
Journal of Computer and System Sciences 58, 622�640 (1999)

Tight Bound on Johnson's Algorithm for
Maximum Satisfiability

Jianer Chen* and Donald K. Friesen

Department of Computer Science, Texas A6M University, College Station, Texas 77843-3112

E-mail: [chen, friesen]�cs.tamu.edu

and

Hao Zheng

Concurrent Technologies Corporation, 100 CTC Drive, Johnstown, Pennsylvania 15904

E-mail: zhengh�ctc.com

Received May 6, 1998

We present new techniques that give a more thorough analysis on
Johnson's classical algorithm for the Maximum Satisfiability problem. In
contrast to the common belief for two decades that Johnson's Algorithm has
performance ratio 1�2, we show that the performance ratio is 2�3 and that
this bound is tight. Moreover, we show that simple generalizations of
Johnson's algorithm do not improve the performance ratio bound 2�3.
� 1999 Academic Press

1. INTRODUCTION

The Maximum Satisfiability problem (Max-Sat) is one of the fundamental
optimization problems. Max-Sat is known to be NP-hard. Hence, it is unlikely that
there is a polynomial-time algorithm that solves Max-Sat optimally.

Approximation algorithms for Max-Sat have been considered. About two
decades ago, Johnson [7] proposed his famous approximation algorithm for
Max-Sat and proved that his algorithm guarantees a performance ratio at least 1�2.
Following up investigation on approximation of Max-Sat has been a very active
research area. However, there was no approximation algorithm known before 1992
that has a proven performance ratio better than 1�2. For the studies on the problem
before 1990, readers are referred to Hansen and Jaumard's survey [5].

Recent research [1, 9] has shown that Max-Sat is a generic complete problem
under an approximation-preserving reduction for the class APX, which consists of

Article ID jcss.1998.1612, available online at http:��www.idealibrary.com on

6220022-0000�99 �30.00
Copyright � 1999 by Academic Press
All rights of reproduction in any form reserved.

* Corresponding author. Supported in part by the National Science Foundation under Grants CCR-
9110824 and CCR-9613805.

all NP-optimization problems that can be approximated to a constant performance
ratio in polynomial time. This implies that there is a constant c<1 such that no
polynomial-time approximation algorithm for Max-Sat can have a performance
ratio larger than c unless P=NP. Many current research activities have been con-
centrating on deriving the precise value for this constant. In particular, Hastad [6]
proved that no polynomial time approximation algorithm for Max-Sat can have
performance ratio larger than 7�8+= for any constant =>0 unless P=NP. On the
other hand, a variety of techniques have been proposed to develop polynomial time
approximation algorithms for Max-Sat whose performance ratios seem to
approach to 7�8 [13, 3, 4, 2, 12, 11, 8].

In the current paper, we present new techniques for analyzing approximation
algorithms for Max-Sat which give a more thorough analysis on Johnson's classi-
cal algorithm. In contrast to the common belief that Johnson's Algorithm has a per-
formance ratio 1�2, we prove that the performance ratio is 2�3. Moreover, the
bound 2�3 is tight in the sense that there are infinitely many instances for Max-Sat
for which the weight of the assignments constructed by Johnson's Algorithm is
exactly 2�3 of the weight of optimal assignments.

There are several reasons why a more thorough and careful analysis for
Johnson's Algorithm is needed:

v One major difficulty for designing approximation algorithms is the lack of
powerful techniques for deriving tight performance ratios for approximation algo-
rithms. Many approximation algorithms ``intuitively'' look good. However, they
remain suspect because people are not able to derive a provable good performance
ratio for them. Therefore, deriving a tight performance ratio using new techniques
for a classical algorithm for an important optimization problem may have potential
impact on performance analysis for other approximation algorithms.

v Max-Sat has become central to the study of approximability of NP
optimization problems.

v Johnson's Algorithm is an excellent illustration for the probabilistic method
[3, 13], which has been playing a more and more important role in design and
analysis of approximation algorithms for NP optimization problems. Therefore, a
more thorough understanding of Johnson's Algorithm may gain further insight into
this powerful method.

v Johnson's Algorithm still plays a fundamental role in many recent improved
approximation algorithms for Max-Sat. Most recent improved approximation
algorithms for Max-Sat combine Johnson's Algorithm with the proposed new
algorithms to achieve an improved performance ratio [3, 4, 13].

v Johnson's Algorithm is far more efficient and much simpler than most other
approximation algorithms for Max-Sat. The other approximation algorithms
involve solving maximum flow problems [13], solving linear programming
problems [3], or solving semidefinite programming problems [4], which in general
are much more time-consuming.

One major obstacle in the analysis of approximation algorithms for Max-Sat is
the estimation of the value of an optimal solution to a given instance��this, in fact,

623TIGHT BOUND ON JOHNSON'S ALGORITHM

has been a major obstacle in analysis of approximation algorithms for many NP
optimization problems. Most early analyses for approximation algorithms for
Max-Sat use the sum of the weights of all clauses in a given instance as an estima-
tion for the value of optimal solutions [7, 10], which is an obvious, but also
obviously very loose, upper bound for the value of optimal solutions for the
instance of Max-Sat. More recent analyses for approximation algorithms using
linear or semidefinite programming relaxation use the value of optimal solutions for
the corresponding relaxation as an estimation for the value of optimal solutions to
the instance of Max-Sat [3, 4]. One contribution of the current paper is that we
present a simple technique that shows, in the analysis of Johnson's Algorithm, the
performance ratio can be derived based on the actual value of optimal solutions for
an instance of Max-Sat.

