
Atlas: A Case Study in Building a Web-Based Learning
Environment using Aspect-oriented Programming

Mik Kersten and Gail C. Murphy
University of British Columbia

2366 Main Mall, Vancouver, BC
V6T 1Z4, Canada
(650) 888-3483

{mkersten,murphy}@cs.ubc.ca

ABSTRACT

The Advanced Teaching and Learning Academic Server (Atlas)
is a software system that supports web-based learning. Students
can register for courses, and can navigate through personalized
views of course material. Atlas has been built according to Sun
Microsystem's Java Servlet specification using Xerox PARC's
aspect-oriented programming support called AspectJ . Since
aspect-oriented programming is still in its infancy, little
experience with employing this paradigm is currently available.
In this paper, we start filling this gap by describing the aspects
we used in Atlas and by discussing the effect of aspects on our
object-oriented development practices. We describe some rules
and policies that we employed to achieve our goals of
maintainability and modifiability, and introduce a
straightforward notation to express the design of aspects.
Although we faced some obstacles along the way, this
combination of technology helped us build a fast, well-structured
system in a reasonable amount of time.
Keywords

Aspect-oriented programming, software engineering practices,
web-based applications, distributed systems.

1. INTRODUCTION
The Advanced Teaching and Learning Academic Server (Atlas)
is a software system that supports web-based learning. Using
Atlas, students can register for courses and can navigate through
personalized views of course material. In 1998, an initial version
of Atlas was developed in C++ [6]. Although functional, this
version suffered from typical initial version problems. In
particular, on-the-fly design changes had made the code base
difficult to change, maintain, and test.

Hindsight suggested that some of the difficulties faced in the
initial implementation might be addressed effectively by the
emerging aspect-oriented programming [4]. Aspect-oriented
programming provides explicit language support for
modularizing code belonging to design decisions that cross-cut a
program. To investigate whether aspect-oriented programming
could help, we undertook a new development of Atlas using
Xerox PARC’s AspectJ [5], which provides an aspect-oriented
extension to Java [3].

In this paper, we describe what it was like to build a moderate-
sized (180 class) system using AspectJ. Section 2 provides
background on Atlas and on AspectJ. Section 3 presents the
aspects used for both the system and its development. Section 4
discusses the style of aspect-oriented programming we used,
considering categories of aspects that arose, trade-offs we found
in using aspects from the different categories, and policies we
employed to achieve our goals. Throughout the paper, a
straightforward notation based on UML [1] is used to express the
design of aspects in our system; this notation is described in
Section 4.3.

For Atlas, the use of aspect-oriented programming paid off: we
were able to develop a system that meets its functional
requirements and that shows promise for meeting the non-
functional requirements of maintainability and modifiability. In
Section 5, we summarize lessons we learned through the Atlas
development and describe outstanding issues associated with
using aspect-oriented programming.

2. BACKGROUND
2.1 Atlas Requirements
To use an installation of Atlas, a student accesses a web page
and logs into the system. Once logged in, Atlas presents the
student, via the web browser, with a customized desktop-like
interface (Figure 1). This desktop provides a student with access
to course tools (interactive user-tailored courses, quick
references, and a manual), support tools (such as a calculator and
an HTML editor), and interaction tools (bulletin board and chat).
The content and style of the desktop is generated based on user
settings, the characteristics of the browser, and the connection
bandwidth.

An installation of Atlas may be accessed concurrently by a few
students or by thousands of students. Some students may be new
users of Atlas; others will be accessing courses for which they
have previously registered. Some students may have a high-speed
local are network connection to the Atlas installation; others may

Copyright © 1999 by the Assoc iation for Computing
Machinery, Inc. Permission to make digital or hard
copies of part of this work for personal or classroom
use is granted without fee provided that co pies are not
made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation
on the first page or intial screen of the document.
Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions
from Publications Dept., ACM Inc., fax +1 (212) 869 -
0481, or permissions@acm.org.

be using a lower-bandwidth connection. To economically support
a wide variety of environments, Atlas may be configured to run
in one of four network contexts (Figure 2).

1. Single server context (Figure 2a). In this context, there is one
server. Requests to Atlas are run in different threads on the
server. This context is suitable for a modest number of users.

2. Application server context (Figure 2b). In this context, there
are two servers: a web server and an application server. The
web server forwards application requests to the application
server. This configuration helps support higher user loads.

