
Dijkstra’s Shortest Paths
By: Ahmed Abdelmeged
and: Karl Lieberherr

Wednesday, February 29, 2012

Single Source Shortest
Paths Problem

Given:

a directed graph G(V,E),

edge weights w:E->R denoting costs/distances,

a designated source node s∈V.

Find:

for each node v∈V find the best (minimum)
cost to reach v from s.

Wednesday, February 29, 2012

Brute Force Algorithm

“Try“ all paths.

for v∈ V

let paths_v be the set of all paths from s to v

output v, min(cost(paths_v))

Q: Can you upper bound |paths_v|?

Wednesday, February 29, 2012

Can we asymptotically improve
the brute force algorithm?

s

x

yz
5

10

15

-1 t3
Can we say

something about the
best paths or other

paths?

s-x paths:{[s,x:5]}

s-z paths {[s,z:10], [s,x,z:20]}

s-y paths {[s,z,y:9],[s,x,z,y:19]}

s-t paths{[s,z,y,t:12],[s,x,z,y,t:22]}

Wednesday, February 29, 2012

Yes, because the solution exhibits
the optimal substructure property!

s

x

yz
5

10

15

-1 t3
[s,x,z] is not the
best path to z,

so is every other
path starting with

[s,x,z,..]

s-x paths:{[s,x:5]}

s-z paths {[s,z:10], [s,x,z:20]}

s-y paths {[s,z,y:9],[s,x,z,y:19]}

s-t paths{[s,z,y,t:12],[s,x,z,y,t:22]}

Wednesday, February 29, 2012

Yes, because the solution exhibits
the optimal substructure property!

s

x

yz
5

10

15

-1 t3
[s,z,y,t] is the best
path to t, so [s,z,y]
must be the best
path to y, and [s,z]
must be the best

path to z,...

s-x paths:{[s,x:5]}

s-z paths {[s,z:10], [s,x,z:20]}

s-y paths {[s,z,y:9],[s,x,z,y:19]}

s-t paths{[s,z,y,t:12],[s,x,z,y,t:22]}

Wednesday, February 29, 2012

Dynamic Programming

To find the best path to v:

“Try“ to extend the best path to some
node x (where (x,v)∈E) with v. Output the
extension minimizing the overall path cost.

BestPath(s,v) = min { BestPath(s,x) + w([x,v])}

Q (we won’t answer): when does the above
recursion terminate? What is its complexity?

Wednesday, February 29, 2012

Can we do it without
“Try”ing?

We are after either a greedy or a divide and
conquer algorithm.

Dijkstra’s algorithm (Greedy)

Edge weights must be positive (w:E->R+).
As we go through the algorithm, try to
figure out why this is critical! Now we can
use the distance metaphor.

Wednesday, February 29, 2012

Dijkstra’s Single Source Shortest
Paths Algorithm

(Data Structures)

For each node v in V we keep it’s best known
distance.

We also keep a set S of nodes that we know
their shortest distance.

s

x

yz
5

10

15

1 t1

Wednesday, February 29, 2012

Dijkstra’s Single Source Shortest
Paths Algorithm

Initialize S to {s} and bestKnownDistance(s)
to 0;

s

x

yz
5

10

15

1 t1

0

Wednesday, February 29, 2012

Dijkstra’s Single Source Shortest
Paths Algorithm

A node f not in S is called a frontier node iff
it is the target of some edge coming out of
some node in S.

s

x

yz
5

10

15

1 t1

0

Wednesday, February 29, 2012

Dijkstra’s Single Source Shortest
Paths Algorithm

while S != V{
 Compute the best known distance for frontier
nodes using the distances of nodes in S and edges
from nodes in S to nodes in F.
 Add the frontier node with the shortest best
known distance to S.
}

s

x

yz
5

10

3

1 t1

0

5
10

Wednesday, February 29, 2012

Dijkstra’s Single Source Shortest
Paths Algorithm

while S != V{
 Compute the best known distance for frontier
nodes using the distances of nodes in S and edges
from nodes in S to nodes in F.
 Add the frontier node with the shortest best
known distance to S.
}