Our results also reveal interesting facts on the probabilistic method for the
Max-Sat problem. According to Yannakakis [13], Johnson's Algorithm can be
interpreted using the probabilistic method, based on uniform distribution, which
assigns the value true to each boolean variable with probability 1�2. Based on the
analysis of the probabilistic method, one can derive that Johnson's Algorithm has
performance ratio 1�2. Yannakakis [13] has suggested further generalizations of the
approach of uniform distribution by allowing variables to be assigned the value
true with different probability. These generalizations have succeeded in re-inter-
pretation of Lieberherr and Specker's study on the Max-Sat problem and in
achieving better approximation algorithms. Now, observing that Johnson's Algo-
rithm has a performance ratio 2�3, which is better than 1�2, one may suspect that
the generalizations of Johnson's Algorithm should have a performance ratio better
than 2�3. This is, unfortunately, not true��we are able to construct instances for
Max-Sat for which simple generalizations of Johnson's Algorithm, as suggested by
Yannakakis [13], do not have a performance ratio better than 2�3. These examples
show that, in the worst case, simple nonuniform distribution does not do better
than uniform distribution in the probabilistic method for approximation of the
Max-Sat problem.

Section 2 introduces necessary definitions and reviews Johnson's Algorithm. In
Section 3, a modified version of Johnson's Algorithm is presented and a key lemma
is proved. Using this lemma in Section 4, we derive the tight bound on the per-
formance ratio for Johnson's Algorithm for Max-Sat. Remarks on Johnson's
Algorithm and its variations are also given.

2. PRELIMINARY

Let X=[x1 , ..., xn] be a set of boolean variables. A literal in X is either a
boolean variable xi , or its negation x� i , for some 1�i�n. A clause on X is a dis-
junction of literals in X. An instance , of the Maximum Satisfiability problem (or
Max-Sat for short) consists of a set of clauses C1 , ..., Cm with corresponding
positive weights w1 , ..., wm . The weight of a truth assignment { (i.e., assignment
of the value true or false to each variable in X) is defined to be the sum of
the weights of the clauses that are satisfied by { and is denoted by w(,, {).

624 CHEN, FRIESEN, AND ZHENG

The Max-Sat problem is to find an assignment of maximum weight given an
instance ,.

An approximation algorithm A for Max-Sat constructs an assignment of the
boolean variables given an instance , of Max-Sat. We say that the algorithm A has
performance ratio c if for any instance ,, the condition w(,, {A)�w(,, {opt)�c is
true, where {A is the assignment constructed by the algorithm A and {opt is an
optimal (i.e., maximum) assignment to ,.

Johnson's approximation algorithm [7] for Max-Sat is described in Fig. 1,
where |Cj | denotes the number of literals in the clause Cj .

Initially, each clause Cj is assigned a measure1 M(Cj)=wj �2 |Cj |, and the sum of
the measures of the clauses in the set LEFT is equal to

:
Cj # LEFT

M(Cj)= :
m

j=1

M(Cj)= :
m

j=1

wj �2 |Cj |.

It can be easily verified that Johnson's Algorithm never increases the value
�Cj # LEFT M(Cj). Moreover, at the end of the algorithm, each clause Cj in the set
LEFT has measure exactly wj , and LEFT contains exactly those clauses that are not
satisfied by the constructed assignment. Therefore, the assignment constructed by
Johnson's Algorithm has weight

:
m

j=1

wj& :
Cj # LEFT

wj� :
m

j=1

wj& :
m

j=1

wj �2 |Cj |.

If each clause in , contains at least k literals, then �m
j=1 w j�2 |Cj | �(�m

j=1 wj)�2k

and the assignment constructed by Johnson's Algorithm has weight at least
(2k&1) (�m

j=1 wj)�2k. In other words, the performance ratio for Johnson's Algo-
rithm is at least (2k&1)�2k. Note that here we have used the sum �m

j=1 wj of the
weights of all clauses in the instance , as an upper bound for the weight of an
optimal assignment to ,. In particular, if , contains unit clauses (i.e., clauses that
consist of a single literal), then the performance ratio for Johnson's Algorithm is at
least 1�2.

Johnson [7] shows that for k�2, the above bound is tight. That is, there are
instances , for Max-Sat for which Johnson's Algorithm constructs an assignment
{ such that the ratio of the weight of { and the weight of an optimal assignment to
, is exactly (2k&1)�2k. However, his argument does not apply to general instances
of Max-Sat.

Yannakakis [13] observed that the performance ratio of Johnson's Algorithm
cannot be larger than 2�3. To see this, consider the following instance ,h of 3h

625TIGHT BOUND ON JOHNSON'S ALGORITHM

1 Johnson's original algorithm [7] was presented for unweighted satisfiability problem, in which the
measure M(Cj) was called the ``weight'' of the clause C j . Since we present Johnson's Algorithm here for
weighted satisfiability problem (a more general case), we use the word ``measure'' instead of ``weight'' for
this value to avoid confusion.

File: 571J 161205 . By:XX . Date:19:05:99 . Time:14:01 LOP8M. V8.B. Page 01:01
Codes: 2223 Signs: 1402 . Length: 52 pic 10 pts, 222 mm

FIG. 1. Johnson's Algorithm.

clauses for Max-Sat, where h is any integer larger than 0, and all clauses have
weight 1:

,h=[(x3k+1 6 x3k+2), (x3k+1 6x3k+3), (x� 3k+1) | 0�k�h&1].

It is easy to verify that Johnson's Algorithm assigns xt=true for all 1�t�3h,
and this assignment satisfies exactly 2h clauses (x3k+1 6 x3k+2), (x3k+1 6x3k+3)
for 0�k�h&1. On the other hand, the assignment x3k+1=false, x3k+2=
x3k+3=true for all 0�k�h&1 obviously satisfies all 3h clauses in ,h .

3. THE MAIN LEMMA

In order to analyze Johnson's Algorithm, based on the weight of an optimal
assignment to a given instance ,, we may need to ``flip'' a boolean variable xt , i.e.,
interchange xt and x� t , in the instance ,. Let ,$ be the instance obtained from , by
this flipping operation. At first sight, applying Johnson's Algorithm to , and ,$
should produce assignments that satisfy exactly the same set of clauses. However,
the following subtle difference should be observed.

