
Christopher Souvey
Professor Karl Lieberherr
Algorithms CS4800
27 April, 2012

Reflections on the Quantifier Game

Background

The quantifier game is not a new idea. It is a formalization of a natural process we
use every day (be it academically, personally, or in the workplace) to evaluate decisions. The
essence of the game is that all claims (statements proposed as truth) should include a well-
defined means to dispute them. To simplify this process, the game narrows the domain to claims
based on quantifiers and of the form “for all X there exists a Y such that ...” or “there exists
Y such that for all X ...”. A player can oppose this type of claim by instantiating the X (“for
all”) with a value that will cause difficulty for the proposer (who represents “there exists”).
This setup creates a competition between two players, and the resulting “game” (taking turns
proposing and opposing claims) allows rapid refinement and enhanced understanding of claims.
In addition to opposition (or refutation), the game defines protocols for agreeing with and
strengthening claims. These are fairly simple variations upon opposition, in which the agree-er
or strengthen-er becomes the new proposer of the claim and the original proposer must refute it.
The basic game and its variations are fairly analogous to the common mental processes to used
test ideas, which include activities such as checking edge cases, imaginary worst-case scenarios,
and looking for counterexamples.

Introduction

Northeastern University’s Algorithms course, as taught by Professor Karl Lieberherr,
makes extensive use of the quantifier game in both homeworks and lectures to serve as a
baseline framework for algorithmic evaluation. Throughout the course, my homework partner
and I employed two increasingly divergent forms of the quantifier game: in-person interactions
for brainstorming and online collaborative playgrounds on Piazza. This paper provides a brief
overview of these experiences with the quantifier game, some problems I ran into during its use
in the course, and suggestions for fixing them.

The Game in Private (Making it Our Own)

Over the course of the semester, my homework partner and I refined our own variation
of the quantifier game, which we used amongst ourselves to brainstorm and validate ideas before
implementing them or posting them to Piazza. We quickly found that the traditional quantifier
game introduces a great deal of overhead (such as the formal grammar) that lengthen interactions
and slow down progress. As a result, we stripped the game down to its bare essentials, removing
all the formality and jargon and replacing it with natural and fluent conversation, such as “<P1>:

Karl_2
Sticky Note
Yes. Yet, this basic reasoning process was not known to the majority of the class. It took until after the midterm to get it absorbed.

Karl_2
Highlight

Karl_2
Highlight

Karl_2
Highlight

Karl_2
Highlight

Karl_2
Sticky Note
See for a detailed response: http://www.ccs.neu.edu/home/lieber/courses/algorithms/cs4800/sp12/feedback/christopher-souvey/response

I think so-and-so always works. <P2>: But what about when X is 0? <P1>: Oh yeah, that breaks
it”. Despite the non-technical language, this exchange maintains the spirit of the quantifier game.
Another change we made was to remove the agreement protocol entirely. I found agreement
failed to serve any useful purpose, as it requires the proposer to attempt to refute their own claim:
if they know how to do that, they would have already done so! Instead, agreement was reached
after some time passed without a successful refutation, at which point we mutually agreed we
were unlikely to come up with valid opposition.

Our most important change, however, was removing the competitive element (in
particular the notion that making an incorrect statement causes a loss of credibility) and making
it collaborative. There were no defined “proposer” and “opposer” players: we seamlessly
switched roles to suit the current context. Proposing was like a brainstorming process, in which
either of us could throw out possible claims (such as algorithms). In sharp contrast to the
quantifier game, which penalizes the sharing of claims that have not been fully thought through,
we had a “no ideas are bad” mindset during this process. Even if we knew an idea was bad,
we would still discuss it, since we built off each other’s ideas: often a small tweak can turn a
bad idea good. Refutation could be performed by either of us (including the one who made the
original claim) with the other player then taking on the traditional role of the proposer. Generally
this entire process took place with us both in front of a whiteboard, drawing instances (which
were often graphs). In aggregate, these changes greatly increased our efficiency and made room
for more creative solutions.

