
CS5800: Algorithms Spring 2014 Feb. 25

1 Debate Evaluation Algorithms [40 points]

Based on Ahmed Abdelmeged’s Dissertation.

Algorithm families play an important role in computer science. Consider the family P-
ALGS of all polynomial-time algorithms. We would like to know whether P-ALGS contains
an algorithm for the Satisfiability problem.

Here we deal with a more tractable family of algorithms. In this homework we study debate
evaluation algorithms at a higher level. We consider all ranking algorithms that map a labeled
graph representing a table about debate outcomes into a ranking. But we restrict ourselves
to ranking algorithms which satisfy three properties (or axioms) that you are already familiar
with:

• Non-Negative Effect for Winning (NNEW)

• Non-Positive Effect for Losing (NPEL)

• Collusion-Resilience (CR)

Can you say something interesting about any algorithm mapping labeled graphs to rankings
and which satisfies the three properties: NNEW, NPEL and CR.

Let’s restate NNEW and NPEL from homework 7. It is unacceptable for a ranking function
to reward losing or to penalize winning. That is, a player’s rank cannot be worsened by an
extra win nor can it be improved by an extra loss.

1.1 NNEW

If x ≤T y for table T then x ≤T ′
y for table T ′ where T ′ contains an additional row where x

won. We call this property Non-Negative Effect for Winning I (NNEW.I).

If x ≤T y for table T then x ≤ T ′′y for table T ′′ where T ′′ contains one fewer row where y
won. We call this property Non-Negative Effect for Winning II (NNEW.II).

NNEW = NNEW.I and NNEW.II.



1.2 NPEL

If x ≤T y for table T then x ≤ T ′y for table T ′ where T ′ contains an additional row where
y lost. We call this property Non-Positive Effect for Losing (NPEL.I).

If x ≤ Ty for table T then x ≤ T ′′y for table T ′′ where T ′′ contains one fewer row where x
lost. We call this property Non-Positive Effect for Losing (NPEL.II).

NPEL = NPEL.I and NPEL.II.

1.3 Background Recall

Here comes further background from hw6 and the midterm. You have been playing debates
(semantic games) and you have recorded your debate results in tables such as the following
one. You have column headers PW, PL, Forced. There is an additional column Fault
which is computed from the first three. Each row of the table represents a debate g. PW
and PL are the columns for the two participants. Because there is always a winner (there are
no draws) we choose the PW column to show the winner. The Forced column shows which
participant is forced. Remember that at most one is forced. We use entry none indicating
that none of the two participants was forced. The Fault column depends on the columns
PL and Forced and indicates whether the participant in column PL had a fault (lost in
non-forced position).

We use the following Boolean functions for a debate g: g.participates(p) = p is a par-
ticipant in debate g (either the winner or the loser). g.wins(p) = g.participates(p) and
participant p wins in debate g. g.loses(p) = g.participates(p) and participant p loses in
debate g. g.forced(p) = g.participates(p) and participant p is forced in debate g. g.fault(p)
= g.participates(p) and participant p makes a fault in debate g. Note that !g.wins(p) =
!g.participates(p) or g.loses(p).

Definition of fault: g.fault(p) = g.participates(p) and g.loses(p) and !g.forced(p).

Similar to the fault concept there is the control concept.

Definition of control: g.control(p) = g.participates(p) and (g.wins(p) or !g.forced(p)).
Informally, a participant p is not in control in a debate if p is not involved in the debate
or p loses while forced. Again informally we say that a participant p controls a debate if p
either wins or p had a guaranteed opportunity to win (was non-forced). In a debate there is
at least one of the two participants in control: the winner.

Consider algorithms that translate a debate table into a ranking of the participants. What
is a ranking? A reflexive, transitive and complete binary relation.

Informally, our goal is to find the best participants based on the debates. We consider two
ranking algorithms.

2



The first ranking algorithm, called ≤WC , is based on win counting while the second, called
≤FC is based on a special kind of loss counting, called fault counting.

We fix a set of debates D. x ≤D y means that participant x is ranked weakly better than
participant y for D. Sometimes we omit the superscript D when it is clear from context.
Informally, weakly better means that either x is better then y or x and y have the same
rank.

You might need some of the following in your answer: wins(x) is the number of wins of
participant x over all debates in D. Formally, wins(x) is the number of rows g ∈ D which
satisfy g.wins(x). faults(x) is the number of faults that x makes over all debates in D.
Formally, faults(x) is the number of rows g in D which satisfy g.fault(x).

In principle, all the functions defined above would require a superscript for D. For example,
winsD(x) is the number of wins of participant x over all debates in D. However, we omit it
in order not to clutter the definitions.

1.4 CR

Definition of collusion resilience: A ranking ≤ of participants is said to be collusion-
resilient if for all debate tables D and for any two participants x and y, the property x ≤D y
implies x ≤E y, where E is D with added debates g that x cannot control, i.e., for which
!g.control(x).

Informally, if x ≤D y and more debates that x cannot control are added to D resulting in
E, then x ≤E y holds.

CR prevents debaters from gaming the debates by preventing another debater to be top
ranked through intentional losses.

2 Example of Algorithms that satisfy NNEW and NPEL

and CR

We show examples of ranking algorithms which have the desirable properties. The goal of
the homework question is to figure out a property that is common to all of the algorithms.

2.1 Fault Counting

≤FC is defined as: x ≤FC y if faults(x) ≤ faults(y).

NNEW and NPEL you have shown in hw 7. CR you have shown in the midterm.

3



2.2 Weighted Fault Counting

There are two kinds of faults that happen during a debate: (1) The debaters have chosen
their prefered sides which are opposite to each other. (2) The debaters have chosen the same
side.

If a fault happens with context (1), we count the fault with weight wopp. With context (2)
the weight is wsame.

wfaults(x) is the number of weighted faults that x makes over all debates in D. Formally,
wfaults(x) is the number of weighted rows g in D which satisfy g.fault(x).

≤WFC is defined as: x ≤WFC y if wfaults(x) ≤ wfaults(y).

With the weights we can influence the competitiveness of the debaters. When wopp is con-
siderably less than wsame the debaters will avoid losing against a forced debater. On the
other hand, the forced debater will be strongly motivated to try to find weaknesses in the
opponent.

2.3 All Equal

≤= is defined as: x ≤= y if true.

All debaters are ranked the same. (Everybody gets an A independent of performance.)

3 Make a claim and defend it

3.1 3 properties

Make a claim about the family of ranking algorithms that have all three properties NNEW,
NPEL and CR.

3.2 NNEW and CR (2 properties)

Make a claim about the family of ranking algorithms that have two properties NNEW and
CR.

Justify your claims by providing a proof. But the focus is on expressing the correct claims.

4



3.3 Hint

A ranking algorithm takes as input a table and maps it to a ranking relation for the debaters.
We consider filters on the table which keep the ranking relation obtained invariant. The filter
eliminates some rows from the table which we cannot use because of the CR and NNEW
properties that we want to hold.

For any pair (x,y) of debaters, the relative rank that ≤ assigns to x with respect to y (x ≤D y)
for a table D satisfies: x ≤D y ⇐⇒ x ≤f(D,x,y) y where f(D, x, y) is suitably defined.

f expresses which games are important to compute the ranking if we want CR and NNEW
to hold.

Can you propose a suitable f?

5