s

x

y
5

10

3

1 t1

0

5

z

Wednesday, February 29, 2012

Dijkstra’s Single Source Shortest
Paths Algorithm

while S != V{
 Compute the best known distance for frontier
nodes using the distances of nodes in S and edges
from nodes in S to nodes in F.
 Add the frontier node with the shortest best
known distance to S.
}

s

x

yz
5

10

3

1 t1

0

5
8

Wednesday, February 29, 2012

Dijkstra’s Single Source Shortest
Paths Algorithm

while S != V{
 Compute the best known distance for frontier
nodes using the distances of nodes in S and edges
from nodes in S to nodes in F.
 Add the frontier node with the shortest best
known distance to S.
}

s

x

yz
5

10

3

1 t1

0

5
8

Wednesday, February 29, 2012

Dijkstra’s Single Source Shortest
Paths Algorithm

while S != V{
 Compute the best known distance for frontier
nodes using the distances of nodes in S and edges
from nodes in S to nodes in F.
 Add the frontier node with the shortest best
known distance to S.
}

s

x

yz
5

10

3

1 t1

0

5
8 9

Wednesday, February 29, 2012

Dijkstra’s Single Source Shortest
Paths Algorithm

while S != V{
 Compute the best known distance for frontier
nodes using the distances of nodes in S and edges
from nodes in S to nodes in F.
 Add the frontier node with the shortest best
known distance to S.
}

s

x

yz
5

10

3

1 t1

0

5
8 9

Wednesday, February 29, 2012

Dijkstra’s Single Source Shortest
Paths Algorithm

while S != V{
 Compute the best known distance for frontier
nodes using the distances of nodes in S and edges
from nodes in S to nodes in F.
 Add the frontier node with the shortest best
known distance to S.
}

s

x

yz
5

10

3

1 t1

0

5
8 9 10

Wednesday, February 29, 2012

Dijkstra’s Single Source Shortest
Paths Algorithm

while S != V{
 Compute the best known distance for frontier
nodes using the distances of nodes in S and edges
from nodes in S to nodes in F.
 Add the frontier node with the shortest best
known distance to S.
}

s

x

yz
5

10

3

1 t1

0

5
8 109

Wednesday, February 29, 2012

Correctness

What does it mean that Dijkstra’s algorithm
is correct?

Wednesday, February 29, 2012

Correctness

(When the algorithm finishes) The best known
distances of nodes in S are the shortest
distances.

Noting that S is constructed by successive
extension to some initial value, you are advised
to generalize the above statement to:

At all times, the best known distances of
nodes in S are the shortest distances. (An
invariant on S)

Wednesday, February 29, 2012

Correctness

Also, by noting that S is constructed by
successive extension to some initial value, you are
advised to use induction to prove the invariant.

Base case: [S={s}, bkd(s) = 0] satisfies the
invariant.

Induction hypothesis: [S={v1..vk}, bkd(v) is
shortest] imply that the bkd(x), where x is the
node added by Dijkstra’s algorithm to S, is the
shortest.

Wednesday, February 29, 2012

Correctness

The path from s to any node not in S must go through
some frontier node (by definition of frontier nodes)

The bkd for a frontier node is the shortest using only
nodes in S (by definition of frontier nodes and IH)

let x be the frontier node with the minimum bkd,
then all other paths to x that go through nodes not
in S are not less expensive than bkd(x). Why?

s

x

yz
5

10

3

1 t1

0

5
10

Wednesday, February 29, 2012

Correctness

The path from s to any node not in S must go through some
frontier node (by definition of frontier nodes)

The bkd for a frontier node is the shortest using only nodes in S
(by definition of frontier nodes and IH)

let x be the frontier node with the minimum bkd, then all other
paths to x that go through nodes not in S are not less expensive
than bkd(x). Why? Because these paths must go through a
frontier node whose distance is not less than bkd(x) and that edge
costs are positive.