Suppose that in the tth iteration of the for loop in step 3 of Johnson's Algorithm
when we are deciding the truth assignment for the variable xt , we have

:
r

i=1

M(C T
i)= :

s

i=1

M(C F
i), (1)

where C T
i , ..., C T

r are the clauses containing xt and C F
1 , ..., C F

s are the clauses con-
taining x� t .

If xt is not flipped, then both sets [C T
1 , ..., C T

r] and [C F
1 , ..., C F

s] are the same
when Johnson's Algorithm is applied to the instance , and to the instance ,$. In

626 CHEN, FRIESEN, AND ZHENG

File: 571J 161206 . By:XX . Date:19:05:99 . Time:14:01 LOP8M. V8.B. Page 01:01
Codes: 2488 Signs: 1917 . Length: 52 pic 10 pts, 222 mm

this case, Johnson's Algorithm assigns xt=true for both instances. Thus, the sets
of clauses satisfied in this iteration for the two instances are the same.

On the other hand, if the variable xt is flipped, then for the instance ,$,
[C F

1 , ..., C F
s] is exactly the set of clauses in LEFT that contain xt , while

[C T
1 , ..., C T

r] is exactly the set of clauses in LEFT that contain x� t . According to the
algorithm, thus, when condition (1) holds, Johnson's Algorithm would assign
xt=true and make the clauses C T

1 , ..., C T
r satisfied for the instance , and would

assign xt=true and make the clauses C F
1 , ..., C F

r satisfied for the instance ,$.
Therefore, if condition (1) happens, the assignments constructed by Johnson's

Algorithm in general may satisfy different sets of clauses for the instances , and ,$.
In order to take care of this abnormality, we will augment Johnson's Algorithm

with a boolean array b[1..n] such that when condition (1) occurs, the assignment
to the variable xt is determined based on the boolean value b[t]. The augmented
boolean array b[1..n] will be part of the input to the algorithm. We call such an
algorithm the augmented Johnson's Algorithm. Our tight bound on the performance
ratio is proved based on Johnson's Algorithm augmented with an arbitrary boolean
array. Since the original Johnson's Algorithm on an instance , can be precisely
simulated by the augmented Johnson's Algorithm, augmented by a properly chosen
boolean array on an instance ,$ that is obtained from , by possibly a number of
flipping operations, the bound on the performance ratio for the augmented
Johnson's Algorithm will imply the same bound on the performance ratio for the
original Johnson's Algorithm. Moreover, the flipping operations can be applied
now on a given instance.

The augmented Johnson's Algorithm is given formally in Fig. 2.

FIG. 2. The Augmented Johnson's Algorithm.

627TIGHT BOUND ON JOHNSON'S ALGORITHM

The original Johnson's Algorithm corresponds to the Augmented Johnson's
Algorithm augmented with the boolean array b[1..n] such that b[t]=true for all t.

In the following, we prove a key lemma for the Augmented Johnson's Algorithm.
To do this, we need to introduce some terminologies and notations.

A literal is a positive literal if it is a boolean variable xi for some i, and a negative
literal if it is the negation x� i of a boolean variable.

For the rest of this section, we fix an instance ,=[C1 , ..., Cm] for Max-Sat and
let b[1..n] be any fixed boolean array. Let r, be the size (i.e., the number of literals)
of the longest clause in ,. Apply the Augmented Johnson's Algorithm on , and
b[1..n]. Consider a fixed moment in the execution of the Augmented Johnson's
Algorithm. We say that a literal is still active if it has not been assigned a truth
value yet. A clause Cj in , is satisfied if at least one literal in Cj has been assigned
value true. A clause Cj is killed if all literals in Cj are assigned value false. A clause
Cj is negative if it is neither satisfied nor killed, and all active literals in Cj are
negative literals.

Definition. Fix a t, 0�t�n, and suppose that we are at the end of the tth
iteration of the for loop in step 3 of the Augmented Johnson's Algorithm. Let S (t)

be the set of satisfied clauses, let K (t) be the set of killed clauses, and let N (t)
i be the

set of negative clauses with exactly i active literals. For a set S of clauses in ,,
denote by wt(S) the sum of weights of the clauses in S. That is, wt(S)=�Cj # S wj .
Similarly, let M(S) denote the sum of measures of all clauses in S.

Lemma 3.1. Let , be any instance for Max-Sat, and let b[1..n] be any boolean
array. Apply the Augmented Johnson's Algorithm on , and b[1 ..n]. For each
t, 0�t�n, let S (t), K (t), and N i

(t) be the sets as given in the previous definition. Then

wt(S (t))�2wt(K (t))+ :
r,

i=1

1
2i&1 wt(N (t)

i)&A0 ,

where A0=�r,
i=1 (1�2 i&1) wt(N (0)

i).

Proof. The proof proceeds by induction on t. For t=0, since S (0)=K (0)=<
and �r,

i=1 wt(N (t)
i)�2 i&1=A0 , the lemma is true.

Now suppose t>0. We need to introduce two more notations. At the end of the
tth iteration for the for loop in step 3 of the Augmented Johnson's Algorithm, let
Pi, j be the set of clauses that contain the positive literal xt+1 such that each clause
in Pi, j contains exactly i active literals, of which exactly j are positive, and let Ni, j

be the set of clauses that contain the negative literal x� t+1 such that each clause in
Ni, j contains exactly i active literals, of which exactly j are positive. Note that
according to the Augmented Johnson's Algorithm, if at this moment a clause Ch

has exactly i active literals, then the value M(Ch) equals exactly wh �2i.

Case 1. Suppose that the Augmented Johnson's Algorithm assigns xt+1=true.
Then according to the algorithm, regardless of the value b[t] we must have

:
r,

i=1

:
i

j=1

M(Pi, j)� :
r,

i=1

:
i&1

j=0

M(N i, j).

628 CHEN, FRIESEN, AND ZHENG

This is equivalent to

:
r,

i=1

� i
j=1 wt(Pi, j)

2 i � :
r,

i=1

� i&1
j=0 wt(Ni, j)

2 i . (2)

Now we have

N (t+1)
1 =(N (t)

1 &N1, 0) _ N2, 0

N (t+1)
2 =(N (t)

2 &N2, 0) _ N3, 0

} } }

N (t+1)
r,&1 =(N (t)

r,&1&Nr,&1, 0) _ Nr, , 0

N (t+1)
r,

=(N (t)
r,

&Nr, , 0).