3. Parallel application server context (Figure 2c). Atlas is
distributed over a number of servers to exploit the inherent
parallelism associated with requests through the web.
Requests are load balanced across the application servers.
This configuration provides a better response rate under
heavy load.

4. Applet context (Figure 2d). To achieve the performance and
responsiveness associated with desktop applications, most of
the Atlas functionality in this context runs in the web
browser. This context requires a centralized database to
ensure that a student with multiple browsers open is
provided a consistent view. The database functionality may
be run on the web server.

2.2 AspectJ
Aspect-oriented programming (AOP) is intended to help software
developers more cleanly separate concerns in their source code.
In object-oriented programming, the code for a concern is
typically spread across multiple methods in multiple classes;
individual methods often contain a tangle of code from different
concerns. In aspect-oriented programming, code for a
concern an aspect can be separated from the classes to which
it applies. An aspect modularizes the code for a concern and
describes how the concern code should be integrated, or woven,
into code for the system. AspectJ provides aspect-oriented
programming support for Java.

Using AspectJ, an aspect is defined in a similar manner to a Java
class: an aspect has a name and may have its own data members
and methods. Two other constructs are available. The advise
construct permits a software developer to add code before or

Figure 1 A Student's View of Atlas

Web Browser
Web Server and
Atlas Application

Web Server
Web Browser

Atlas Application Server

Web Server
Web Browser

Atlas Application Server

Atlas Application Server

Database Server
Database Server

(a) Single Server (b) Application Server

(c) Parallel Application Server (d) Applet

Web Browser and Atlas
Application on User's PC

Figure 2 Network Contexts

after an existing method or methods in a system. The
introduce construct permits a software developer to introduce
new state or functionality into an existing class or classes.

Figure 3a shows an aspect, StaticCallTracer , that uses
both the introduce and the advise constructs to add tracing code
into an existing class. The introduce construct is used to add a
variable called writer into AnApplicationClass . The
writer variable is initialized to System.out . The advise
construct is used to add the tracing code to the start of all
methods on AnApplicationClass ; the code will write
the name of a method when it is entered. This aspect gathers
together code that would otherwise be spread throughout
AnApplicationClass . If tracing is not needed, we can
simply not apply the aspect to the system.

In the StaticCallTracer aspect, the before keyword is
preceded by the static modifier. This modifier means that the
advise acts on every instance of the specified class or classes. In

this paper, we refer to aspects with these kinds of weaves as
static aspects.

AspectJ also supports dynamic aspects, which allow a developer
to advise specific instances of a class. The first part of the code
in Figure 3b shows code for a dynamic aspect,
DynamicCallTracer . In comparison to the static aspect, this
aspect has a local writer variable, a constructor, and a non-
static weave (i.e., the before is not preceded by the static
modifier). For the dynamic aspect to have an affect at run-time, it
must be created (similar to an object). Specific objects to be
traced can then be registered with (added to) the aspect. The
main code shown at the bottom of Figure 3b performs the
creation and registration operations. The behaviour described in
the non-static weave will only apply to objects that have been
registered with the aspect. Dynamic aspects can be used to
support runtime configurable behaviour.

To create a system using AspectJ, a developer uses a weaver tool

import java.io.*;
aspect StaticCallTracer {
 introduce PrintWriter AnApplicationClass.writer
 = new PrintWriter(System.out);
 // Advise all methods on AnApplicationClass by using wildcards
 advise * AnApplicationClass.*(..) {
 static before {
 writer.println("ENTERING " + thisJoinPoint.methodName);
 }
 }
}

import java.io.*;
aspect DynamicCallTracer {
 PrintWriter writer;

 public DynamicCallTracer() {
 writer = new PrintWriter(System.out);
 }

 advise * AnApplicationClass.*(..) {
 before {
 writer.println("ENTERING " + thisJoinPoint.methodName);
 }
 }
}

public static void main(String[] args) {
 AnApplicationClass anObj = new AnApplicationClass (); // create an object
 // calls to anObj here will not be traced
 DynamicCallTracer traceAspect // create the aspect
 = new DynamicCallTracer();
 traceAspect.addObject(objA); // add the object
 // calls to anObj here will be traced
}

A - advise and introduce

B - dynamic aspect and driver class code

Figure 3 Sample AspectJ Code

to integrate the code in aspect files into the classes of the system.
Since AspectJ works as a pre-processor, the output of the weaver
is a set of Java source files that can then be compiled with a
standard Java compiler.