s

x

yz
5

10

3

1 t1

0

5
10

Wednesday, February 29, 2012

Complexity

while S != V{
 Compute the best known distance for
frontier nodes using the distances of nodes
in S and edges from nodes in S to nodes in F.
 Add the frontier node with the shortest
best known distance to S.
}

Wednesday, February 29, 2012

Complexity

while S != V{
 Compute the best known distance for frontier nodes using the
distances of nodes in S and edges from nodes in S to nodes in F.
 Add the frontier node with the shortest best known distance
to S.
}

The outer loop iterates n times for a graph with n nodes. Each
iteration considers all edges coming out of some node in S. These
edges are comparable to all edges in the graph especially in later
iterations and thus are bounded by the total number of nodes in
the graph m.

Overall complexity = O(m.n)

Wednesday, February 29, 2012

Further Optimizations

Incrementally maintain the best known
distances of frontier nodes under element
addition to S rather than recomputing it from
scratch every time.

Keep frontier nodes in a priority queue
ordered by their best known distance this
allows us to maintain the closest node under
removal of nodes from the priority queue as
well as under changes in best known distances.

Wednesday, February 29, 2012

S : keySet
(distances)

BKD is computed
on the fly.

Not terminating
the while loop
when S contains
all of the graph
nodes. Benefits?

public Map<Node, Integer> simpleDijkstra(Node source) {
 Map<Node, Integer> distances = new HashMap<Node, Integer>();
 distances.put(source, 0);
 while(true){
	 MinAcc acc = new MinAcc(null, Integer.MAX_VALUE);
	 for (Entry<Node, Integer> entry : distances.entrySet()) {
	 for (Edge edge : entry.getKey().getOutgoingEdges()) {
	 Node trgt = edge.getTarget();
	 	 if(!distances.containsKey(trgt)) {
	 	 int srcDistance = entry.getValue();
	 	 int trgtDistance = srcDistance + edge.getLength();
	 	 acc.acc(trgt, trgtDistance);
	 	 }
	 }
	 }
	 if(acc.getClosest() == null) break;
	 distances.put(acc.getClosest(), acc.getClosestDistance());
 }
 return distances;
}

class MinAcc{
	 Node closest;
	 int closestDistance;
 //Constructor, getters elided
	 public void acc(Node node, int distance){
	 	 if(distance < closestDistance){
	 	 	 closestDistance = distance;
	 	 	 closest = node;
	 	 }
	 }
}

Wednesday, February 29, 2012

What if the graph
had a node that is
not reachable from
s?

The algorithm is
designed with an
“ideal” world in
mind.

To have a “good” real
world
implementation, we
need to consider
corner cases and ask
“what if ...” question.

public Map<Node, Integer> simpleDijkstra(Node source) {
 Map<Node, Integer> distances = new HashMap<Node, Integer>();
 distances.put(source, 0);
 while(true){
	 MinAcc acc = new MinAcc(null, Integer.MAX_VALUE);
	 for (Entry<Node, Integer> entry : distances.entrySet()) {
	 for (Edge edge : entry.getKey().getOutgoingEdges()) {
	 Node trgt = edge.getTarget();
	 	 if(!distances.containsKey(trgt)) {
	 	 int srcDistance = entry.getValue();
	 	 int trgtDistance = srcDistance + edge.getLength();
	 	 acc.acc(trgt, trgtDistance);
	 	 }
	 }
	 }
	 if(acc.getClosest() == null) break;
	 distances.put(acc.getClosest(), acc.getClosestDistance());
 }
 return distances;
}

class MinAcc{
	 Node closest;
	 int closestDistance;
 //Constructor, getters elided
	 public void acc(Node node, int distance){
	 	 if(distance < closestDistance){
	 	 	 closestDistance = distance;
	 	 	 closest = node;
	 	 }
	 }
}

Wednesday, February 29, 2012

Consider the
underlined code
block. What does it
read and what
does it produce?

Note that it is
executed several
times with slightly
modified distance
object.