This gives us

wt(N (t+1)
1)+

1
2

wt(N (t+1)
2)+ } } } +

1
2r,&1 wt(N (t+1)

r,
)

=wt(N (t)
1)+

1
2

wt(N (t)
2)+ } } } +

1
2r,&1 wt(N (t)

r,
)

&wt(N1, 0)+
1
2

wt(N2, 0)+
1
22 wt(N3, 0)+ } } } +

1
2r,&1 wt(Nr,, 0)

= :
r,

i=1

1
2i&1 wt(N (t)

i)+ :
r,

i=1

1
2 i&1 wt(Ni, 0)&2wt(N1, 0). (3)

On the other hand, we have

S (t+1)=S (t) _ .
r,

i=1

.
i

j=1

Pi, j (4)

and

K (t+1)=K (t) _ N1, 0 . (5)

Combining relations (2)�(5) and using the inductive hypothesis, we get

wt(S (t+1))=wt(S (t))+ :
r,

i=1

:
i

j=1

wt(Pi, j)

�2wt(K (t))+ :
r,

i=1

1
2i&1 wt(N (t)

i)&A0+ :
r,

i=1

� i
j=1 wt(Pi, j)

2 i&1

�2wt(K (t))+ :
r,

i=1

1
2i&1 wt(N (t)

i)&A0+ :
r,

i=1

� i&1
j=0 wt(Ni, j)

2 i&1

629TIGHT BOUND ON JOHNSON'S ALGORITHM

�2[wt(K (t))+wt(N1, 0)]

+ :
r,

i=1

1
2 i&1 wt(N (t)

i)+ :
r,

i=1

1
2i&1 wt(N i, 0)&2wt(N1, 0)&A0

=2wt(K (t+1))+ :
r,

i=1

1
2i&1 wt(N (t+1)

i)&A0 .

Therefore, the induction goes through in this case.

Case 2. Suppose that the Augmented Johnson's Algorithm assigns xt+1=
false. The proof for this case is similar but slightly more complicated. We will
concentrate on describing the differences.

According to the Augmented Johnson's Algorithm, we have

:
r,

i=1

� i
j=1 wt(Pi, j)

2 i � :
r,

i=1

� i&1
j=0 wt(Ni, j)

2 i . (6)

Remark. This is the only place that differs in the original Johnson's Algorithm
and the Augmented Johnson's Algorithm. In the original Johnson's Algorithm if the
variable xt+1 is assigned false, then we must have

:
r,

i=1

� i
j=1 wt(Pi, j)

2i < :
r,

i=1

� i&1
j=0 wt(N i, j)

2i .

Based on the relations

N (t+1)
1 =(N (t)

1 &N1, 0) _ P2, 1

N (t+1)
2 =(N (t)

2 &N2, 0) _ P3, 1

} } }

N (t+1)
r,&1 =(N (t)

r,&1&Nr,&1, 0) _ Pr, , 1

N (t+1)
r,

=(N (t)
r,

&Nr, , 0),

we get

wt(N (t+1)
1)+

1
2

wt(N (t+1)
2)+ } } } +

1
2r,&1 wt(N (t+1)

r,
)

= :
r,

i=1

1
2i&1 wt(N (t)

i)+ :
r,

i=2

1
2i&2 wt(Pi, 1)& :

r,

i=1

1
2i&1 wt(Ni, 0). (7)

Moreover, we have

S (t+1)=S (t) _ .
r,

i=1

.
i&1

j=0

Ni, j (8)

630 CHEN, FRIESEN, AND ZHENG

and

K (t+1)=K (t) _ P1, 1 . (9)

Combining relations (7) and (9) and using the inductive hypothesis,

2wt(K (t+1))+ :
r,

i=1

1
2i&1 wt(N (t+1)

i)&A0

=2wt(K (t))+2w(P1, 1)+ :
r,

i=1

1
2 i&1 wt(N (t)

i)

+ :
r,

i=2

1
2i&2 wt(Pi, 1)& :

r,

i=1

1
2i&1 wt(Ni, 0)&A0

�wt(S (t))+ :
r,

i=1

1
2i&2 wt(Pi, 1)& :

r,

i=1

1
2i&1 wt(N i, 0)

=wt(S (t))+ :
r,

i=1

:
i&1

j=0

wt(Ni, j)

+ :
r,

i=1

1
2i&2 wt(Pi, 1)& :

r,

i=1

1
2i&1 wt(Ni, 0)& :

r,

i=1

:
i&1

j=0

wt(Ni, j).

Now according to Eq. (8),

wt(S (t+1))=wt(S (t))+ :
r,

i=1

:
i&1

j=0

wt(Ni, j).

Moreover, since

:
r,

i=1

1
2i&1 wt(Ni, 0)+ :

r,

i=1

:
i&1

j=0

wt(Ni, j)

�wt(N1, 0)+wt(N1, 0)+ :
r,

i=2

:
i&1

j=0

wt(Ni, j)

�2wt(N1, 0)+ :
r,

i=2

� i&1
j=0 wt(Ni, j)

2i&2

= :
r,

i=1

� i&1
j=0 wt(Ni, j)

2i&2

� :
r,

i=1

� i
j=1 wt(Pi, j)

2i&2

� :
r,

i=1

1
2i&2 wt(Pi, 1),

631TIGHT BOUND ON JOHNSON'S ALGORITHM

the third inequality above follows from relation (6), we conclude

2wt(K (t+1))+ :
r,

i=1

1
2i&1 wt(N (t+1)

i)&A0�wt(S (t+1)).