Several versions of the AspectJ pre-processor were used in the
development of Atlas; specifically, versions 0.2.0beta4 through
beta10. We have upgraded the examples shown in this paper to
conform to the syntax of AspectJ 0.3.

3. ATLAS AND ASPECTS
Atlas uses aspects for several different purposes: to support
different architectural configurations, to implement a design
pattern, and to support the development of the system. Atlas
comprises 48 packages, 180 classes, 17 aspects (including sub-
aspects), and approximately 11000 lines of commented source
code.

3.1 Aspects in the Atlas Architecture
The main architectural challenge in Atlas was determining how
to support the four different network contexts without blowing up
the complexity of the system structure. Since Atlas is built to Sun
Microsystem’s Java Servlet specification,1 one constraint was
clear: requests from a student’s browser would arrive at a Java
web server and would then be delegated by the server to Atlas.
The Atlas code would then be responsible for providing
application functionality back to the student.

To facilitate support for the network contexts given this basic
constraint, we separated out the basic infrastructure components
for the contexts as an object-oriented framework: the Distributed
Servlet Broker (DSB). The Atlas functionality is instantiated into
the DSB framework. Aspects are used to support configuration of
contexts and to tailor the behaviour of the Atlas functionality in
those contexts. First, we describe the DSB; then we describe how
aspects are used to support the various configurations.

3.1.1 The Distributed Server Broker Framework
The DSB framework consists of three main components. The
DSBClient handles HTTP requests forwarded from the Java
web server and determines to which application the requests
should be forwarded. The DSBServer provides access to the
applications being served. The DSBNexus provides access to
any databases and registries that may be used by an application.

Using Atlas with the DSB framework involves setting up the
DSBServer to access Atlas, and configuring the appropriate
Atlas databases in the DSBNexus component. Atlas
functionality is accessed through the AtlasService class,
which implements the javax.servlet.Servlet interface.

Configuring the DSB to run in a particular network context
amounts to instantiating and configuring DSB components and
the application (i.e., AtlasService) in the appropriate
numbers on various nodes. Some functionality within Atlas must
also be tailored to address performance concerns (see Section
4.1). The complexity of configuring a particular network context
is proportional to the level of distribution in the context.

1 See http://java.sun.com/products/servlet/index.html. We used

Version 1.2 of the Servlet API.

The simplest context is the single server context in which all
components of the DSB framework and the AtlasService
run on the web server. In the applet context, all components run
on the user’s machine, except the DSBNexus component, which
must be centralized to allow for multiple browser access.

In the application server context (shown in Figure 4a), all three
DSB components and the AtlasService components run on a
separate server from the web server. This context requires
communication between the DSBClient and DSBServer to
cross a server boundary: we use ObjectSpace Voyager2 to provide
transparent access to the distributed Java objects running on
different servers.

The parallel application server context, which exploits
parallelism of HTTP requests, is more complex (Figure 4b). The
DSBNexus component, which is centralized to ensure
consistency, is run on a separate node. In this context, new
instantiations of the AtlasService, each of which is run on
a different server, may be added at runtime; the DSBClient is
responsible for load balancing between the available application
nodes. ObjectSpace Voyager is again used to provide transparent
access to distributed Java objects.

Supporting a particular network context using a purely object-
oriented approach would be reasonably straightforward.
Supporting all of the network contexts using a purely object-
oriented approach would be somewhat more complicated. One
possible way to proceed would be to introduce classes to
represent each context; each class would implement a particular
interface. To instantiate and communicate with DSBServer
objects, the DSBClient would delegate through an object
representing the appropriate network context. Similarly, the
AtlasService would delegate through an appropriate context
object to communicate with a DSBNexus object. This approach
would require a means to ensure compatible context objects were
being used across the system. For instance, you would not want
the DSBClient to be acting in an applet context while the
AtlasService was acting in a parallel server context.

3.1.2 Aspects for Network Contexts
The need in a purely object-oriented approach to make changes
across the system design suggested the use of aspects to support
configuration of the network contexts. Figure 5 depicts the
aspects (shown as diamonds) involved in providing the network
contexts, and shows how these aspects interact with the source
code for the system.3 The NetworkContext aspect
generalizes four sub-aspects, each of which is responsible for
providing the appropriate behaviour for a context.

