CS 4800 Problem 1
Spring 2011
Karl Lieberherr

Due Jan. 19, 2011
http://www.ccs.neu.edu/home/lieber/courses/algorithms/cs4800/sp11/course-description.html
http://www.ccs.neu.edu/home/lieber/courses/algorithms/cs4800/sp11/syllabus.txt
Find a game partner to solve problem 1. You should keep the same partner for several weeks. If you prefer, you can be a group of one but you deprive yourself of learning from others through the game,
1. (See Kleinberg and Tardos, Chapter 2, ex. 8.) You are doing some stress-testing on various models of glass jars to determine the height from which they can be dropped and still not break. The setup for this experiment, on a particular type of jar, is as follows. You have a ladder with
[image: image1.wmf]n

rungs, and you want to find the highest rung from which you can drop a copy of the jar and not have it break. We call this the highest safe rung.
It might be natural to try binary search: drop a jar from the middle rung, see if it breaks, and then recursively try from rung
[image: image2.wmf]/4

n

or
[image: image3.wmf]3/4

n

 depending on the outcome. But this has the drawback that you could break a lot of jars in finding the answer.

If your primary goal were to conserve jars, on the other hand, you could try the following strategy. Start by dropping a jar from the first rung, then the second rung, and so forth, climbing one higher each time until the jar breaks. In this way, you only need a single jar – at the moment it breaks, you have the correct answer – but you may have to drop it
[image: image4.wmf]n

times (rather than
[image: image5.wmf]lg

n

as in the binary search solution).

So here is the trade-off: it seems you can perform fewer drops if you are willing to break more jars. To study this trade-off, let
[image: image6.wmf]k

be the number of jars you are given, and let
[image: image7.wmf]n

be the actual highest safe rung. Give a bound on the number of drops needed to find the highest safe rung, as a function of
[image: image8.wmf]k

and
[image: image9.wmf].

n

 When the number of drops needed is x, we write HSR(n,k)<=x. Your goal is to make this number x as small as possible. Describe a corresponding strategy for finding the highest safe rung. Hint: consider the case
[image: image10.wmf]2,

k

=

 and then think about what happens when
[image: image11.wmf]k

 increases. Try writing a recurrence for the minimum number of drops as a function of
[image: image12.wmf]k

 and
[image: image13.wmf]n

and then solving it, or at least giving bounds on its value.
2. The above is the problem formulation in the text book. To explore this problem in the homework we play the Scientific Community Game
http://www.ccs.neu.edu/home/lieber/courses/algorithms/cs4800/f10/homeworks/cs4800-scg-sp11.html
We have two players: Alice and Bob. They deal with two kinds of claims: positive claims are of the form HSR(n,k)<=q and negative claims are of the form HSR(n,k)>q.

The negation of the claim HSR(n,k)<=q is the claim HSR(n,k)>q.
The refutation protocol for positive claims is: Alice claims. Bob announces refutation (which is equivalent to providing a problem). Alice provides decision tree. Bob checks that it is valid and of the desired depth. In this case, Alice provides a proof that HSR(n,k)<=q through her decision tree.

The refutation protocol for negative claims is: Alice claims HSR(n,k)>q. Bob provides a decision tree showing that HSR(n,k)<=q. Alice checks that the decision tree is valid and of the claimed depth. In this case, Bob provides a counter example showing that Alice claim is not valid.

We call these two protocols the HSR-main refutation protocol.

Alice and Bob use the optimizing version of SCG, called SCG-original: Alice creates 5 claims HSR(n,k)<=q or HSR(n,k)>q where k>1!!!!! Bob selects a subset of the claims that he thinks are opposable (refutable or can be strengthened). HSR(n,k)<=q is a strengthening of HSR(n.k)<=q’, if q’ > q. And HSR(n,k)>q is a strengthening of HSR(n,k)>q’ if q>q’. For the claims CR that Bob refutes, the refutation protocol HSR-main(Alice,Bob,CR) is invoked. For the claims that Bob strengthens, say he strengthens HSR(n,k)<=q’ to HSR(n,k)<=q, q’>q, the refutation protocol HSR-main(Bob,Alice,HSR(n,k)<=q) is invoked. In other words, Alice tries to refute the strengthened claim.
If Bob successfully refutes one of Alice’ claims, he must propose in the next mega-move the negation of the claim he refuted. The reason is that Alice proposed too strong a claim that can be refuted and we must go “back” towards an optimum claim.

The claims that Bob does not oppose are declared to be optimum by Bob. If Alice agrees that they are optimum they go into the set of optimum claims defined by this game. If Alice does not agree, she must either refute or strengthen and defend her strengthened claim. This is a macro-move(Alice,Bob).
The macro-move(Bob,Alice) is similar. It is not permitted to repeat claims. Each proposed claim is unique. The game consists of alternating (mega-move(Alice,Bob), mega-move(Bob,Alice)) three times.
Refutation points are awarded as follows. Both Alice and Bob start with 100 points. We would like both Alice and Bob to be perfect and only propose optimum claims. Therefore, Alice loses 10% of her points to Bob, if he successfully opposes (refutes or strengthens) one of her claims. The same applies to Bob.
The outcome of the game is a reputation for Alice and Bob and, more importantly, a set of “optimum” claims as determined by the two scholars. It could be that some of the claims are too strong or too weak and the scholars could not oppose those claims.

