
1/14/02 UCSD 1 UBC software modularity group

Discussion with Gregor
Kiczales at UBC

• Ontology of AOP
• Ontology is the study of what there is, an

inventory of what exists. An ontological
commitment is a commitment to an
existence claim for certain entities.

• Slides 2 - 5 and the last one are Gregor’s

An ontology is, in simple terms, a collection of concepts with
relations among them plus constraints on the relations.

1/14/02 UCSD 2 UBC software modularity group

basis of crosscutting

• a join point model (JPM) has 3 critical elements

– what are the join points
• in AspectJ

– points in runtime call graps members
– means of identifying join points

• in AspectJ
– signatures (plus …)

– means of specifying semantics at join points
• in AspectJ

– advice
– define members

1/14/02 UCSD 3 UBC software modularity group

basis of crosscutting

• a join point model (JPM) has 3 critical elements
– what are the join points

• in AspectJ
– points in runtime call graph
– class members

– means of identifying join points
• in AspectJ

– pointcuts
– member signatures (plus …)

– means of specifying semantics at join points
• in AspectJ

– advice
– define members

dynamic JPM
static JPM

1/14/02 UCSD 4 UBC software modularity group

range of AOP languages

means of … join points

add, compose (and
remove) members

signaturesmembersHyper/J

add memberssignaturesclass members static JPM

Demeter traversals

Composition Filters

AspectJ
 dynamic JPM

JPM

when traversal
reaches object or
edge

message sends &
receptions

points in execution
 call, get, set…

join points

class & edge
names

signature &
property based
object queries

signatures
w/ wildcards &
other properties
of JPs

identifying

define visit method

wrappers
 declarative (filters)
 imperative (advice)

advice

specifying semantics
at

1/14/02 UCSD 5 UBC software modularity group

range of AOP languages

means of … join points

add, compose (and
remove) members

signaturesmembersHyper/J

add memberssignaturesclass members static JPM

Demeter traversals

Composition Filters

AspectJ
 dynamic JPM

JPM

types

message sends &
receptions

points in execution
 call, get, set…

join points

succinct
traversal specs

signature &
property based
object queries

signatures
w/ wildcards &
other properties
of JPs

identifying

generate traversals

wrappers
 declarative (filters)
 imperative (advice)

advice

specifying semantics
at

See next slide for changes to Demeter

1/14/02 UCSD 6 UBC software modularity group

range of AOP languages

means of … join points

add memberssignaturesclass members static JPM

DemeterJ,
Demeter/C++
 dynamic JPM

 static JPM 1

 static JPM 2
 static JPM 3

AspectJ
 dynamic JPM

JPM

when traversal
reaches object or
edge

class members

class members
class members

points in execution
 call, get, set…

join points

visitor method
signatures

traversal spec. s
class graph g

class names
class graph

signatures
w/ wildcards &
other properties
of JPs

identifying

visitor method bodies

s + g (result = traversal
implementation)

add members
class graph with
tokens=grammar (result
= parsing and printing
implementation)

advice

specifying semantics at

1/14/02 UCSD 7 UBC software modularity group

range of AOP languages

means of … join points

add memberssignaturesclass members static JPM

DJ
 dynamic JPM 1

 dynamic JPM 2

 dynamic JPM 3

AspectJ
 dynamic JPM

JPM

when traversal
reaches object or
edge (method
traverse)

when traversal
reaches object
(methods fetch,
gather, asList)

nodes in object
graphs

points in execution
 call, get, set…

join points

visitor method
signatures

source and
targets of
traversal

trav. spec. s
class graph g
object graph o

signatures
w/ wildcards &
other properties
of JPs

identifying

visitor method bodies

method name (fetch,
gather, asList)

s+g+o(result = traversal
implementation = edges
to traverse at nodes in
object graph)

advice

specifying semantics at

1/14/02 UCSD 8 UBC software modularity group

Composing join point models

• Traversal Spec JPM: In Demeter we use traversal
specifications and the class graph to define a
traversal implementation (either static or
dynamic)

• Visitor JPM: The result of Traversal Spec. JPM is
used to define a second JPM:
– The traversal implementation defines nodes and edge

visits.
– Visitor signatures define the nodes and edges where

additional advice is needed: they are the means of
identifying join points.

– The means of specifying semantics at join points are the
visitor bodies.

1/14/02 UCSD 9 UBC software modularity group

DJ: dynamic JPM 3

• The join points are nodes in object
graphs. They are not dynamic call graph
join points nor class members!

• The means of identifying the join points
for a given object graph o are a strategy s
and the class graph g. o must conform to
g.

• The means of specifying the semantics at
the join points are again s and g. See
paper with Mitch Wand for the formal
details behind this JPM.

1/14/02 UCSD 10 UBC software modularity group

DemeterJ: static JPM 1

• The means of identifying the join points
and of specifying the semantics at the join
points are the same.

• The reason is that s+g both
– select the classes that will get traversal semantics
– determine the details of the traversal semantics

1/14/02 UCSD 11 UBC software modularity group

DemeterJ: static JPM 3

• The means of identifying the join points
(class members) is done by the class
graph.

• When we add tokens to the class graph
we get a grammar that contains
instructions for parsing and printing
behavior.

• A grammar is an aspect (external
representation aspect): the adhoc
implementation cuts across all classes.

1/14/02 UCSD 12 UBC software modularity group

• foo
– dynamic JPM (~ AspectJ)
– what happens in pattern

• bar

AO design in UML

• Composition Patterns
– static JPM (~ Hyper/J)
– binds pattern to base code

• UML class & interaction diagrams already crosscut
– by-class vs. by-interaction organizations

[Clarke, Walker]