The Game in Public (Piazza)

Despite being a valuable tool for many problems, in my experience, the game was
sometimes overused and applied beyond its appropriate use cases for homework assignments,
which generally required interaction on Piazza. As a result, the assignments varied greatly in
effectiveness (see Appendix A for brief notes on each). There were some general patterns,
however, that should serve as effective predictors of future performance. One major problem was
that solutions were often discussed (or at least very clearly hinted at) in class. This significantly
decreased the amount of discourse taking place, as most students arrived at the same solution
and therefore had nothing to discuss. It would better facilitate discussion if information about the
solution was not provided until after the homework is due and students were actually unsure if
their claims were correct or not. Another frequent issue was that many homeworks required that
every team post one or more claims, which tended to result in redundancy and an overwhelming
number of claims. When this happened, many claims were ignored or left incomplete, halfway
through a protocol. Agreement in particular proved to be problematic and was very rarely
correctly completed.

On a positive note, optimization claims (which tend to more driven by
strengthening than opposing) seemed to be the most effective use of the quantifier game. In
particularly, they promoted just the right balance of competition and collaboration that
encouraged forward progress as teams took turns leapfrogging each other when they realized

Karl_2
Highlight

Karl_2
Highlight

Karl_2
Highlight

Karl_2
Highlight

Karl_2
Highlight

Karl_2
Sticky Note
And you demonstrated with very good results the effectiveness of your brainstorming technique.

Karl_2
Highlight

Karl_2
Highlight

Karl_2
Highlight

Karl_2
Highlight

Karl_2
Sticky Note
Solution: hierarchical playgrounds. See:http://www.ccs.neu.edu/home/lieber/courses/algorithms/cs4800/sp12/feedback/christopher-souvey/response

Karl_2
Highlight

Karl_2
Highlight

their claims were not optimal. An unfortunate subset of these, however, were algorithmic
runtime claims, which I personally found to be an ineffective use of the quantifier game that
often felt forced. There were two such types of claims: asymptotic and example instances. The
biggest problem these both suffered from was a crippling of the most important interaction type:
refutation. For asymptotic claims, refutation was really only possible if the runtime was so low
that it couldn’t possibly be correct (ex: searching an NxN table in N time). If the claim was
reasonable, however, there was really no way to know if the players had incorrectly computed
the asymptotic behavior, or even if their algorithm worked or not. And, because a player is
punished for making an incorrect refutation, it would be unwise to ever challenge a runtime
claim (due to lack of evidence). For instance-based claims, opposition based on runtime was not
possible since the ForAll only included a single element which was used to measure the provided
runtime. As a brief side note, these claims also were very difficult to compare without a
consistent timing metric (too many variables for milliseconds to be useful and not everyone used
a JVM-based language). Another problem that was raised by these claims was how to compare
two asymptotic bounds. For example (from homework #9): Is "(n+2m)*C + m" better or worse
than "nm^2 + m"? As a result, there was very little strengthening of asymptotic claims and just
lots of new claims. This could be solved by defining a comparison function as part of the
playground that takes 2 claims and returns whether they are equal (agree), greater/less than
(strengthen), or incomparable (propose). We already made implicit assumptions about the
existence such a function in a different context: answer took precedence over runtime for
strengthening. Combined, all these issues raise the question of whether the quantifier game is the
correct interaction type for runtime competitions, which in my opinion could be better served by
a simple high-score list of runtimes for some sample instances.

Finally, there is the question of how effective the Piazza platform was at hosting the
quantifier game. Piazza is a well-designed site, but we using it outside its intended use. It is
designed as a question/answer system, whereas the quantifier game is more suited a forum-like
environment with threads and replies. Fortunately, Piazza actually has this feature in the form of
comments on questions. The next time this course is taught, students should be instructed not to
use the answer field and instead use comments, which have a hierarchy and are much easier to
follow.

