INCLUSION-EXCLUSION PRINCIPLE

In the set $S = \{1, 2, ..., 100\}$, one out of every six numbers is a multiple of 6, so that the total of multiples of 6 in S is [100/6] = [16.666...] = 16 (here [x] is the integer part of x). Similarly, the total number of multiples of 7 in S is [100/7] = 14.

How many numbers in S are multiples of 6 or 7?

The answer is not 14 + 16 = 30. The reason is that the sum 14 + 16 counts twice those numbers that are both a multiple of 6 AND a multiple of 7; i.e., the multiples of 42. How many multiples of 42 were counted twice? As before, we compute [100/42] = 2. Then the correct answer is that there are 14 + 16 - 2 = 28 numbers in S that are multiples of 6 or 7.

How many numbers in S are multiples of 2, 3, or 5?

In this case there are 50 multiples of 2, 33 multiples of 3 and 20 multiples of 5. But the answer is clearly not 50 + 33 + 20 = 103. This sum counts twice the numbers that are multiples of 2 and 3 for instance. We must subtract 16 multiples of 6, 10 multiples of 10 and 6 multiples of 15.

It seems as if 50 + 33 + 20 - 16 - 10 - 6 = 71 is the final answer, but it is not! The multiples of 30 were counted 3 times and eliminated 3 times. They are not accounted for. We have to add 3 multiples of 30 to get the correct answer: 50+33+20-16-10-6+3=74.

The inclusion-exclusion principle tells us how to keep track of what to add and what to subtract in problems like the above:

Let S be a finite set, and suppose there is a list of r properties that every element of S may or may not have. We call S_1 the subset of elements of S that have property 1; $S_{1,2}$ the subset of elements in S that have properties 1 and 2, etc. Notice that $\bigcup S_i$ is the subset of elements of S that have at least one of the r prop-

erties. To count these elements, we

 \cdot add the number of elements that have at least one property:

$$|S_1| + |S_2| + \ldots + |S_r|$$

 \cdot subtract the number of elements that have at least two properties:

$$-|S_{1,2}| - |S_{1,3}| - \ldots - |S_{r-1,r}|$$

 \cdot add the number of elements that have at least three properties:

$$+|S_{1,2,3}|+|S_{1,2,4}|+\ldots+|S_{r-2,r-1,r}|$$

 \cdot add/subtract the number of elements that have all the properties:

 $\pm |S_{1,2,...,r}|$

Note: In some problems you need to compute how many elements do not have ANY of the r properties. These are precisely the elements that are not in $\bigcup S_i$. In this case you can compute the total of elements in $\bigcup S_i$ using the inclusion-exclusion principle, and subtract that from the number of elements in S. Problem 6 is an important example of this trick.

- 1. In a survey on the chewing gum preferences of baseball players, it was found that
 - \cdot 22 like fruit.
 - \cdot 25 like spearmint.
 - \cdot 39 like grape.
 - \cdot 9 like spearmint and fruit.
 - \cdot 17 like fruit and grape.
 - \cdot 20 like spearmint and grape.
 - \cdot 6 like all flavors.
 - \cdot 4 like none.

How many players were surveyed?

- 2. What is the probability that a poker hand has no aces?
- 3. If 8 dies are rolled, what is the probability that all 6 numbers appear?
- 4. Recall that the totient function $\varphi(n)$ counts how many numbers less than n are relatively prime with n.
 - · Determine $\varphi(2^n)$.
 - · Determine $\varphi(2^n p)$, where p is an odd prime.
 - · Determine $\varphi(p_1p_2)$, where p_1 and p_2 are different primes.
 - Find a formula for $\varphi(n)$ if the prime decomposition of n is $n = p_1^{a_1} p_2^{a_2} \dots p_r^{a_r}$.
- 5. Recall that the Möbius function $\mu(n)$ is 0 if n contains a square factor and is $(-1)^r$ if n is the product of r different primes. For any $n \ge 2$, prove that $\sum_{d|n} \mu(d) = 0$.
- 6. A derangement of (1, 2, ..., n) is a permutation that moves every number away from its correct position. For example (2, 5, 4, 1, 3) is a derangement, but (2, 5, 3, 1, 4) is not. How many derangements of (1, 2, ..., n) are there?