Each of the specific network context sub-aspects contains the
code particular to the given context. The DefaultContext
supports the single server context. This context is the default
mode for the application. As a result, this aspect alters no
behaviour in the application. The AppServer aspect supports
the application server context, extending the system to handle

2 See http://www.objectspace.com/Products/voyager1.htm.
3 An arrow from an aspect to a package indicates that the aspect

acts on the source code comprising the package. More detail
about the graphical notation used is provided in Section 4.3.

remote requests between the DSBClient and the
DSBServer . The ParallelServer aspect does the same,
and also extends the system to communicate with a remote,
centralized database. Both the AppServer and the
ParallelServer aspects use the ServerRegistry class
to keep track of servers being used; for the latter, the
ServerRegistry also performs load-balancing. The Applet
aspect generates a page that contains an applet that acts as a
wrapper for a DSBClient . This aspect is also responsible for
the additional protocol issues of communicating from an applet
rather than a regular node.
As Figure 5 shows, the aspects interact with both DSB
components and the AtlasService . The AtlasService
was not written with distribution in mind. As a result, a large
amount of the code is dependent on the local execution context.
Many classes rely on utilities, such as file streams, which cannot
execute correctly in a distributed context. Issues, such as
concurrency, must also be addressed in order for a distributed
form of the application to run correctly. The aspects described by
AtlasRemoteContext (which, as we describe in Section 4,
have a different glyph to represent the multiplicity) comprise the
behaviour needed to make the application distribution-safe.
These aspects are responsible for overriding calls to context-
sensitive objects, such as file streams, to enable them to run in a
distributed context. Section 4.2 provides more detail on how this
was accomplished.
The NetworkContext and its sub-aspects are dynamic
aspects; this permits a context to be created and destroyed at run-
time, making possible dynamic reconfigurations. For example, if
an unusually high bandwidth was recognized while the DSB was
running in single server mode, the applet aspect could be
instantiated and used by that client. Originally a dynamic aspect,
called ConfigurationDriver, was used to weave the code

to create the NetworkContext aspects into the system class
drivers. This approach permitted run-time reconfigurations of the
network contexts. However, since the domain did not require
frequent re-configurations a static ConfigurationDriver
was favored for simplicity.

netModes

dsbServer

dsbClient

DSBClient

DSBServer

dsbNexus

DSBNexus

dsbServices

AtlasService

UserDatabase

nexusDHTML

NetworkContext

DefaultContext AppServer ParallelServer Applet

ServerRegistry

Atlas
RemoteContext

<<static>>
Configuration

Driver

Application : App
Server Node

Application : App Server Node

Application : Web Server NodeUser's PC : Client Node

Web Browser :
Client

JavaWebServer :
Web Server

DSBClient

http

Voyager

DSBNexus

AtlasService

DSBServer

Voyager

Application : App Server Node

AtlasService

DSBServer

Voyager Voyager

Application : App Server NodeApplication : Web Server NodeUser's PC : Client Node

Web Browser :
Client

JavaWebServer :
Web Server

DSBClient

http DSBNexus

AtlasService

DSBServer

Voyager

(a) Application Server Context

(b) Parallel Server Context

Figure 4 Two Network Contexts

Figure 5 Aspects for Network Contexts

Aspects have made it possible to separate the code of the simple
single server Atlas system from the other, more complicated,
configurations. The separation has been helpful in debugging:
support for a particular context may be added or removed,
facilitating the isolation of faults. This separation also makes it
easier to read through the code base; a developer can build an
understanding of the basic Atlas functionality before tackling the
issues of distribution and the various configurations.

3.2 Aspects and Design Patterns
Several design patterns were used in the design of Atlas,
including the creational Builder pattern, the structural Composite
and Facade patterns, and the behavioural Chain of Responsibility
and Strategy patterns [2]. As implementation proceeded, we
considered which of these patterns should be expressed as
classes and which should be expressed as aspects. Since the
patterns we were working with had little or no cross-cutting
properties, we found these patterns were more easily expressed
using classes.

Later in the implementation, a need arose to allow the student to
choose a different look-and-feel when using Atlas. In particular,
the web pages served to a student from Atlas needed to
correspond to the look-and-feel preferences set by a student. One
way to add this support was to apply the Decorator pattern. This
pattern would interact with the Builder pattern that was being
used to structure the construction of an HTML page.