Thus, the lemma also holds for this case.
This completes the proof for the lemma. K

4. TIGHT BOUND FOR JOHNSON'S ALGORITHM

Now we are ready to prove our main theorem. Let us come back to the original
Johnson's Algorithm. Lemma 3.1 on the Augmented Johnson's Algorithm enables
us to analyze the original Johnson's Algorithm using the weight of an optimal
assignment to a given instance of Max-Sat in the evaluation of the performance
ratio.

Theorem 4.1. Let , be an instance to the Max-Sat problem. Let wtopt (,) be the
weight of an optimal solution to , and let wttot (,) be the sum of weights of all clauses
in ,. Then the assignment to , constructed by the (original) Johnson's Algorithm is
at least

1
3 (wtopt (,)+wttot (,)).

Proof. Suppose that {o is an arbitrary optimal assignment to ,. Now we con-
struct another instance ,$ for Max-Sat as follows. Starting with ,, if for a boolean
variable xt , we have {o (xt)=false, then we ``flip'' xt (i.e., interchange xt and x� t)
in ,. No clause weight is changed in this process. Thus, there is a one-to-one cor-
respondence between the set of clauses in , and the set of clauses in ,$, and the
corresponding clauses have the same weight.

We also construct a boolean array b[1..n] such that b[t]=false if and only if
{o (xt)=false.

It is easy to see that the weight of an optimal assignment to ,$ is equal to the
weight of an optimal assignment to ,. In the following, we show that the assign-
ment constructed by the original Johnson's Algorithm on the instance , and the
assignment constructed by the Augmented Johnson's Algorithm on the instance ,$
augmented by the boolean array b[1 ..n] have the same weight.

Inductively, suppose that for the first (t&1)th iterations of the for loop in
step 3, both algorithms satisfy exactly the same set of clauses. Now consider the
tth iteration of the algorithms.

If xt in , is not flipped, then b[t]=true. Thus, the Augmented Johnson's Algo-
rithm assigns xt=true and makes the clauses C T

1 , ..., C T
r satisfied during the tth

iteration if and only if �r
i=1 M(C T

i)��s
i=1 M(CF

i), where C T
1 , ..., C T

r are the
clauses in LEFT containing xt and C F

1 , ..., C F
s are the clauses in LEFT containing x� t .

On the other hand, if xt in , is flipped, then b[t]=false, and the Augmented
Johnson's Algorithm assigns xt=false and makes the clauses C F

1 , ..., C F
s satisfied

if and only if �r
i=1 M(C T

i)� �s
i=1 M(C F

i). Note that if xt is not flipped, then

632 CHEN, FRIESEN, AND ZHENG

[C T
1 , ..., C T

r] is exactly the set of clauses containing xt in the tth iteration of the
original Johnson's Algorithm for the instance ,, while if xt is flipped, then
[C F

1 , ..., C F
s] is exactly the set of clauses containing xt in the tth iteration of the

original Johnson's Algorithm for the instance ,. Therefore, in the tth iteration,
the set of the clauses satisfied by the Augmented Johnson's Algorithm on ,$ and
b[1..n] corresponds exactly to the set of clauses satisfied by the original Johnson's
Algorithm on ,. In conclusion, the assignment constructed by the original
Johnson's Algorithm on the instance , and the assignment constructed by the
Augmented Johnson's Algorithm on the instance ,$ and the boolean array b[1..n]
have the same weight.

Therefore, we only need to analyze the performance ratio of the Augmented
Johnson's Algorithm on the instance ,$ and the boolean array b[1 ..n]. Moreover,
note that the assignment {$o for the instance ,$ that assigns xt=true for all 1�t�n
corresponds to the optimal assignment {o for the instance ,; thus it is an optimal
assignment for the instance ,$.

Let K (t), S (t), and N (t)
i be the sets as defined in Section 3 for the Augmented

Johnson's Algorithm on the instance ,$ and the boolean array b[1..n]. According
to Lemma 3.1, we have

wt(S (t))�2wt(K (t))+ :
r,

i=1

1
2i&1 wt(N (t)

i)&A0 . (10)

for all 0�t�n, where A0=�r,
i=1 (1�2i&1) wt(N (0)

i).
At the end of the Augmented Johnson's Algorithm, i.e., t=n, S (n) is exactly the

set of clauses satisfied by the constructed assignment and K (n) is exactly the set of
clauses not satisfied by the constructed assignment. Moreover, N (n)

i =< for all i.
According to (10), we have

wt(S (n))�2wt(K (n))&A0 . (11)

Note that

A0= :
r,

i=1

1
2 i&1 wt(N (0)

i)� :
r,

i=1

wt(N (0)
i). (12)

Combining relations (11) and (12), we get

3
2 wt(S (n))�wt(S (n))+wt(K (n))& 1

2 :
r,

i=1

wt(N (0)
i). (13)

Since S (n) _ K (n) is the whole set of clauses in ,$ thus

wttot (,)=wt(S (n))+wt(K (n)) (14)

633TIGHT BOUND ON JOHNSON'S ALGORITHM

and the assignment xt=true for all 1�t�n is an optimal assignment to the
instance ,$, which satisfies all clauses in ,$ except those in N (0)

i for 1�i�r, ; thus

wtopt (,)=wt(S (n))+wt(K (n))& :
r,

i=1

wt(N (0)
i). (15)

Now combining Eq. (14) and (15) with Eq. (13), we get

wt(S (n))� 1
3 (wtopt (,)+wttot (,)).

This proves the theorem since wt(S (n)) is exactly the weight of the assignment con-
structed by the Augmented Johnson's Algorithm. K

Corollary 4.2. The performance ratio for Johnson's Algorithm is 2�3.

