
CS 4800: Algorithms Take-home Final

Karl Lieberherr

April 25th 2010

Out April 26, 9 am
In April 27, 5 pm (by email to me)

Take home final may be done in pairs of 2 students:
the same pairs you did the homework with.
You can also do it individually.

No other communication about the exam is allowed, except
with your partner or with me.

If something is not clear in the exam, make a reasonable assumption,
state the assumption you made and solve the problem under
that assumption.

Use of web for browsing is allowed.

Sign the following statement at the beginning of the exam:
I have followed the rules of this exam.

Please bring a copy of the acknowledgement page that you have done
the TRACE survey to the oral final.

The Oral Final Schedule:
http://www.ccs.neu.edu/home/lieber/courses/algorithms/cs4800/sp10/final-schedule

1 DAG question, 20 points

Develop an efficient algorithm for the following problem: Does a DAG contain
a directed path that goes through each node once?

Argue for the correctness of your algorithm and analyze the running-time of
your algorithm.
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2 Leaf Covering: Decision ⇒ Search (40 points)

2.1 Explanation

Remember the leaf covering problem? Here’s a reminder, with some background,
though it may be a little different than you remember it. We are given n trees,
(T1, . . . , Tn) over the alphabet Σ, and a set of n-tuples, M ⊆ (Σ × · · · × Σ).
Each of the trees is defined with a successor function, that returns the set of
symbols that are children of a given node:

succ : Σ→ P( Σ )

And a function root, that returns the root symbol of a tree:

root : Tree → Σ

We will also use succ∗ to represent the transitive closure of succ. Each succ
(and succ∗) is technically a partial function.

We define the function leaves that returns the set of symbols (nodes) in a
tree that have no successors:

leaves(T ) ≡ {σ ∈ Σ | succ(σ) = ∅ }

Decision Problem: DLC Given the n trees, define the set of n-tuples,
Leaves, as the cartesian product of the leaves of our trees:

Leaves = leaves(T1)× · · · × leaves(Tn)

determine whether each n-tuple in Leaves has an n-tuple in M whose elements
are ancestors of the corresponding element in the leaf. More formally:

DLC (T1, . . . , Tn,M) ≡
∀(σ1, . . . , σn) ∈ Leaves .
∃(m1, . . . , mn) ∈M .∀i ∈ [1..n] . σi ∈ succ∗(mi)

In other words, for each n-tuple in Leaves, there’s an n-tuple in M with elements
that cover the leaf elements.

Search Problem: SLC Previously it wasn’t known whether or not a solution
to the decision problem (DLC ) could be used to find an n-tuple in Leaves that
is uncovered (a witness). We’ve been working at it for some time, and have
developed an algorithm that might work:

SLC (T1, . . . , Tn,M) ≡
m[ ] := (root(T1), . . . , root(Tn))
for i = 1 to n; do

foreach ` ∈ leaves(Ti); do
m[ i ] := `
if (¬DLC (T1, . . . , Tn, M ∪ {m}) ) then

next i
return m
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We use the decision procedure as a black-box, and attempt to find a witness
that shows not all leaves are covered. First, we initialize a local variable m
starting at the root-tuple. Note that by definition, initially M ∪ m covers all
leaves. Then, for each tree, we loop through its leaves, and try each one in the
ith position by calling DLC adding the updated tuple to M . If DLC returns
false then we keep that element, and move to the next position (written “next
i”). Of course, if there is no next element, we fall out from the for loop.

2.2 Questions

1. What is the running time of our SLC algorithm, assuming the running
time of DLC is O(1), (constant time)? Use t as a bound on the size of
each tree (and so the leaves of each tree), n for the number of trees, and
|M | for the size of M .

2. Though at first glance this algorithm seems promising, it is not clear
whether or not it works correctly. Argue that the algorithm is or is
not correct. That is, when (and if) DLC (T1, . . . , Tn,M) returns false
(meaning an uncovered leaf exists), then SLC (T1, . . . , Tn,M) returns an
uncovered leaf (correct behavior) or a covered leaf (incorrect behavior).

If you believe it is correct, be convincing. If not, then you should
be able to provide a simple counter example where the algorithm gives
the wrong answer. It may help to visualize or discuss the idea of a graph
cartesian product, that was mentioned earlier in the semester, though not
required. And, remember that foreach can select elements in any order.

3 k-th Largest Element (30 points)

In class we discussed several deterministic algorithms for selecting the k-largest
element of a set of numbers, including the median of the median algorithm. In
section 13.5 of the text book, immediately following the section on Randomized
Approximation, that we covered, there is a randomized algorithm for solving
the k-th largest element problem. You only need to read the first 5 pages of the
section, up to the middle of page 731.

Answer the following questions:

1. What are the advantages and disadvantages of the randomized algorithm
over a deterministic algorithm for the same problem?

2. Why is choosing a random splitter working well?

3. Where is linearity of expectation used in the analysis of the algorithm?
What is the definition of linearity of expectation?

4. Describe a situation where the randomized algorithm would run slower
than O(n).
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4 Highest Safe Rung Recurrence (20 points)

Highest Safe Rung: Chapter 2, exercise 8.
Develop a recurrence involving a minimization step for the minimum number

of drops HSR(n, k) as a function of k (the number of jars allowed to break) and
n, the number of rungs.

HSR(n, 1) is given directly by a simple function. Express HSR(n, 2) in
terms of minimizing a function involving HSR(n, 1). Express HSR(n, 3) in
terms of minimizing a function involving HSR(n, 2).

It is enough to give the recurrence only for these two special cases with an
explicit derivation of the solution of the recurrence.
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