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CS 5800                                  Problem Piazza 1                                          
Fall 2013 
Karl Lieberherr 
 
Knowledge needed: 
Algorithmic: Linear search, Binary Search, Binary Search Trees, Recurrence Relations, 
Memoization, Pascal’s Triangle. 
Logic Game: Semantic game with Exists, ForAll , and, !. 
Technical: JSON notation, programming. 
 
Find a game partner to solve the problem collaboratively. You should keep the same 
partner for several weeks. If you prefer, you can be a group of one but you deprive 
yourself of learning from others through the semantic games.  
 
1. (See Kleinberg and Tardos, Addison Wesley, Chapter 2, ex. 8.)  You are doing some 

stress-testing on various models of glass jars to determine the height from which they 
can be dropped and still not break.  The setup for this experiment, on a particular type 
of jar, is as follows.  You have a ladder with n rungs, and you want to find the highest 
rung from which you can drop a copy of the jar and not have it break.  We call this the 
highest safe rung. 

 
It might be natural to try binary search: drop a jar from the middle rung, see if it breaks, 
and then recursively try from rung / 4n or 3 / 4n  depending on the outcome.  But this 
has the drawback that you could break a lot of jars in finding the answer. 
 
If your primary goal were to conserve jars, on the other hand, you could try the 
following strategy.  Start by dropping a jar from the first rung, then the second rung, 
and so forth, climbing one higher each time until the jar breaks.  In this way, you only 
need a single jar – at the moment it breaks, you have the correct answer – but you may 
have to drop it n times (rather than lg n as in the binary search solution). 

 
So here is the trade-off: it seems you can perform fewer drops if you are willing to 
break more jars.  To study this trade-off, let k be the number of jars you are given, and 
let n be the actual highest safe rung.  Give the minimum number of drops needed to 
find the highest safe rung, as a function of k and .n  When the minimum number of 
drops needed is x, we write HSRnk-min(n,k)=x. In other words, HSRnk-min(n,k) is the 
smallest number of questions needed in the worst-case for a ladder with rungs 0..n-1 
and a jar budget of k. Your goal is to compute HSRnk-min(n,k).  Describe a 
corresponding strategy for finding the highest safe rung.  Hint: consider the case 2,k =  
and then think about what happens when k  increases.  With HSR(n,k,q) we denote the 
claim: there exists an experimental plan for a ladder with n rungs, 
k jars and a maximum of q questions to determine the highest safe rung. 

 
Interesting small claims to start with: 
 
HSR(9,2,4), HSR(9,2,5),HSR(9,2,6),HSR(9,2,7)  
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2.  Defining a common language for the scientific discourse about HSR.To represent an 
algorithm for finding the highest safe rung HSR(n,k) for fixed n and k, we use a restricted 
programming language that is powerful enough to express what we need. We use the 
programming language of binary decision trees which satisfy the rules of a binary search 
tree. The nodes represent questions such as 7 (meaning breaks(7))  and the edges 
represent yes/no answers. We use the following simple syntax for decision trees based on 
JSON. The reason we use JSON notation is that you can get parsers from the web and it 
is a widely used notation. 
 
A decision tree is either a leaf or a compound decision tree represented by an array with 
exactly 3 elements. 
 
// h = highest safe rung or leaf 
{ "decision tree" : 
 [1,{"h":0},[2,{"h":1},[3,{"h":2},{"h":3}]]] 
} 
 
The grammar and object structure would be: 
DTH = "{"  "\"decision tree\""  ":" <dt> DT. 
DT = Compound | Leaf. 
Compound = "[" <q> int "," <yes> DT "," <no> DT "]". 
Leaf = "{" "\"h\" " ":" <leaf> int "}". 
This approach is useful for many algorithmic problems: define a simple computational 
model in which to define the algorithm. The decision trees must satisfy certain rules to be 
correct .  
 
A decision tree d in DT(n,k) for HSR(n,k)=q must satisfy the following properties: 
1) the BST (Binary Search Tree Property): For any left subtree: the root is one larger than 
the largest node in the subtree and for any right subtree the root is equal to the smallest 
(i.e., leftmost) node in the subtree. 
2) there are at most k yes from the root to any leaf. 
3) the longest root-leaf path has q edges. 
4) each rung 1..n-1 appears exactly once as internal node of the tree. 
5) each rung 0..n-1 appears exactly once as a leaf. 
 
 
 


