other hand, you could try the

following strategy. Start by dropping a jar from the first rung, then the second rung,

and so forth, climbing one higher each time until the jar breaks. In this way, you only

need a single jar – at the moment it breaks, you have the correct answer – but you may

have to drop it n times (rather than lg n as in the binary search solution).

So here is the trade-off: it seems you can perform fewer drops if you are willing to

break more jars. To study this trade-off, let k be the number of jars you are given, and

let n be the actual highest safe rung. Give the minimum number of drops needed to

find the highest safe rung, as a function of k and .n When the minimum number of

drops needed is x, we write HSRnk-min(n,k)=x. In other words, HSRnk-min(n,k) is the

smallest number of questions needed in the worst-case for a ladder with rungs 0..n-1

and a jar budget of k. Your goal is to find an algorithm for HSRnk-min(n,k). Hint:

consider the case 2,k and then think about what happens when k increases.

With HSR(n,k,q) we denote the claim: there exists an experimental plan for a ladder

with n rungs, k jars and a maximum of q questions to determine the highest safe rung.

Logical Formalism

Above is an informal description of the problem we want to solve. To eliminate

potential ambiguities, we write a problem description using predicate logic. This logical

description also becomes the blueprint for debates about HSR. See:

2

http://www.ccs.neu.edu/home/lieber/courses/algorithms/cs5800/sp14/team-based-

learning-with-debates/slides/ExplainingSemanticGames-final.pptx

Claim MinHSR() = ForAll n in Nat ForAll k <= log(2,n) Exists q<n: MinHSR(n,k,q).

MinHSR(n,k,q) = HSR(n,k,q) and (ForAll p<q: !HSR(n,k,p)).

HSR(n,k,q)= Exists T:DecisionTree(n,k,q) ForAll m in [0..n-1]: T correctly finds m

(the highest safe rung) with at most q decisions.

DecisionTree(n.k.q): A decision tree for HSR(n,k,q) must satisfy the following

properties:

1) there are at most k yes from the root to any leaf.

2) the longest root-leaf path has q edges.

3) each rung 1..n-1 appears exactly once as internal node of the tree.

4) each rung 0..n-1 appears exactly once as a leaf.

Interesting small claims to start with:

HSR(9,2,4), HSR(9,2,5),HSR(9,2,6),HSR(9,2,7)

2. Defining a common language for the scientific discourse about HSR. To represent an

algorithm, i.e., an experimental plan, for finding the highest safe rung for fixed n,k, and

q, we use a restricted programming language that is powerful enough to express what

we need. We use the programming language of binary decision trees. The nodes

represent questions such as 7 (representing the question: does the jar break at rung 7?).

The edges represent yes/no answers. We use the following simple syntax for decision

trees based on JSON. The reason we use JSON notation is that you can get parsers from

the web and it is a widely used notation.

A decision tree is either a leaf or a compound decision tree.

The supporting code written by Zhengxing is here:

https://github.com/czxttkl/ValidateHSRDecisionTree

{

 "rung": 4,

 "breakNode": {

 "rung": 2,

 "breakNode": {

 "rung": 1,

 "breakNode": {

http://www.ccs.neu.edu/home/lieber/courses/algorithms/cs5800/sp14/team-based-learning-with-debates/slides/ExplainingSemanticGames-final.pptx
http://www.ccs.neu.edu/home/lieber/courses/algorithms/cs5800/sp14/team-based-learning-with-debates/slides/ExplainingSemanticGames-final.pptx
https://github.com/czxttkl/ValidateHSRDecisionTree

3

 "h": 0

 },

 "surviveNode": {

 "h": 1

 }

 },

 "surviveNode": {

 "rung": 3,

 "breakNode": {

 "h": 2

 },

 "surviveNode": {

 "h": 3

 }

 }

 },

 "surviveNode": {

 "rung": 6,

 "breakNode": {

 "rung": 5,

 "breakNode": {

 "h": 4

 },

 "surviveNode": {

 "h": 5

4

 }

 },

 "surviveNode": {

 "rung": 7,

 "breakNode": {

 "h": 6

 },

 "surviveNode": {

 "rung": 8,

 "breakNode": {

 "h": 7

 },

 "surviveNode": {

 "h": 8

 }

 }

 }

 }

}

The grammar and object structure would be in an EBNF-like notation:

DTH = "{" "\"decision_tree\"" ":" <dt> DT.

DT = Compound | Leaf.

Compound = “{“ "rung" “:” <q> int "breakNode" “:”<yes> DT "surviveNode" “:”<no>

DT "}".

Leaf = "\"h\" " ":" <leaf> int .

5

This approach is useful for many algorithmic problems: define a simple computational

model in which to define the algorithm. The decision trees must satisfy certain rules to be

correct.

