Knowledge needed:
Algorithmic: Linear search, Binary Search, Binary Search Trees, Recurrence Relations, Dynamic Programming, Memoization, Pascal’s Triangle, Binomial Coefficients.
Logic Game: Semantic game with Exists, ForAll , and, !.
Technical: JSON notation, programming.

1. (See Kleinberg and Tardos, Addison Wesley, Chapter 2, ex. 8.) You are doing some stress-testing on various models of glass jars to determine the height from which they can be dropped and still not break. The setup for this experiment, on a particular type of jar, is as follows. You have a ladder with n rungs, and you want to find the highest rung from which you can drop a jar and not have it break. We call this the highest safe rung.

It might be natural to try binary search: drop a jar from the middle rung, see if it breaks, and then recursively try from rung $n/4$ or $3n/4$ depending on the outcome. But this has the drawback that you could break a lot of jars in finding the answer.

If your primary goal were to conserve jars, on the other hand, you could try the following strategy. Start by dropping a jar from the first rung, then the second rung, and so forth, climbing one higher each time until the jar breaks. In this way, you only need a single jar – at the moment it breaks, you have the correct answer – but you may have to drop it n times (rather than $\log n$ as in the binary search solution).

So here is the trade-off: it seems you can perform fewer drops if you are willing to break more jars. To study this trade-off, let k be the number of jars you are given, and let n be the actual highest safe rung. Give the minimum number of drops needed to find the highest safe rung, as a function of k and n. When the minimum number of drops needed is x, we write $\text{HSR}_{nk}\text{-min}(n,k)=x$. In other words, $\text{HSR}_{nk}\text{-min}(n,k)$ is the smallest number of questions needed in the worst-case for a ladder with rungs 0...n-1 and a jar budget of k. Your goal is to find an algorithm for $\text{HSR}_{nk}\text{-min}(n,k)$. Hint: consider the case $k = 2$, and then think about what happens when k increases.

With $\text{HSR}(n,k,q)$ we denote the claim: there exists an experimental plan for a ladder with n rungs, k jars and a maximum of q questions to determine the highest safe rung.

Logical Formalism

Above is an informal description of the problem we want to solve. To eliminate potential ambiguities, we write a problem description using predicate logic. This logical description also becomes the blueprint for debates about HSR. See:
Claim MinHSR() = ForAll n in Nat ForAll k <= log(2,n) Exists q<n: MinHSR(n,k,q).
MinHSR(n,k,q) = HSR(n,k,q) and (ForAll p<q: !HSR(n,k,p)).
HSR(n,k,q) = Exists T:DecisionTree(n,k,q) ForAll m in [0..n-1]: T correctly finds m (the highest safe rung) with at most q decisions.

DecisionTree(n,k,q): A decision tree for HSR(n,k,q) must satisfy the following properties:
1) there are at most k yes from the root to any leaf.
2) the longest root-leaf path has q edges.
3) each rung 1..n-1 appears exactly once as internal node of the tree.
4) each rung 0..n-1 appears exactly once as a leaf.

Interesting small claims to start with:

HSR(9,2,4), HSR(9,2,5), HSR(9,2,6), HSR(9,2,7)

2. Defining a common language for the scientific discourse about HSR. To represent an algorithm, i.e., an experimental plan, for finding the highest safe rung for fixed n, k, and q, we use a restricted programming language that is powerful enough to express what we need. We use the programming language of binary decision trees. The nodes represent questions such as 7 (representing the question: does the jar break at rung 7?). The edges represent yes/no answers. We use the following simple syntax for decision trees based on JSON. The reason we use JSON notation is that you can get parsers from the web and it is a widely used notation.

A decision tree is either a leaf or a compound decision tree.

The supporting code written by Zhengxing is here:
https://github.com/czxttkl/ValidateHSRDecisionTree

```json
{
    "rung": 4,
    "breakNode": {
        "rung": 2,
        "breakNode": {
            "rung": 1,
            "breakNode": {
```
 "h": 0

},

"surviveNode": {
 "h": 1
}
}
,

"surviveNode": {
 "rung": 3,
 "breakNode": {
 "h": 2
 },
 "surviveNode": {
 "h": 3
 }
}
}
,

"surviveNode": {
 "rung": 6,
 "breakNode": {
 "rung": 5,
 "breakNode": {
 "h": 4
 },
 "surviveNode": {
 "h": 5
 }
 }
}
The grammar and object structure would be in an EBNF-like notation:

DTH = "{ "\decision_tree\" ":" <dt> DT.
DT = Compound | Leaf.
Compound = "{ "rung":" <q> int "breakNode" ":" <yes> DT "surviveNode" ":" <no> DT "}".
Leaf = "\h" :" <leaf> int .
This approach is useful for many algorithmic problems: define a simple computational model in which to define the algorithm. The decision trees must satisfy certain rules to be correct.