Can the loops
there be executed
in any order?

public Map<Node, Integer> simpleDijkstra(Node source) {
 Map<Node, Integer> distances = new HashMap<Node, Integer>();
 distances.put(source, 0);
 while(true){
	 MinAcc acc = new MinAcc(null, Integer.MAX_VALUE);
	 for (Entry<Node, Integer> entry : distances.entrySet()) {
	 for (Edge edge : entry.getKey().getOutgoingEdges()) {
	 Node trgt = edge.getTarget();
	 	 if(!distances.containsKey(trgt)) {
	 	 int srcDistance = entry.getValue();
	 	 int trgtDistance = srcDistance + edge.getLength();
	 	 acc.acc(trgt, trgtDistance);
	 	 }
	 }
	 }
	 if(acc.getClosest() == null) break;
	 distances.put(acc.getClosest(), acc.getClosestDistance());
 }
 return distances;
}

class MinAcc{
	 Node closest;
	 int closestDistance;
 //Constructor, getters elided
	 public void acc(Node node, int distance){
	 	 if(distance < closestDistance){
	 	 	 closestDistance = distance;
	 	 	 closest = node;
	 	 }
	 }
}

Wednesday, February 29, 2012

We can
incrementalize
the computation
of minAcc.

public Map<Node, Integer> simpleDijkstra(Node source) {
	 Map<Node, Integer> distances = new HashMap<Node, Integer>();
	 distances.put(source, 0);
	 Execute the code that computes minAcc;
	 if(!acc.getClosest() == null){
	 	 distances.put(acc.getClosest(), acc.getClosestDistance());
	 	 while(true){
	 	 	 Maintain acc under adding the closest node to distances;
	 	 	 if(acc.getClosest() == null) break;
	 	 	 distances.put(acc.getClosest(), acc.getClosestDistance());

	 }
}

	 return distances;
}

class MinAcc{
	 Node closest;
	 int closestDistance;
 //Constructor, getters elided
	 public void acc(Node node, int distance){
	 	 if(distance < closestDistance){
	 	 	 closestDistance = distance;
	 	 	 closest = node;
	 	 }
	 }
}

Wednesday, February 29, 2012

Implementation

Given that
distances contain
a single entry
(source, 0) we
can simplify the
underlined
block.

public Map<Node, Integer> simpleDijkstra(Node source) {
 Map<Node, Integer> distances = new HashMap<Node, Integer>();
 distances.put(source, 0);
 MinAcc acc = new MinAcc(null, Integer.MAX_VALUE);
 for (Entry<Node, Integer> entry : distances.entrySet()) {
	 for (Edge edge : entry.getKey().getOutgoingEdges()) {
	 Node trgt = edge.getTarget();
	 if(!distances.containsKey(trgt)) {
	 	 int srcDistance = entry.getValue();
	 	 int trgtDistance = srcDistance + edge.getLength();
	 	 acc.acc(trgt, trgtDistance);
	 }
	 }
 }
 if(!acc.getClosest() == null){
	 distances.put(acc.getClosest(), acc.getClosestDistance());
	 while(true){
	 Maintain acc under adding the closest node to distances;
	 if(acc.getClosest() == null) break;
	 distances.put(acc.getClosest(), acc.getClosestDistance());

 }
}

	 return distances;
}

Wednesday, February 29, 2012

Implementation
Given that distances
contain a single
entry (source, 0) we
can simplify the
underlined block.

No need for the
outer loop. or the if
statement.

entry.getKey() is
source

entry.getValue() is 0

public Map<Node, Integer> simpleDijkstra(Node source) {
	 Map<Node, Integer> distances = new HashMap<Node, Integer>();
	 distances.put(source, 0);
	 MinAcc acc = new MinAcc(null, Integer.MAX_VALUE);
	 for (Edge edge : source.getOutgoingEdges()) {
	 	 Node trgt = edge.getTarget();
	 	 int srcDistance = 0;
	 	 int trgtDistance = srcDistance + edge.getLength();
	 	 acc.acc(trgt, trgtDistance);
	 }
	 if(!acc.getClosest() == null){
	 	 distances.put(acc.getClosest(), acc.getClosestDistance());
	 	 while(true){
	 	 	 Maintain acc under adding the closest node to distances;
	 	 	 if(acc.getClosest() == null) break;
	 	 	 distances.put(acc.getClosest(), acc.getClosestDistance());