Proof. Obviously we have wtopt (,)�wttot (,) for any instance , for Max-Sat.
Therefore, Theorem 4.1 says that the weight of the assignment constructed by
Johnson's Algorithm is at least 2�3 of that of an optimal assignment. The corollary
follows. K

We point out that in order to obtain the bound 2�3, it is necessary to use the
weight of an actual optimal assignment in the above analysis. If instead we use the
sum wttot (,) of weights of all clauses in the given instance , of Max-Sat, then the
weight of an optimal assignment to ,, and thus, the weight of an assignment to ,
constructed by any approximation algorithm, can be as small as wttot (,)�2. For
example, , consists of contradicting pairs of unit clauses ,=[(xt), (x� t) | 1�t�n],
where all clauses have weight 1. Even under the assumption that , contains no con-
tradicting pairs of unit clauses, Lieberherr and Specker [10] have been able to
demonstrate instances , such that the weight of optimal assignments is bounded by
: } wttot (,), where : is any constant larger than :0=(- 5 &1)�2r0.618 (the
reciprocal of the ``golden ratio''). We have also constructed the instance without
contradicting pairs of unit clauses for which Johnson's Algorithm constructs an
assignment of weight bounded by 3wttot (,)�5:

,r=[(x3t+1), (x3t+2), (x3t+3), (x� 3t+1 6x� 3t+2), (x� 3t+1 6 x� 3t+3) | 0�t�r&1],

(16)

where r is an arbitrary integer and all clauses have weight 1. Moreover, we can
prove (see the Appendix) that the weight of the assignment constructed by
Johnson's Algorithm for instances without contradicting pairs of unit clauses is at
least 3wttot (,)�5. The example in (16) shows that this bound is tight.

Another remark we would like to make concerns the probabilistic method for
approximation of Max-Sat. As described by Yannakakis [13], Johnson's Algo-
rithm can be interpreted using the probabilistic method based on uniform distribu-
tion, in which each variable is assigned value true with probability 1�2. Based on
the analysis of the probabilistic method, one can derive that Johnson's Algorithm
has performance ratio 1�2. Yannakakis [13] has suggested further generalizations

634 CHEN, FRIESEN, AND ZHENG

of the approach of uniform distribution by allowing variables to be assigned value
true with different probability. For example, if an instance , of Max-Sat is
2-satisfiable (i.e., any two clauses in , are simultaneously satisfiable, or equivalently,
, does not contain contradicting pairs of unit clauses), then we can assign true

value to the literals in unit clauses in , with probability :0 , where :0=
(- 5 &1)�2r0.618, and assign true value to literals not in any unit clauses in ,
with probability 1�2. The probabilistic argument shows that, using this probability
distribution, an assignment of weight at least :0 } wttot (,) can be constructed.
Similarly, if an instance , of Max-Sat is 3-satisfiable (i.e., any three clauses in , are
simultaneously satisfiable), then we can assign the true value to the literals in unit
clauses in , with probability 2�3, which results in an assignment of weight at least
2wttot (,)�3.

Thus, using the probabilistic method based on nonuniform distribution seems to
improve the performance ratio for approximation of Max-Sat. In particular, by
Corollary 4.2, Johnson's Algorithm has performance ratio 2�3. One may suspect
that based on the nonuniform distributions suggested by Yannakakis [13], a
generalization of Johnson's Algorithm should have a performance ratio better than
2�3. This is, unfortunately, not true as we will demonstrate below.

We say that a probabilistic method is based on a simple nonuniform distribution
if it assigns the true value to literals in unit clauses with probability p and it
assigns the true value to literals not in any unit clauses with probability 1�2, where
0<p<1 is a fixed constant. Of course, the probabilistic method based on a simple
nonuniform distribution is applicable only to 2-satisfiable instances of Max-Sat.
This loses no generality since the problem of approximating Max-Sat can always
be reduced to the problem of approximating 2-satisfiable instances of Max-Sat (see
the Appendix).

We have the following theorem.

Theorem 4.3. No probabilistic method based on a simple nonuniform distribution
has a performance ratio larger than 2�3.

Proof. Let A be a probabilistic method, based on a simple nonuniform distribu-
tion, that assigns literals in unit clauses the value true with probability p and
assigns literals not in any unit clauses the value true with probability 1�2. Then,
according to Yannakakis [13], the probabilistic method A can be implemented by
Johnson's Algorithm with changes in initialization, comparison, and modifications
of the measure values M(Cj) for each clause Cj . We indicate these changes in Fig. 3,
in which the omitted parts are identical to Johnson's Algorithm in Fig. 1. Without
loss of generality, we may assume that all unit clauses in the input instance , con-
tain a positive literal (otherwise, we flip some variables). For each t, pt= p if xt is
contained in a unit clause of , and pt=1�2 if xt is not contained in any unit clause
of ,.

Consider the following instance ,h for Max-Sat, where h is an arbitrary positive
integer and each clause has weight 1. Note that the instance ,h is 2-satisfiable:

,h=[(x3k+1 6 x3k+2), (x3k+1 6x3k+3), (x� 3k+1) | 0�k�h&1].

635TIGHT BOUND ON JOHNSON'S ALGORITHM

File: 571J 161215 . By:XX . Date:19:05:99 . Time:14:02 LOP8M. V8.B. Page 01:01
Codes: 3098 Signs: 2443 . Length: 52 pic 10 pts, 222 mm

FIG. 3. The probabilistic Method A.

We have p3k+1= p and p3k+2= p3k+3=1�2 for all k. During the (3k+1)st itera-
tion of the for loop in step 3 in Probabilistic Method A, the clauses containing
x3k+1 are (x3k+1 6 x3k+2) and (x3k+1 6 x3k+3), each of which has measure
(1& p)�2, and the clause containing x� 3k+1 is (x� 3k+1), which has measure p. Thus,
the algorithm will assign x3k+1=true, which satisfies two but kills one of the
above three clauses. In conclusion, the probabilistic method A constructs an assign-
ment that satisfies exactly 2h clauses in ,h . On the other hand, an optimal assign-
ment x3k+1=false, x3k+2=x3k+3=true satisfies all 3h clauses in ,h . K

In conclusion, using the probabilistic method based on simple nonuniform dis-
tribution may improve the ratio of the weight of the constructed assignment versus
the value wttot (,), but it does not improve the ratio of the weight of the constructed
assignment versus the weight wtopt (,) of an optimal assignment.