The Builder pattern was implemented using the classes shown in
Figure 6. The abstract PageBuilderCommon class contains
the common functionality to build a page; the subclasses
specialize the building process for the particular kind of page
being built, such as introductory pages, course pages, "webtop"
interface pages, and error pages.

Implementing a Decorator given this structure would have
required substantial changes to the classes in place. In particular,
changes would have been required to expose a representation of
the page being built to allow decoration to happen at different
parts of the building processes. These changes would have
affected all of the concrete Builder subclasses.

The cross-cutting nature of these changes suggests the use of an
aspect. As shown in Figure 6, the PageBuildDecorator
aspect hooks into the method calls responsible for constructing
and printing the web page to the browser. Once a web page is
constructed, the aspect decorates the resulting representation
with new information, such as font faces, text and table colors,
and button images.

The look-and-feel concern cross-cuts more than the
pageBuilders package. The webObjects component is a
library that can be used to create object representations of web
pages. To provide a consistent implementation of this concern,
we created a WebLookAndFeel aspect to hold the common
data and functionality. The PageBuildDecorator aspect
inherits from WebLookAndFeel ; the HTMLDecorator
aspect is introduced to apply the look-and-feel concern to
webObjects (Figure 7).

The use of an aspect allowed us to layer Decorator-like
functionality on top of the Builder pattern. This implementation
approach limited the changes needed to the existing software
structure and extended easily to other parts of Atlas in which the
same concern arose. More experience is needed to determine
when the implementation of such layered functionality is better
expressed as an aspect and when it is better to pay the higher
price of restructuring the code base.

pageBuilders

PageBuilderCommon

#buildHead()
#buildBody()
#renderPage()

CoursePageBuilder

+buildHead()
+buildBody()
+renderPage()

IntroPageBuilder

+buildHead()
+buildBody()
+renderPage()

WebtopPageBuilder

+buildHead()
+buildBody()
+renderPage()

ErrorPageBuilder

+buildHead()
+buildBody()
+renderPage()

PageBuildDecorator

«Director»
AtlasService

+service()
-buildPage()

advise +buildHead()
advise +buildBody()
advise +renderPage()

introduce renderAttDec :
RenderAttrsDecorator

- decoratePage()

Figure 6 Decorating a Builder Pattern using an Aspect

webObjectspageBuilders

PageBuildDecorator HTMLDecorator

WebLookAndFeel

Figure 7 Aspects for Look-and-Feel

3.3 Aspects in Development
The influence of aspects in the development of Atlas reaches
beyond the system structure. Aspects were also used to address
two issues that we perceived might be problematic during the
development of the system: debugging and tracing.

Since Atlas runs as a Servlet, debugging by means of console
print statements or by means of a typical debugger is not
effective. Debugging becomes even harder when Atlas is run
across multiple nodes. We found the most convenient way to
debug Atlas was to sprinkle debugging code through the system
that wrote to a specific output window or file. We used an aspect,
CallTracer , to modularize this debugging code (Figure 8).
This dynamic aspect advises all methods in a package to which it
is applied. It uses common services provided by a super-aspect,
TracerAspect , to write information about method entries and
exits to another process. Making this aspect dynamic means that

different kinds of tracing parameters can be set for different
kinds of objects in the system.

We were also concerned about monitoring the performance of
Atlas. In Atlas, web pages are represented as objects. A
relatively large number of objects, typically over 50, are used to
represent a single page. The PerformanceMonitor dynamic
aspect advises constructors to monitor the number of objects
instantiated.

It has not turned out that these aspects are as useful as we
anticipated. The performance of the system has met the
requirements, so tracing of object creations has not yet been
important. The use of the network context aspects to encode
configurations has kept the base Atlas code simple enough that
the CallTracer aspect has not been used extensively.
Nonetheless, there are two basic benefits of encoding this
support as aspects. First, when needed, the support is there and
modularized without having polluted the base Atlas code.
Second, as we discuss in Section 4.1, these aspects hold promise
for being reused in other system developments.

4. ASPECTS IN PRACTICE
The process of constructing an aspect-oriented system with
AspectJ is similar to that of an object-oriented development:
classes must be defined, choices must be made about which
interactions between the classes to allow, etc. With aspect-
oriented programming, the developer is presented with new
choices, such as determining whether new functionality should
be added to a class or introduced into the class via an aspect.