If both Alice and Bob are “perfect” they will only create optimum claims as output.

The TA will judge the optimality of the claims produced by each game.
Two smart students playing together will try to make the gap between q and q’ as small as possible, ideally 1, in the context where we know and actually have a proof for HSR(n,k)<=q and HSR(n,k)>q’ has not been refuted.

The game helps you to answer the following question: What is the minimum value Q(n,k) so that HSR(n,k)<=Q(n,k) is enough but HSR(n,k)<=Q(n,k)-1 is not?

Interesting small claims to start with:
HSR(9,2)<=4,5,6,7

HSR(10,2)<=4,5,6,7

HSR(11,2)<=4,5,6,7

HSR(12,2)<=4,5,6,7

HSR(16,2)<=5,6,7,8,9

Suggestion: Consider claim HSR-main(9,2)<=3 to sharpen your intuition. Then consider HSR-main(9,2)<=4 to get more ideas. Then consider HSR-main(10,2)=5 to get more insight.

3. To represent an algorithm for finding the highest safe rung HSR(n,k) for fixed n and k, we use a restricted programming language that is powerful enough to express what we need. We use the programming language of binary decision trees. The nodes represent questions such as 7 (meaning breaks(7)) and the edges represent yes/no answers. We use the following simple syntax for decision trees: (2 y (1 y h0 n h1) n (4 y (3 y h2 n h3) n h4)). A number represents a rung. A rung after “(“ represents a question. A rung after “h” represents a highest safe rung. “y” represents the yes branch and “n” represents the no branch of the tree. The above decision tree is the algorithm for solving HSR(4,2)<=3. This approach is useful for many algorithmic problems: define a simple computational model in which to define the algorithm. The decision trees must satisfy certain rules to be correct and reasonable algorithms (see the slide below).
4. What to turn in:

1. All the exchanges that happened during your game. Show all decision trees that were exchanged. Give the reputations of Alice and Bob at the end of the game and list the claims that are claimed to be optimum. That is the most interesting output from your game.
2. For each claim that you claim to be optimum, can you actually give a proof that it is optimum? I.e., it is impossible to refute the claim for eternity. You need to find a way to prove that HSR(n,k)>q. Note that this is not as easy as proving a claim of the form HSR(n,k)<=q which we can prove by giving an explicit decision tree.
3. Give your guess for Q(9,2), Q(10,2) and Q(25,2)? Prove that Q(9,2) <= 5. Prove that Q(25,2) <= 9. Prove that Q(10,2) <= 7. Give your proofs by giving an algorithm that always succeeds in finding the highest safe rung within the given bound. Give an informal argument why the trees are one-sided: they look like a tree on a windy hilltop where the wind tends to blow from the same direction.
4. A first attempt at the solution to the exercise 8, chapter 2. Focus only on the case where you are allowed to break at most 2 jars. If you need more help, play an additional game.
This slide illustrates how decision trees are used to find the highest safe rung.

[image: image14.emf]2

1

0

4

3

2

4

1

3

x

y z

yes

no

u

highest safe rung,

leaf

Highest Safe Rung Decision Tree

HSR(4,2)=3

(2 y (1 y h 0 h 1) n (4 y (3 y h 2 n h 3) n h 4))

Properties of decision tree:

1. at most two yes from root to any leaf.

2. longest root-leaf path has 3 edges.

3. each rung 1..n appears exactly once as internal node of the tree.

4. each rung 0..n appears exactly once as a leaf.

root

9/6/2010 9 CS 4800

There are more important properties of decision trees for HSR: for any left subtree: the root is one larger than largest node in subtree and for any right subtree the root is equal to smallest (i.e., leftmost) node in the subtree.

3

_1201936490.unknown

_1201955975.unknown

_1202026397.unknown

2

1

0

4

3

2

4

1

3

x

y

z

yes

no

u

highest safe rung,

leaf

Highest Safe Rung Decision Tree

HSR(4,2)=3

(2 y (1 y h 0 h 1) n (4 y (3 y h 2 n h 3) n h 4))

Properties of decision tree:

 at most two yes from root to any leaf.

 longest root-leaf path has 3 edges.

 each rung 1..n appears exactly once as internal node of the tree.

 each rung 0..n appears exactly once as a leaf.

root

9/6/2010

9

CS 4800

_1201936500.unknown

_1201936508.unknown

_1201936528.unknown

_1201936418.unknown

_1201936445.unknown

_1201936473.unknown

_1201936402.unknown