We close the paper with two remarks:
The instance ,h constructed in the proof of Theorem 4.3 seems to include the

unique kind of obstacles for Johnson's Algorithm to overcome the 2�3 ratio bound.
One reason that Johnson's Algorithm constructs an assignment of weight
2wtopt (,h)�3 is that Johnson's Algorithm follows a strict order in determining the
values for the boolean variables. If Johnson's Algorithm changes the order of the
assignment, for example, by considering x3k+2 or x3k+3 before x3k+1 , then it will
produce an optimal assignment for the instance ,h . In particular, what is the per-
formance ratio of the variant of Johnson's Algorithm that considers the variables in
a random order? Is there a simple modification of Johnson's Algorithm that has a
performance ratio better than 2�3?

Johnson's Algorithm has some very interesting properties that supplement other
approximation algorithms for the Max-Sat problem. For example, Johnson's Algo-
rithm does better on long clauses than short clauses (see the discussion in Section
2) while most other approximation algorithms for Max-Sat do better on short
clauses than on long clauses (see, for example, [2�4, 12]). Theorem 4.1 shows
another such interesting property for Johnson's Algorithm, in the following sense.
Some recent research (e.g., [8, 11]) shows that it seems easier to deal with instances
that are satisfiable than instances that are highly unsatisfiable (i.e., instances whose

636 CHEN, FRIESEN, AND ZHENG

wtopt value is much smaller than the wttot value). On the other hand, Theorem 4.1
shows that Johnson's Algorithm does better on highly unsatisfiable instances. For
example, for some satisfiable instances (such as the instances given in Theorem 4.3),
Johnson's Algorithm has a performance ratio 2�3, while for instances with ratio
wtopt�wttot arbitrarily close to :0=(- 5 &1)�2,2 Johnson's Algorithm has a perfor-
mance ratio arbitrarily close to 7�8. This property may be useful in the further study
of approximation algorithms for the Max-Sat problem.

APPENDIX

Let , be an instance of Max-Sat. The total weight of ,, denoted by wttot (,), is
the sum of the weights of all clauses in ,. A pair of unit clauses (xt) and (x� t)
is called a contradicting pair of unit clauses. If an instance , of Max-Sat purely
consists of contradicting pairs of unit clauses of the same weight, then the weight
of an optimal assignment to , is exactly half of the total weight wttot (,) of ,.

It is interesting to know what is the ratio of the weight of an optimal assignment
to the total weight wttot (,) of ,. In fact, most early analysis on approximation algo-
rithms for Max-Sat is on derivations of this ratio [7, 10]. Johnson's original
analysis on his algorithm [7] shows that this ratio is at least 1�2. The example of
contradicting pairs of unit clauses above shows that this bound is tight.

However, it seems in most practice that the case of contradicting pairs of unit
clauses can be eliminated. According to Lieberherr and Specker [10], an instance
of Max-Sat is 2-satisfiable if it contains no contradicting pairs of unit clauses.
Suppose that , is a general instance for Max-Sat in which there is a contradicting
pair of unit clauses (xt) and (x� t) of weight wt and w� t , respectively. Without loss of
generality, assume wt�w� t . Then we can delete (x� t) from , and decrease the weight
of (xt) to wt&w� t . Repeatedly doing this will eliminate all contradicting pairs of unit
clauses. Let the resulting 2-satisfiable instance be ,$. It is clear that for any assign-
ment { to [x1 , ..., xn], the ratio w(,, {)�w(,, {opt) is at least as large as the ratio
w(,$, {)�w(,$, {$opt), where {opt is an optimal assignment to , and {$opt is an optimal
assignment to ,$. Therefore, an approximation algorithm for 2-satisfiable instances
for Max-Sat implies an approximation algorithm of at least equally good perfor-
mance ratio for general Max-Sat problem.

Lieberherr and Specker [10] proved that for a 2-satisfiable instance , of
Max-Sat, the weight of an optimal assignment to , is at least :0=(- 5 &1)�2
r0.618 of the total weight wttot (,) of ,. Moreover, they show that there are
2-satisfiable instances of Max-Sat for which this ratio is arbitrarily close to :0 .
They have also given a polynomial time algorithm that constructs an assignment
whose weight is at least :0 } wttot (,). Their algorithm has been greatly simplified by
Yannakakis [13], using the probabilistic method based on a nonuniform distribu-
tion.

In the following, we prove that Johnson's Algorithm, which corresponds to the
approach of the probabilistic method based on uniform distribution, constructs an

637TIGHT BOUND ON JOHNSON'S ALGORITHM

2 According to Lieberherr and Specker [10], such instances without containing contradicting pairs of
unit clauses always exist.

assignment whose weight is at least 3wttot (,)�5 on 2-satisfiable instances , of
Max-Sat. This is an improvement on the original analysis given by Johnson [7].

Theorem 5.1. For any 2-satisfiable instance , of Max-Sat, the assignment
constructed by Johnson's Algorithm has weight at least 3wttot (,)�5.

Proof. Suppose ,=[Cj , ..., Cm]. Let U be the set of unit clauses in ,, and let
R=,&U. Since , is 2-satisfiable, the set U contains no contradicting pairs of unit
clauses.

There are two cases. As before, for a set S of clauses, we denote by wt(S) the sum
of weights of the clauses in S.

Case 1. wt(U)�3wt(R)�2. Then initially, the sum of the measures of all clauses
in the set LEFT is equal to

:
m

i=1

M(Ci)= :
m

i=1

wi

2 |Ci |

= :
Ci # U

w i

2 |Ci |
+ :

Ci # R

wi

2 |Ci |

�
wt(U)

2
+

wt(R)
4

=
2wt(U)

5
+

wt(U)
10

+
wt(R)

4

�
2wt(U)

5
+

1
10 \

3wt(R)
2 ++

wt(R)
4

=
2wt(U)

5
+

2wt(R)
5

=
2
5

(wt(U)+wt(R))

=
2wttot (,)

5
.