The extra flexibility provided by aspects is not always an
advantage. If too much functionality is introduced from an aspect,
it may be difficult for the next developer or the same developer
a few months later to read through and understand the code
base. Or, it may be harder to restructure or extend the

AdminTool : DSB Admin Node

DSB/Atlas : Server Node

tracers

dsbServer

DSBServer

dsbServices

AtlasService

TracerAspect

PerformanceTracerCallTracer

MethodSignature

-methodName : String
-className : String
-superName : String
-returnType : Object
-paramTypes : Vector
-paramNames : Vector

CallTraceMonitor

PerformanceTraceMonitor

Monitor

TCP/IP

Figure 8 Tracing and Performance Aspects

functionality of a system if it impacts complicated weaves. In this
section, we describe some guidelines and techniques we used to
make it easier to work with aspects.

4.1 Aspect/Class Associations
When designing and implementing with aspects, we have found
it useful to think about the knows-about relation between aspects
and classes. An aspect knows about a class when the aspect
names the class. A class knows about an aspect if it relies on the
aspect to provide it state or functionality before the class can be
compiled. Based on this knows-about relation, four different
associations may arise between aspects and classes (Table 1).4

In a closed association, neither the aspect, nor the class, knows
about the other. A closed association would be useful for a
tracing aspect, such as the CallTracer, discussed in the last
section. Creating such a general aspect that could be applied to
multiple packages in a system would require support to wildcard
package names; the version of AspectJ we used limited the use of
wildcards to class and method names. Aspects formed with this
kind of association would have the advantage of being easy to
understand and easy to reuse.

At the other end of the spectrum is an open association in which
both the aspect and the class know about each other. As an
example, consider the PageBuildHandler class, which is
responsible for handling requests to generate pages.
PageBuildHandler contains a method responsible for
printing the contents of the generated web page, called
printPage , to the web browser (Figure 9a). When Atlas is
running in a distributed network context, responsePage is a
distributed object. Frequent operations on a distributed object
would have a negative performance impact on Atlas. Our initial
approach to address this performance concern was to introduce a
variable within the PageBuildHandler class called

4 In this discussion, we focus on the interaction between a single

aspect and a single class. The concepts we discuss generalize
to a single aspect acting on multiple classes.

currentContext , which indicated the active network
context, and an aspect, remotePrintWriter , which added
support for local buffering of the results of printContents to
reduce the number of distributed operation invocations (Figure
9b). This approach required modification of the printPage
method to test whether the current context involved distribution
(shown by the arrow in Figure 9b) and if so, to use the newly
introduced method. This solution is not satisfactory for a number
of reasons: printPage contains knowledge of network
contexts; and the PageBuildHandler class can no longer be
understood, compiled, or tested without the
remotePrintWrite r aspect. Separation of concerns is not
achieved.5

To achieve a cleaner, more modular structure, we evolved the
association between the remotePrintWriter aspect and the
PageBuildHandler class to be a class-directional
association (Figure 9c). This category captures the case when the
aspect knows about the class, but the class does not know about
the aspect. In this case, PageBuildHandler is no longer
aware of the aspect that acts upon it. (Note the removal of
context information in the method in Figure 9c.) The
PageBuildHandler class can be developed and tested
independently. The aspect serves to extend the functionality of
the class. The class code remains simple and easy to understand.
This category permits reuse of the class.

The final category is the aspect-directional association in which
the class knows about the aspect but the aspect does not know
about the class. This association is not possible in the current
version of AspectJ. Such an association might arise if a class or

5 We could have achieved the desired effect without modifying

the printPage method by using an advise weave that
performed the test of context and if the context was distributed,
called the appropriate version and returned. We discuss in
Section 4.2 why we wanted to avoid before weaves that return
without running the body of a method.

Association
Link

Flow of “knows-about”
information

Benefits/Problems

Closed Neither the aspect nor the class
know about the other.

+ Easier to understand both classes
and aspects

+ Aspects are reusable

Open Arbitrary − Compromised understandability,
reusability

Class-
directional

Aspect knows about the class but
not vice-versa

+ Classes are more reusable

Aspect-
directional

Class knows about the aspect but
not vice-versa

+ Aspects are likely more reusable

Table 1 Aspect Associations Based on Knows-about Relation

object requested a service from an aspect. We did not require
such functionality in Atlas.