Conclusion

Although the quantifier game is an effective teaching tool, it is not universally effective,
and assignments should be either be modified to better suit its format or stop diluting the
message by using it in unconventional situations.

Karl_2
Highlight

Karl_2
Highlight

Karl_2
Highlight

Karl_2
Highlight

Karl_2
Highlight

Karl_2
Highlight

Karl_2
Highlight

Karl_2
Sticky Note
Agreed!

Karl_2
Highlight

Karl_2
Sticky Note
Thank you.

Appendix A:

Assignment Summary Connection to Quantifier Game Effectiveness

1 IntervalScheduling
WeightedIntervalScheduli
ng
BipartiteMatching
IndependentSet
QuantifiedBooleans
QuantifiedNumerical

For each claim, how would you
defend or refute them?
Propose (limited number) or
oppose one of these on Piazza

No interesting discourse
on Piazza, but served as an
introduction to the protocol

2 Highest Safe Rung Play game with partner; turn
in all exchanges and decision
trees; list optimum claims; give
player reputations
Propose (no limit) and oppose/
agree claim on Piazza about a
particular n and cost function

Solution was given away in
lecture, so the exchanges with
partner were uninteresting
and done only to turn in per
requirement.
No interesting discourse on
Piazza.

3 Gale Shapeley
HSR Landau

Play game with partner; turn in
all exchanges; describe means
to arrive at claims and defense
strategy.
Propose (limit to 5), agree,
refute, or strengthen on Piazza.

Gale Shapeley: quantifier game
was helpful for arriving at
solution and also played out
well on Piazza.
HSR: no interesting discourse

4 Graph-DIS Play on Piazza (no
requirement): propose (limit 5),
agree, refute

Quantifier game was helpful
for arriving at solution and also
played out well on Piazza.

5 Weighted maximum
subset (AtLeast,
NoPairContradictions)

Turn in claims and argue
why they are optimal. Play
on Piazza (no requirement):
propose (limit 3 & 3), agree,
refute, or strengthen.

Quantifier game was helpful
for arriving at solution.
There was no interesting
discourse on Piazza, as the
professor stated when a correct
claim had been made rather
than letting the refutation
protocol take place.

6 HSR Avatar Avatar should propose,
strengthen, and refute claims.

Nothing additional; just
formalizing/turning-in code
from HW2

7 Leaf Covering Propose one claim and oppose/
agree/strength two claims of
an upper bound on running

Quantifier game was useful for
deriving algorithm. Quite a bit
of Piazza discourse, some of it

Karl_2
Highlight

Karl_2
Sticky Note
That was unfortunate. Next time I will keep my mouth shut at the risk of making it too hard for some students.

Karl_2
Highlight

Karl_2
Highlight

Karl_2
Highlight

Karl_2
Sticky Note
Again, I will keep my mouth shut.

Karl_2
Highlight

time (milliseconds). Multiple
variables with precedence
defined for strengthening.

useful; however, it was difficult
to know when to disagree with
a claim. Speed in milliseconds
made it very depending on
system and programming
language.

8 Shortest and longest path Make 2 claims and oppose
2 claims about maximum
algorithm runtime (function of
nodes and edges)

Extremely little discourse.
Lots of repetitive claims and
a very unclear strengthening
precedence. We were supposed
to look up an algorithm,
not design our own, so the
quantifier game was unhelpful.

9 Network flow Two types of claims: bounds
on algorithm speed and flow/
speed for a specific graph.
Make one of each type of claim
and oppose/agree with each
type on Piazza.

Piazza runtime claims faced the
same problem as #7 and Piazza
bound claims faced the same
problems as #8.
Not very helpful offline since
we just looked up the algorithm

10 Reduced flow On Piazza, propose and
oppose/agree with a claim
included flow/speed for a
specific graph

Quantifier game helpful for
deriving algorithm.
Piazza claims faced same
problems as #7. There were
a large number of claims but
very little discourse.

Karl_2
Highlight

Karl_2
Highlight

Karl_2
Highlight