According to Johnson's Algorithm, the measure M(LEFT) is never increased and at
the end of the algorithm, each clause Ci in LEFT has measure exactly M(Ci)=wi .
Since at the end of the algorithm the set LEFT contains exactly those clauses that
are not satisfied by the constructed assignment {, we conclude that the assignment
{ constructed by Johnson's Algorithm has weight at least wttot (,)&2wttot (,)�5=
3wttot (,)�5.

Case 2. wt(U)>3wt(R)�2. For each t, let Ut be the subset of unit clauses in U
that contains the variable xt or its negation x� t (of course, since , is 2-satisfiable, Ut

either consists of clauses of form (xt) or it consists of clauses of form (x� t), but not
both).

638 CHEN, FRIESEN, AND ZHENG

Claim. The weight of the clauses deleted from the set LEFT in the tth iteration
for the for loop in step 3 of Johnson's Algorithm is at least wt(Ut).

Proof of the Claim. By the algorithm, no steps before the tth iteration for the
for loop in step 3 of Johnson's Algorithm would delete a unit clause in Ut from
the set LEFT. Therefore, at the beginning of the tth iteration, all unit clauses in Ut

are contained in the set LEFT. Without loss of generality, suppose that the set Ut

consists of unit clauses of form (xt) (the case that Ut consists of unit clauses of
form (x� t) can be proved similarly). As described in the algorithm, let C T

1 , ..., C T
r

be the clauses containing xt and let C F
1 , ..., C F

s be the clauses containing x� t . Note
that the set Ut is a subset of the set [C T

1 , ..., C T
r].

If Johnson's Algorithm assigns xt=true, then all clauses C T
1 , ..., C T

r are deleted
from LEFT in this iteration. In particular, all unit clauses in Ut are deleted from
LEFT. Thus, the weight of the clauses deleted from LEFT in this iteration is at least
wt(Ut).

If Johnson's Algorithm assigns xt=false, then we must have �r
i=1 M(C T

i)
<�s

i=1 M(C F
i). Now since for each clause Ci in Ut we have M(Ci)=wt(Ci)�2 and

Ut �[C T
1 , ..., C T

r], we have

1
2 wt(Ut)� :

r

i=1

M(C T
i)< :

s

i=1

M(C F
i).

Moreover, since M(C F
i)�wt(C F

i)�2 for all i=1, ..., s,

wt(Ut)� :
s

i=1

wt(C F
i).

This proves the claim in this case since �s
i=1 wt(C F

i) is the sum of the weights of
the clauses deleted from LEFT in this iteration.

This completes the proof for the claim. K

Since at the end of the algorithm, the clauses deleted from the set LEFT are
exactly those clauses that are satisfied by the constructed assignment, the above
claim shows that the weight of the assignment constructed by Johnson's Algorithm
is at least �n

i=1 wt(Ut)=wt(U). Now the theorem is proved for Case 2 because

wt(U)= 3
5wt(U)+ 2

5wt(U)

> 3
5wt(U)+ 2

5 (3
2wt(R))

= 3
5 [wt(U)+wt(R)]

= 3
5wttot (,)

This completes the proof of the theorem. K

639TIGHT BOUND ON JOHNSON'S ALGORITHM

ACKNOWLEDGMENTS

We thank Judy Goldsmith and Peter van Emde Boas who read an early version of this paper and
provided a number of helpful suggestions. We would also like to thank David Johnson, Richard Beigel,
Jose Balcazar, and Osamu Watanabe for their valuable discussions and comments.

REFERENCES

1. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and hardness of
approximation problems, in ``Proc. 33rd IEEE Symposium on the Foundation of Computer Science,
1992,'' pp. 14�23.

2. U. Feige and M. Goemans, Approximating the value of two prover proof systems, with applications
to MAX 2SAT and MAX DICUT, in ``Proc. 3rd Israel Symposium of Theory of Computing and
Systems, 1995,'' pp. 182�189.

3. M. X. Goemans and D. P. Williamson, New 3
4-approximation algorithms for the maximum

satisfiability problem, SIAM J. Discrete Math. 7 (1994), 656�666.

4. M. X. Goemans and D. P. Williamson, Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming, J. ACM 42 (1995), 1115�1145.

5. P. Hansen and B. Jaumard, Algorithms for the maximum satisfiability problem, Computing 44
(1990), 279�303.

6. J. Hastad, Some optimal inapproximability results, in ``Proc. 28th Annual ACM Symposium on
Theory of Computing, 1997,'' pp. 1�10.

7. D. S. Johnson, Approximation algorithms for combinatorial problems, Journal of Computer and
System Sciences 9 (1974), 256�278.

8. H. Karloff and U. Zwick, A 7�8-approximation algorithm for Max-Sat?, in ``Proc. 38th IEEE
Symposium on the Foundation of Computer Science, 1997,'' pp. 406�415.

9. S. Khanna, R. Motwani, M. Sudan, and U. V. Vazirani, On syntactic versus computational views
of approximability, in ``Proc. 35th IEEE Symposium on the Foundation of Computer Science, 1994,''
pp. 819�830.

10. K. J. Lieberherr and E. Specker, Complexity of partial satisfaction, Journal of ACM 28 (1981),
411�421.

11. L. Trevisan, Approximating satisfiable satisfiability problems, in ``Proc. 5th Annual European
Symposium on Algorithms,'' Lecture Notes in Computer Science, Vol. 1284, pp. 472�485, 1997.

12. L. Trevisian, G. B. Sorkin, M. Sudan, and D. P. Williamson, Gadgets, approximation, and linear
programming, in ``Proc. 37th IEEE Symposium on the Foundation of Computer Science, 1996,''
pp. 617�626.

13. M. Yannakakis, On the approximation of maximum satisfiability, J. Algorithms 17 (1994), 475�502.

640 CHEN, FRIESEN, AND ZHENG

	1. INTRODUCTION
	2. PRELIMINARY
	FIG. 1

	3. THE MAIN LEMMA
	FIG. 2

	4. TIGHT BOUND FOR JOHNSON'S ALGORITHM
	FIG. 3

	APPENDIX
	ACKNOWLEDGMENTS
	REFERENCES