In the early development of Atlas, open associations arose often.
However, as the system evolved in complexity, we began to set a
policy of using only class-directional associations. (Closed
associations would have been helpful in the tracing case but were
not possible to express.) This policy was set to improve the
understandability, modifiability, and testability of the classes.

Table 2 summarizes the aspects used in Atlas. The table lists the
aspects by category, providing the number of lines of code in
each aspect, a description of the structure of the aspect, and a list
of the classes needed to support the aspect. The table also
identifies which aspects are static and which are dynamic.

A - Initial Method

B - First Version of remotePrintWriter Aspect

C - Second Version of Aspect and Method

public void printPage(Page responsePage, PrintWriter browserWriter) {
responsePage.printContents(browserWriter);

}

aspect remotePrintWriter {
 // Introduce a PrintWriter that prints into a string
 introduce java.io.PrintWriter PageBuildHandler.remoteWriter
 = new PrintWriter(new BufferedWriter(new StringWriter()));

 // Introduce a method that uses the remoteWriter
 introduce private PageBuildHandler.printRemotePage(Page responsePage) {
 // Print the web page into a string
 responsePage.printContents(remoteWriter);

 // Make the remote call
 dsbClient.printToBrowser(remoteWriter.getBuffer());
 }
}

public void printPage(Page responsePage, PrintWriter browserWriter) {
 // Print the page to the web browser according to context
 if (currentContext.equals("local")
 responsePage.printContents(browserWriter);
 else
 printRemotePage(responsePage);
}

aspect remotePrintWriter {
 // Create a PrintWriter that prints into a string
 java.io.PrintWriter remoteWriter
 = new PrintWriter(new BufferedWriter(new StringWriter()));

 advise void PageBuildHandler.printPage(*) {
 static before {
 thisObject.browserWriter = thisAspect.remoteWriter;
 }
 static after {
 dsbClient.printToBrowser(remoteWriter.getBuffer());
 }
 }
}

// The unaltered printPage method from PageBuildHandler
public void printPage(Page responsePage, PrintWriter browserWriter) {

responsePage.printContents(browserWriter);
}

Figure 9 Various Forms of Aspect-Class Associations

4.2 Aspect Style
As introduced in Section 2.3, AspectJ provides two basic
constructs to describe how an aspect affects a class. The
introduce construct introduces new state or new functionality
into a class. The advise construct introduces new functionality
before or after particular methods of classes. When we began
development of Atlas, we did not pay much attention to the style
in which we used these constructs. However, as Atlas grew to be
over 50 classes and aspects, it became more and more difficult to
understand and test classes because the way in which we were
using aspects made it hard to reason about how all of the code fit
together. To help manage this complexity, we began to constrain
and stylize our aspect code.

As an example, consider the kind of aspect code we presented for
RemotePrintWriter in the previous section (Figure 9b).
This code handles a performance issue specific to one of the
network contexts by altering a method in which the issue arises.
Often, handling such an issue was not restricted to one method.
Instead, a number of methods in a class had to be advised by the
aspect. We found that this approach did not scale well: changes
in how the issue was to be handled affected a large number of
code points, and additions of new functionality to classes
required numerous code additions to the aspects.

Instead, we moved to aspect code that used an approach of
reassociation. With reassociation, the aspect overrides a member
of a class with a more specialized instance to provide desired
behaviour. For example, in the UserManager class of Atlas,

which is responsible for manipulating user data, the database is
represented by a member variable, userDbase . By default, this
member accesses a local database. To make an object of this
class access the database remotely, we introduced an advise
weave on the constructor of the class as shown in Figure 10. This
advise weave rebinds the userDbase variable from the local to
the remote context. In essence, the weave acts as a factory for
creating the member. We used this reassociation mechanism for
the code in Atlas that performed actions such as file I/O and
database lookups.

Reassociation is not always a possible or desirable approach: the
behaviour that is to be tailored may not be encapsulated by an
object, or it may not be desirable for aspect code to modify
private members of a class. However, for Atlas, this approach
simplified and reduced the size of the aspect code, and made it
easier to understand the effect of aspects.

The DSB code required the use of more general aspect code that
uses both introduces and advises. To help manage the complexity
of this code, we employed three aspect style rules.

