Shortest Paths

Classic algorithms for natural network problems

Shortest Path
- shortest way to get from u to v

Single-Source Shortest Paths (SPT)
- PFS implementation
- Dijkstra's algorithm

All Shortest Paths
- Floyd's algorithm

Negative weights?

Reduction

Problem-solving models

Single-source shortest paths

Defines **Shortest Paths Tree (SPT)** rooted at source

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td>.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-5</td>
<td>.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-0</td>
<td>.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-5</td>
<td>.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-4</td>
<td>.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-4</td>
<td>.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-2</td>
<td>.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-1</td>
<td>.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPT Algorithm

Another generalized graph-search implementation

Relaxation
- if \(w[t] < w[v] + w[v-w] \) then set \(w[t] \) to that value
 (\(v-w \) gives a shorter path to \(w \) than the best known)

SPT Algorithm
- put source on fringe
- while fringe nonempty
 - choose node from fringe that is closest to source
 - relax along all its edges

- \(v \) on TREE \(w[v] \) is shortest distance from source to \(v \)
- \(v \) on FRINGE: \(w[v] \) is shortest known distance from source to \(v \)
- won't find a shorter path to node with smallest value
Dijkstra's algorithm

Classical implementation of generic SPT algorithm

SAME CODE as Prim's MST algorithm with
#define P wt[v] + t->wt

DENSE graphs
- classical Dijkstra's algorithm
- time cost: O(V^3)

SPARSE graphs
- use PQ (heap) implementation
- time cost: O(E log V)

Better PQs give faster algorithms for sparse graphs
- d-way heap: O(E log_d V)
- F-heap: O(E + V log V)

Shortest paths in Euclidean graphs

Problem: find shortest path from s to d

Algorithm:
- start shortest-path PFS at s
- stop when reaching d

SUBLINEAR algorithm
- need not touch all nodes

better yet: use geometry to limit search
wt[v]:
- TREE: shortest distance from s to v
- FRINGE: shortest POSSIBLE distance from s to d through v
 tree path from s to v PLUS distance from v to d

#define P wt[v] + t->wt + dist(t->v, d) - dist(k, d)

All shortest paths

Table of shortest paths for each vertex pair

Ex: map of New England

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>W</th>
<th>L</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Providence</td>
<td>0</td>
<td>53</td>
<td>54</td>
<td>48</td>
</tr>
<tr>
<td>Westerley</td>
<td>53</td>
<td>0</td>
<td>18</td>
<td>101</td>
</tr>
<tr>
<td>newLondon</td>
<td>54</td>
<td>18</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Norwich</td>
<td>48</td>
<td>101</td>
<td>12</td>
<td>0</td>
</tr>
</tbody>
</table>

Norwich-Westerly: 101 miles??
- 12 miles Norwich-New London
- 18 miles New London-Westerly
- 30 miles total

Need correct algorithm to get correct table

Floyd's algorithm

Another ancient algorithm (1962)
[same as Warshall, in a different context]

Want shorter path from s to d?
- take s to i, then i to d, if shorter (vertex relaxation)

for (i = 0; i < G->V; i++)
 for (s = 0; s < G->V; s++)
 if (G->adj[s][i] != maxWT)
 for (t = 0; t < G->V; t++)
 if (G->adj[i][t] != maxWT)
 if (d[s][t] > d[s][i]+d[i][t])
 d[s][t] = d[s][i]+d[i][t];

Correctness proof:
- induction on i (same as Warshall)
Shortest paths ADT

Same issues as reachability in digraphs

Classical Floyd-Warshall algorithm gives
- query: $O(1)$
- preprocessing: $O(V^3)$
- space: $O(V^2)$

Easy to reduce preprocessing to $O(VE)$
- use Dijkstra for each vertex

End of story?

NOT QUITE
- ADT is useful for a variety of disparate problems
- negative weights complicate matters

Reduction

DEF: Problem A REDUCES TO Problem B
if we can use an algorithm that solves B
to develop an algorithm that solves A

Typical reduction:
- given an instance of A
- transform it to an instance of B
- solve that instance of B
- transform the solution to be a solution of A

Uses of reduction
- algorithm for A (programmer using ADT)
- lower bound on B

Problem-solving models
- problems that many other problems reduce to
- problems that ANY NP-hard problem reduces to

Reduction example: longest paths

THM: Longest-paths reduces to shortest-paths

Proof:
- given an instance of longest-paths
- transform it to shortest-paths by negating weights
- solve shortest-paths
- negate weights on path to get longest path

CATCH
- SP algs don't work in the presence of negative weights!

Lessons:
- reductions have to be constructed with care
- they may not always give useful information

Reduction example: arbitrage

Currency conversion

<table>
<thead>
<tr>
<th></th>
<th>dollars</th>
<th>pounds</th>
<th>1K yen</th>
</tr>
</thead>
<tbody>
<tr>
<td>dollars</td>
<td>1.000</td>
<td>1.631</td>
<td>0.669</td>
</tr>
<tr>
<td>pounds</td>
<td>0.613</td>
<td>1.000</td>
<td>0.411</td>
</tr>
<tr>
<td>1K yen</td>
<td>1.495</td>
<td>2.436</td>
<td>1.000</td>
</tr>
</tbody>
</table>

- 1000 dollars-pounds-dollars
 $1000\times(1.631)\times(0.613) = 999$
- 1000 dollars-pounds-yen-dollars
 $1000\times(1.631)\times(0.411)\times(1.495) = 1002$

SHORTEST PATH is best arbitrage opportunity
- replace table entry x by $-\log x$
- **BUT,** weights may be negative!

Need SP algs that work with negative weights
Shortest paths with negative weights

Negative weights
- completely change SPT
- can introduce negative cycles

0-1 .41
1-2 .51
2-3 .50
4-3 .36
3-5 -.38
3-0 .45
0-5 .29
5-4 .21
1-4 .32
4-2 .32
5-1 -.29

shortest path from 4 to 2: 4-3-5-1-2

Negative weights in SP problems

NP-complete: don’t try to solve general problem
- restrict problem to solve it

Versions that we can solve
- no negative weights
- no cycles
- negative-cycle detection
- no negative cycles

Dijkstra’s algorithm: doesn’t work at all with negative weights
Floyd’s algorithm
- detects negative cycles
- solves all-pairs shortest paths if no neg cycles present
Ex: use Floyd’s to find SOME arbitrage opportunity
- (much harder to find the BEST one)

Reduction example: SP with negative weights

THM: SP with negative weights is NP-hard
A: Hamilton path
B: SP with negative weights

Hamilton path reduces to SP with negative weights
- given an undirected graph
- transform to network with -1 wt on each edge
- find shortest simple path
- YES to Hamilton path if SP length is -V

Bellman-Ford shortest-paths algorithm

Generic algorithm for single-source problem
- initialize wt[s] to 0, other wts to max
- repeat V times: relax on each edge

Order of processing edges not specified

Running time O(VE)

If no negative cycles present
- can use as preprocessing step for Dijkstra
- VE lg V for all-pairs problem
- improves on V^3 for Floyd

Not much harder to solve all-pairs than single-source (?)
OPEN: Better alg for single-source?