	 }
}

	 return distances;
} class MinAcc{

	 Node closest;
	 int closestDistance;
 //Constructor, getters elided
	 public void acc(Node node, int distance){
	 	 if(distance < closestDistance){
	 	 	 closestDistance = distance;
	 	 	 closest = node;
	 	 }
	 }
}

Wednesday, February 29, 2012

Implementation

We can do
constant
propagation of
srcDistance and
simplification.

public Map<Node, Integer> simpleDijkstra(Node source) {
	 Map<Node, Integer> distances = new HashMap<Node, Integer>();
	 distances.put(source, 0);
	 MinAcc acc = new MinAcc(null, Integer.MAX_VALUE);
	 for (Edge edge : source.getOutgoingEdges()) {
	 	 Node trgt = edge.getTarget();
	 	 int trgtDistance = edge.getLength();
	 	 acc.acc(trgt, trgtDistance);
	 }
	 if(!acc.getClosest() == null){
	 	 distances.put(acc.getClosest(), acc.getClosestDistance());
	 	 while(true){
	 	 	 Maintain acc under adding the closest node to distances;
	 	 	 if(acc.getClosest() == null) break;
	 	 	 distances.put(acc.getClosest(), acc.getClosestDistance());

	 }
}

	 return distances;
} class MinAcc{

	 Node closest;
	 int closestDistance;
 //Constructor, getters elided
	 public void acc(Node node, int distance){
	 	 if(distance < closestDistance){
	 	 	 closestDistance = distance;
	 	 	 closest = node;
	 	 }
	 }
}

Wednesday, February 29, 2012

Implementation

How to maintain
acc under
distances.put
(acc.getClosest(),
acc.getClosestDi
stance())?

public Map<Node, Integer> simpleDijkstra(Node source) {
 Map<Node, Integer> distances = new HashMap<Node, Integer>();
 distances.put(source, 0);
 ...;
 if(!acc.getClosest() == null){
	 distances.put(acc.getClosest(), acc.getClosestDistance());
	 while(true){
	 Maintain acc under adding the closest node to distances;
	 if(acc.getClosest() == null) break;
	 	 distances.put(acc.getClosest(), acc.getClosestDistance());

 }
}

 return distances;
}

class MinAcc{
	 Node closest;
	 int closestDistance;
 //Constructor, getters elided
	 public void acc(Node node, int distance){
	 	 if(distance < closestDistance){
	 	 	 closestDistance = distance;
	 	 	 closest = node;
	 	 }
	 }
}

Wednesday, February 29, 2012

Implementation

Adding an entry to distances affects the control
flow

The outer loop shall have one additional iteration.

The body of the if-statement should be “undone”
for the cases where trgt is the same as the key
of the newly added entry.

for (Entry<Node, Integer> entry : distances.entrySet()) {
	 for (Edge edge : entry.getKey().getOutgoingEdges()) {
	 	 Node trgt = edge.getTarget();
	 	 if(!distances.containsKey(trgt)) {
	 	 	 int srcDistance = entry.getValue();
	 	 	 int trgtDistance = srcDistance + edge.getLength();
	 	 	 acc.acc(trgt, trgtDistance);
	 	 }
	 }
}

Wednesday, February 29, 2012

Adding an entry to distances affects the control
flow

The outer loop shall have one additional iteration.

The body of the if-statement should be “undone”
for the cases where trgt is the same as the key
of the newly added entry.

