
12/27/01 AP and AspectJ 1

AspectJ and AP

Karl Lieberherr

12/27/01 AP and AspectJ 2

Two enhancements

• A new kind of static crosscutting
– declare traversal t: strategy;

• introduces a new traversal method that traverses
objects of Source(strategy) according to the strategy

• A new kind of type patterns
– Define a set of types using a strategy; apply

strategy to class graph.
•ContainedIn(strategy)

•ReachableThrough(strategy)

12/27/01 AP and AspectJ 3

A new kind of static crosscutting

• declare traversal t: strategy;

– introduces a new traversal method that traverses
objects of Source(strategy) according to the
strategy

– this generalizes the AspectJ introduction Type
TypePattern.Id(Formals){Body} that
defines a new method on all types in TypePattern.
With the traversal introduction the body depends
on the current type.

12/27/01 AP and AspectJ 4

Use of traversals

• The declared traversals can be invoked on
objects o by giving a visitor object as
argument: o.t(v).

• This is similar to DemeterJ.

12/27/01 AP and AspectJ 5

Type patterns

• What is already in AspectJ:
– A type pattern defines a collection of types.

– Type names are type patterns.

– A special type name: * picks out all types,
including primitive types.

– Subtype pattern: A+ denotes all subtypes of A.

12/27/01 AP and AspectJ 6

New kinds of type patterns:
Strategy type patterns

• define a set of types declaratively

• two kinds of strategy type patterns
– ContainedIn(D) selects the set of all types that

are in the scope of strategy D.

– ReachableThrough(D) selects the set of all
types t from which the target of D can be
reached through the source of D and following
D.

12/27/01 AP and AspectJ 7

Scope of a strategy

• The scope of a strategy modulo a class
graph is the set of types whose instances
may appear on traversal paths of objects of
the class graph.

12/27/01 AP and AspectJ 8

Strategy type patterns

• Reachable(D) = {x| there is a path in the
class graph from x to a node in
ContainedIn(D)}

• ReachableThrough(D) =
{x|ContainedIn(join(x to Source(D), D)) is
not empty.

12/27/01 AP and AspectJ 9

Examples

• For security purposes we want to advise all
calls of get methods of classes from
Portfolio to Posting. Strategy type pattern:

 ContainedIn(from Portfolio to Posting)

12/27/01 AP and AspectJ 10

Examples

• We want to advise all methods of types from
which Money is reachable through Retirement:

 ReachableThrough(from Retirement to Money)

• Reachable(Money): all types from which we can
reach Money.

12/27/01 AP and AspectJ 11

Traversal strategies

• D ::= [A,B] | join(D1,D2) | merge(D1,D2)

• We can use them in three different graphs
relevant to programming:
– call trees

– class graphs

– object trees

12/27/01 AP and AspectJ 12

Interpretation of traversal
strategies

• D ::= [A,B] | join(D1,D2) | merge(D1,D2)

• Source([A,B]) = A

• Target([A,B]) = B

• Source(join(D1,D2))=Source(D1)

• Target(join(D1,D2))=Target(D2)

• Source(merge(D1,D2))=Source(D1)

• Target(merge(D1,D2))=Target(D1)

12/27/01 AP and AspectJ 13

Interpretation of traversal
strategies

• D ::= [A,B] | join(D1,D2) | merge(D1,D2)

• WF([A,B]) = true // well-formed

• WF(join(D1,D2))=WF(D1) && WF(D2) &&
Target(D1) = Source(D2)

• WF(merge(D1,D2))= WF(D1) && WF(D2)
&& Source(D1)=Source(D2) &&
Target(D1)=Target(D2)

12/27/01 AP and AspectJ 14

Dynamic call tree

• nodes are operation calls: labeled by
operation name and arguments

• edges: a operation calls another operation

• Path back: contents of run-time stack

12/27/01 AP and AspectJ 15

Interpretation of traversal
strategies

• D ::= [A,B] | join(D1,D2) | merge(D1,D2)

• A and B are operation names

• [A,B]: the set of B-nodes reachable from A-
nodes

• join(D1,D2): the set of Target(D2)-nodes
reachable from Source(D1)-nodes following
D1 and then following D2.

12/27/01 AP and AspectJ 16

Interpretation of traversal
strategies

• merge(D1,D2): the union of the set of
Target(D1)-nodes reachable from
Source(D1)-nodes following D1 and the set
of Target(D2)-nodes reachable from
Source(D2)-nodes following D2.

12/27/01 AP and AspectJ 17

Translation Rules

• t(D1)

• flow(A) && B

• t(D1) || t(D2)

• flow(t(D1)) && t(D2)

• D1

• from A to B

• merge(D1,D2)

• join(D1,D2)

Source, Target definitions:
Source(from A to B) = A
Target(from A to B) = B
Source(join(D1,D2) = Source(D1)
Target(join(D1,D2) = Target(D2)
Source(merge(D1,D2)) = Source(D1)
Target(merge(D1,D2)) = Target(D1)

rules:
join: Target(D1) = Source(D2)
merge: Source(D1) = Source(D2)
 Target(D1) = Target(D2)

12/27/01 AP and AspectJ 18

Correspondences

• t(D1)

• flow(A) && B

• flow(A)

• flow(flow(A) && B) && C

• flow(flow(flow(A) && B) && C) && E

• (flow(flow(A) && B1) && C) ||
(flow(flow(A) && B2) && C)

• t(D1) || t(D2)

• flow(t(D1)) && t(D2)

• flow(flow(A) && B) && (flow(B) && C)

• = flow(flow(A) && B) && C

• D1

• from A to B

• from A to *

• from A via B to C

• from A via B via C to E

• merge(from A via B1 to C,
from A via B2 to C)

• merge(D1,D2)

• join(D1,D2)

• join (from A to B, from B to C)

subset(flow(B)) && flow(B) = subset(flow(B))

12/27/01 AP and AspectJ 19

Class graph

• D

• [A,B]

• join(D1,D2)

• merge(D1,D2)

• PathSet(D)

• Paths(A,B)

• PathSet(D1).PathSet(D2)

• PathSet(D1) || PathSet(D2)

we are only interested in the set of nodes
touched by the path sets -> subgraph of
class graph

12/27/01 AP and AspectJ 20

Object tree

• O

• [A,B]

• subgraph of O

• subgraph of O
consisting of all paths
from an A-node to a
B-node.

12/27/01 AP and AspectJ 21

Object tree

• O

• join(D1,D2)

• subgraph of O

• subgraph of O
consisting of all paths
following D1
concatenated with all
paths following D2.

12/27/01 AP and AspectJ 22

Object tree

• O

• merge(D1,D2)

• subgraph of O

• subgraph of O
consisting of all paths
following D1 or
following D2.

does not use prematurely terminated paths

12/27/01 AP and AspectJ 23

Our Body

NervousSystem = CentralNervousSystem
PeripheralNervousSystem.

CentralNervousSystem = Brain SpinalCord.

PeripheralNervousSystem = SensoryDivision
MotorDivision.

MotorDivision = SomaticNervousSystem
AutonomicNervousSystem.

12/27/01 AP and AspectJ 24

Our Body

SomaticNervousSystem = “voluntary action”

AutonomicNervousSystem = “involuntary action”
SympatheticNervousSystem
ParasympatheticNervousSystem.

SympatheticNervousSystem = “fight or flight”.

ParasympatheticNervousSystem = “rest and digest”.

