Maximum 3-Satisfiability

exactly 3 distinct literals per clause

i
= MAX-3SAT: Given 3-SAT formula, find a truth assignment that satisfies

as many clauses as possible

C, = x5 Vx3Vx
C, = X VX3V X,
C; = X, VX,VXx
C, = X VXV
Cs = X, VX,VXx,

= Unsurprising result: decision version is NP-complete

= Randomized algorithm:
Set each variable independently to true with probability %2

Maximum 3-Satisfiability: Analysis

= Lemma: Given a 3-SAT formula with k clauses, the expected number of
clauses satisfied by a random assighment is 7k/8

1 1if clauseC. issatisfied
= Proof: Let X.= o
/ 0 otherwise.

= E[X.]=Pr[X;=1]=1-(1/2)3, since all three literals in the clause must
J J
independently be false if the clause is
unsatisfied

The Probabilistic Method

= Lemma: For any instance of 3-SAT, there exists a truth assighment that
satisfies at least a 7/8 fraction of all clauses

= Proof: E[X] =7k/8, and the random variable X > E[X] some of the time

= Probabilistic method: We showed the existence of a non-obvious
property of 3-SAT by showing that a random construction produces it with
positive probability!

Maximum 3-Satisfiability: Analysis

= (Can we get a 7/8-approximation algorithm for MAX-3SAT?
— a random variable can almost always be below its mean

= Lemma: Pr[random assighment satisfies > 7k/8 clauses] > 1/(8k)

= Proof: p; = probability that exactly j clauses are satisfied
p = probability that > 7k/8 clauses are satisfied

1k=E[X] =) jp,
j>0
= D ip,+ 2 p,
Jj<7k/8 j=Tk18
< (%_%)Z pj+kzpj

j<7k /8 j>7k/8

($k—9 -1 + kp

IA

Hence p > 1/ (8k)

Johnson's algorithm for MAX-3SAT

Repeatedly generate random truth assignments until one of them
satisfies > 7k/8 clauses

Running time?
Each assignment succeeds with probability p > 1/(8k)

Let X = number of trials to find the satisfying assignment

o . : o i o . 1— 1
E[X]:z].Pr[X:]]:z](l_p)le:Lz](l_p)J: P 2P:_ < 8k
j=0 j=0 1=p j=0 I-p p p

Theorem [Hastad 1997] Unless P = NP, no p-approximation algorithm for
MAX-3SAT forany p > 7/8 T

very unlikely to improve over simple randomized
algorithm for MAX-3SAT

Global Minimum Cut

Input: connected, undirected graph G = (V, E)
Output: a cut (A, B) of minimum cardinality

Network flow solution:
— Replace undirected edge {u, v} with directed edges (u, v) and (v, u)
— Pick some vertex s and compute min s-v cut for eachve V

= Randomized algorithm: pick an edge uniformly at random, contract it

’\ ’ ?a\ b c/. c/. /.
—> -
iD\ }) contract e contract a contract d d

d d

¢ ¢

Contraction Algorithm [Karger 1995]

Pick an edge e = {u, v} uniformly at random

Contract edge e (keep parallel edges, but delete self-loops)
Repeat until graph has just two nodes v, and v,

Return the cut (all nodes that were contracted to form v,)

A W N -

= Suppose G has a mincut with k edges

= Observation 1: Algorithm “safe” unless it contracts one of these edges

= (Observation 2: After j contractions

— mincut(new G) > mincut(original G)

— the graph has n - j vertices and at least k(n - j)/2 edges

k 2
k(n—j)/2 n—j

After j contractions, “failure probability” <

Algorithm returns mincut with probability > 2/n?

= Analysis: Let E; be the event that algorithm succeeds in contraction j

> (1=3) (-2 (-3 (-3)
=) EE) - G G)

n(n-1)

\Y]

2
n?

Probability Amplification

To increase success probability, do many independent repetitions

In each repetition, failure probability = (l—%}
n

k

After k independent repetitions, failure probability = (l—lj

Lemma: (1-1/x)* < (1/e)

Run n?log n times (each run takes O(m) time)

Best known: O(m log3n)

" faster than best known max flow algorithm or
deterministic global min cut algorithm

Monte Carlo vs. Las Vegas

Algorithms

Monte Carlo: Guaranteed poly runtime, likely to find correct answer

— example: contraction algorithm for global

min cut

Las Vegas: Guaranteed to find correct answer, likely to run in poly-time
— example: randomized quicksort, Johnson's MAX-3SAT algorithm

Remark: Can always convert a Las Vegas algorithm into Monte Carlo

T

stop algorithm after a certain point

No known method to convert the other way ®

10

RP and ZPP

RP [Monte Carlo] Decision problems solvable with one-sided error in
poly-time

One-sided error:
— If the correct answer is no, always return no

— If the correct answer is yes, return yes with probability > 12

ZPP [Las Vegas]| Decision problems solvable in expected poly-time

Theorem: P < ZPP < RP < NP

Fundamental open questions: To what extent does randomization help?
Does P = ZPP? Does ZPP = RP? Does RP = NP?