Node closest = acc.getClosest();
int closestDistance= acc.getClosestDistance();
for (Edge edge : closest.getOutgoingEdges()) {
	 Node trgt = edge.getTarget();
	 if(!distances.containsKey(trgt)) {
	 	 int srcDistance = closestDistance;
	 	 int trgtDistance = srcDistance + edge.getLength();
	 	 acc.acc(trgt, trgtDistance);
	 }
}
acc.remove(closest); <== How to implement? can be replaced by
acc.removeClosest()

Wednesday, February 29, 2012

Implementation
class MinAcc{
 PriorityQueue<Node,Integer> pq = ...;
	 public MinAcc(Node closest, int closestDistance) {

pq.put(closest,closestDistance);
	 }
	 public Node getClosest() {
	 	 return pq.min().getValue();
	 }
	 public int getClosestDistance() {
	 	 return pq.min().getKey();
	 }
	 public void acc(Node node, int distance){
 if(pq.containsValue(node){

 int bkd = pq.getKey(node);
 if(distance < bkd){

 pq.decreseKey(node, distance);
 }
 }else{

 pq.put(closest,closestDistance);
}

	 }
	 public void removeClosest(){

pq.poll();
	 }
}

Wednesday, February 29, 2012

Complexity

acc.remove
Closest is
invoked n
times

acc.acc is
invoked m
times

public Map<Node, Integer> simpleDijkstra(Node source) {
	 Map<Node, Integer> distances = new HashMap<Node, Integer>();
	 distances.put(source, 0);
	 MinAcc acc = new MinAcc(null, Integer.MAX_VALUE);
	 for (Edge edge : source.getOutgoingEdges()) {
	 	 Node trgt = edge.getTarget();
	 	 int trgtDistance = edge.getLength();
	 	 acc.acc(trgt, trgtDistance);
	 }
	 if(!acc.getClosest() == null){
	 	 distances.put(acc.getClosest(), acc.getClosestDistance());
	 	 while(true){
	 	 	 Node closest = acc.getClosest();
	 	 	 int closestDistance= acc.getClosestDistance();
	 	 	 for (Edge edge : closest.getOutgoingEdges()) {
	 	 	 	 Node trgt = edge.getTarget();
	 	 	 	 if(!distances.containsKey(trgt)) {
	 	 	 	 	 int srcDistance = closestDistance;
	 	 	 	 	 int trgtDistance = srcDistance + edge.getLength();
	 	 	 	 	 acc.acc(trgt, trgtDistance);
	 	 	 	 }
	 	 	 }
	 	 	 acc.removeClosest();
	 	 	 if(acc.getClosest() == null) break;
	 	 	 distances.put(acc.getClosest(), acc.getClosestDistance());
	 	 }
	 }
	 return distances;
}

Wednesday, February 29, 2012

Complexity
acc.removeClosest is invoked n times

acc.acc is invoked m times

The priority queue is bounded by n
(in reality would we have that large
of a frontier?)

 decreaseKey and put are O(lg n) in
binary heaps and O(1) in Fibonacci
heaps.

Using binary heaps, Dijkstra is O((m
+n)*lg n) = O(m * lg n).

Using Fibonacci heaps, Dijkstra is O(m
+ n * lg n)

class MinAcc{
 PriorityQueue<Node,Integer> pq = ...;
	 public MinAcc(Node closest, int
closestDistance) {
 pq.put(closest,closestDistance);
	 }
	 public Node getClosest() {
	 	 return pq.min().getValue(); O(1)
	 }
	 public int getClosestDistance() {
	 	 return pq.min().getKey(); O(1)
	 }
	 public void acc(Node node, int distance){
 if(pq.containsValue(node){

 int bkd = pq.getKey(node);
 if(distance < bkd){

 pq.decreaseKey(node, distance); O
(lg n)/O(1)
 }
 }else{

 pq.put(closest,closestDistance); O(lg n)/
O(1)
}

	 }
	 public void removeClosest(){

pq.poll(); O(lg n)
	 }
}

Wednesday, February 29, 2012

Exercise - Tricking
Dijkstra

Give a weighted directed graph G, where
weights are not necessarily positive, such
that Dijkstra produces wrong results.

Wednesday, February 29, 2012

Questions?

Wednesday, February 29, 2012

Thank You

Wednesday, February 29, 2012

Wednesday, February 29, 2012

