
CS 5800: Algorithms V. Pavlu, K.Lieberherr
Due: Feb. 17, 2014

Homework Module 6

1 Submission Rules

http://www.ccs.neu.edu/home/lieber/courses/algorithms/

cs5800/sp14/homeworks/submission-rules.pdf

2 Problems

1. Jars on a ladder problem. Given a ladder of n rungs and k identical glass jars, one
has to design an experiment of dropping jars from certain rungs, in order to find the
highest rung on the ladder from which a jar doesn’t break if dropped.

Idea: With only one jar (k=1), we can’t risk breaking the jar without getting an answer.
So we start from the lowest rung on the ladder, and move up. When the jar breaks, the
previous rung is the answer; if we are unlucky, we have to do all n rungs, thus n trials.
Now lets think of k=log(n): with log(n) or more jars, we have enough jars to do binary
search, even if jars are broken at every rung. So in this case we need log(n) trials.
Note that we can’t do binary search with less than log(n) jars, as we risk breaking all
jars before arriving at an answer in the worst case.

Earlier, we used this equivalent description, called HSR-Intro:

http://www.ccs.neu.edu/home/lieber/courses/algorithms/cs5800/sp14/

labs/HSR-problem-CS5800-1.pdf

Your task is to calculate q = MinT (n, k)= the minimum number of dropping trials
any such experiment has to make, to solve the problem even in the worst/unluckiest
case (i.e., not running out of jars to drop before arriving at an answer). MinT stands
for Minimum number of Trials. MinT corresponds to HSRnk-min(n,k) in HSR-Intro.

A(5 points). Explain the optimal solution structure and write a recursion for MinT (n, k).

B(5 points). Write the alternative/dual recursion for MaxR(q, k) = the Highest
Ladder Size n doable with k jars and maximum q trials. Explain how MinT (n, k)
can be computed from the table MaxR(q, k). MaxR stands for the Maximum number
of Rungs. Using the terminology of HSR-Intro, we would call MaxR to be HSRqk-
max(q,k).

C(10 points). For one of these two recursions (not both, take your pick) write the
bottom-up non-recursive computation pseudocode. Hint: the recursion MinT (n, k) is
a bit more difficult and takes more computation steps, but once the table is computed,

1



the rest is easier on points E-F below. The recursion in MaxR(q, k) is perhaps easier,
but trickier afterwards: make sure you compute all cells necessary to get MinT (n, k)—
see point B.

D(10 points). Redo the computation this time top-down recursive, using memoiza-
tion.

E(10 points). Trace the solution for MinT (n, k). While computing bottom-up, use
an auxiliary structure that can be used to determine the optimal sequence of drops
for a given input n, k. The procedure TRACE(n, k) should output the ladder rungs
to drop jars, considering the dynamic outcomes of previous drops. Hint: its recursive.
Somewhere in the procedure there should be an if statement like “if the trial at rung
x breaks the jar... else ...”

F(10 points). In A you use a minimum over a range 0..n-1. Can you efficiently
predict the value to be chosen in this range without having to do a linear search for it?
Compare with section 16.1 in the text book where a dynamic programming solution is
simplified using a greedy choice.

G(20 points). Implement in your favorite programming language a perfect avatar for
the debate associated with claim MinHSR() (see HSR-Intro). To test your avatar run
a debate in your teams of three. Before you run the debates, set reasonable boundary
conditions, say that your perfect avatar needs to handle only values of n less than one
million. Feed the objects obtained from your partner manually to your avatar. Test
them for correctness to make sure there is no cheating. Use JSON as described in
HSR-Intro to exchange objects during the debate.

Output the entire decision tree produced by your perfect avatar using JSON to express
the tree, for the following test cases : (n=9,k=2); (n=11, k=3); (n=10XYZ,k=9) where
XYZ are the last three digits of your NU-ID. Turn in your avatar that produces the
optimum decision tree for given n and k using JSON. Turn in a zip folder that contains:
(1) all files required by your avatar (2) instructions how to run your avatar (3) the three
decision trees in files t-9-2.json, t-11-3.json and t-10000-9.json (4) the answers to all
other questions of this homework.

H(extra credit, 20 points). Solve a variant of this problem for q = MinT(n,k) that
optimizes the average case instead of the worst case: now we are not concerned with
the worst case q, but with the average q. Will make the assumption that all cases are
equally likely (the probability of the answer being a particular rung is the same for all
rungs). You will have to redo points A,C,E specifically for this variant.

2