11

Guessing Cards 1

Shuffle a deck of n cards; try to guess each card one at a time

Memoryless guessing: Can't even remember what's been turned over
already (guess a card from full deck uniformly at random)

What is the expected number of correct guesses?

Let X; = 1 if j* prediction is correct and 0 otherwise
Let X = number of correct guesses = X, + ... + X

E[X] = Pr[X;=1] = 1/n
E[X] = E[X;] + ... + E[X.)] = 1/n+..+1/n =1
!

linearity of expectation

12

Guessing Cards 2

Shuffle a deck of n cards; try to guess each card one at a time
Guessing with memory: Guess uniformly from cards not yet seen
What is the expected number of correct guesses?

Claim: It is ©(log n)

Let X; = 1 if j*" prediction is correct and 0 otherwise
Let X = number of correct guesses = X, + ... + X,

E[X]=Pr[X;=1] =1/(n-j- 1)
E[X] =E[X,] + .. + E[X] = 1/n+...+1/2+1/1 = H(n) = O(log n)

13

Coupon Collector

There are n different types of coupons. Each box of cereal contains one
coupon (all types are equally likely).

How many boxes before you have > 1 coupon of each type?
Hint: let X; = number of boxes until j+1°* coupon seen (X, = 1)
Claim: The expected number of boxes is ®(n log n)

Let X = number of steps in total = X, + X; + ... + X

n-1

n—1 n—l1 n
EX] = SEX]1=3% " = n¥! = nHm)
=0 j=on—Jj i=1 !

T

prob of success = (n-j)/n
= expected waiting time = n/(n-j)

14

Contention Resolution in a Distributed System

n processes P,, ..., P, compete for access to a shared database

— if two or more processes access the database in the same round, all
processes are locked out for that round

Randomized protocol: At each time-step, each P; accesses the database
independently with probability p

P, \
P,

Prove the following:

1. Pr[P; accesses in a given round] > 1/(e-n) >

(choose p to maximize probability)
2. Pr[P; fails to access in 2e-n In n rounds] < 1/n*

3. Pr[all processes access in 2e-nln nrounds] >1-1/n
15

Contention Resolution: Randomized Protocol

Claim: Pr[P; accesses in a given round] = 1/(e-n)

Proof: By independence,

Pr[Pj accesses in a given round] = p(1 - p)™!

/

process j accesses

— Maximized when p = 1/n

N\

none of remaining n-1 processes request access

Useful facts from calculus: As n increases from 2, the function:
— (1 -1/n)" converges monotonically from 1/4 up to 1/e
— (1 -1/n)"" converges monotonically from 1/2 down to 1/e

16

Contention Resolution: Randomized Protocol

Claim: Pr[P; fails to access in ce-n ln n rounds] < n

Proof: By independence and previous claim, we have

Pr[P; fails to access in ce:n ln n rounds] < [(1 - 1/(en))er]cin"
< [1/e]ctnn

= Nn¢

Claim: Pr[all processes access in 2e-n In nrounds] >1-1/n
Proof: Pr[at least one process fails in 2e-n ln n rounds]

= Pr[{J P; fails to access in 2e:n In n rounds]

Jj=1

< > Pr[P; fails to access in 2e-n In nrounds] <n-n%=1/n

j=1

17

Independent Set

» Let G = (V, E) be a graph with n vertices and m edges (m > n/2)

RandIndenpendentSet (G) ({
A = empty set
for each v in V
add v to A with probability p

for each edge e between vertices in A
delete one endpoint of e from A

return A
}
= After Phase 1:

— let X be the size of A
— let Y be the number of edges between vertices in A

= After Phase 2, E[|A|] = E[X-Y]=E[X]-E[Y] =np-mp? (max value
= n?/4m, when p = n/2m)

= By the probabilistic method, G has an independent set of size > n?/4m

18