Rule #1: Exceptions introduced by a weave must be handled in
the code comprising the weave.

This rule means that if the code being introduced into a method
could raise an exception, it was wrapped in a try block that
handled the exception.

Rule #2: Advise weaves must maintain the pre- and post-
conditions of a method.

Aspect Lines of Code Description of the Aspect Structure Supporting Classes

Drivers
 ConfigurationDriver

104

A static aspect that advises code into system class
drivers.

None

Network Context
 NetworkContext
 DefaultContext
 AppServer
 ParallelServer
 Applet

38
24
164
185
155

These dynamic aspects use both the advise and the
introduce constructs.

Server Registry Package
 CircularQueue
 RemoteServiceContainer
 RemoteServiceRegistry
 ServiceInfoContainer

AtlasRemoteContext
 AtlasUserDatabase
 CourseRegistry
 FileReader
 PageFileReader
 PageBuildHandler

37
33
34
36
35

These dynamic aspects use reassociation advises to
affect the behaviour of objects in the
AtlasService component.

None

Look and Feel
 WebLookAndFeel
 PageBuildDecorator
 HTMLDecorator

32
105
76

These dynamic aspects use both the advise and the
introduce constructs.

None

Tracing
 LogWriter
 CallTracer
 PerformanceTracer

76
124
49

These dynamic aspects use both the advise and the
introduce constructs.

Format Package
 MethodSignature
Admin Interface Package
 AtlasAdminHost
 PerformanceMonitor
 TraceMonitor

Table 2 Aspects in Atlas

Together, these two rules ensure that an aspect does not change
the default interface and functionality of a class. Because the
interface is unchanged, the application of an aspect to a class will
not affect how the class fits into the existing class structure.
Because the functionality of a class is not changed, the aspect
does not modify contracts between client and supplier methods in
the existing class structure.

Rule #3: Before advise weaves must not include a return
statement.

This rule means that the code defined in the main body of the
method is always run. We instituted this rule to make it easier to
reason about the combination of a system and an aspect. One can
read through the aspect code looking for how it augments and
alters the basic system interactions, rather than having to reason
about which basic system interactions might not occur because of
a premature return.

Although these style guidelines do not apply to all situations, we
found their use made it easier to understand, debug, and test
Atlas.

4.3 Aspect Models and Notation
One important decision that a developer makes when building an
object-oriented system is the structure of the system classes. The
expression of this structure is typically referred to as an object
model. When building an aspect-oriented system, the object
model is still of central importance. In addition, a developer must
choose an aspect model and describe how this model interacts
with the object model.

An aspect model can consist of both aspects and classes. The
classes serve to support the implementation of the aspects. For
example, in Figure 5, the AppServer aspect and the
ParallelServer aspect both rely on a ServerRegistry
class to provide registration services. A developer defining an
aspect model is faced with a similar set of choices as a developer
defining an object model. Similar to objects, aspects may also be
related through inheritance, aggregation, and association links.
We do not yet have enough experience to offer much advice on
how to choose between these different options when defining an
aspect model.

Choosing the design of the aspect model is one challenge;
communicating the design is another. To date, we have been
focusing on capturing the static structure of aspects: how the
aspects relate to each other and how the aspects relate to the

class structure. Figure 11 summarizes this notation. This notation
allows a developer to depict aspects and their interrelationships,
as well as associations between aspects and classes. Within an
aspect diamond, a developer can describe the structure of an
aspect (its members), as well as the advise and introduce
constructs in the aspect. The aspect component glyph is used to
represent a collection of aspects, or an aspect with supporting
classes.

This simple notation has been effective in supporting
communication of the basic ideas and in facilitating discussion of
choices in the design of aspect models.

4.4 Implementing with Aspects
The previous sections have discussed some of the choices that a
developer faces when designing and implementing with aspects.
In this section, we try to give a sense of some of the nitty-gritty
details of working with AspectJ, in the context of the Microsoft
Visual J++ 6.0 interactive development environment.

We faced two main challenges in implementing with AspectJ.
First, as the system grew larger, the cost of weaving became too
large to be performed as an iterative edit-weave-compile-debug
cycle. Second, we bumped up against limitations on the number
of files that could be weaved at any one time. The second
problem has been solved in newer releases of AspectJ.

To allow for more independent edit-compile-debug and edit-
weave-compile-debug cycles, we separated the aspect code, the
class code, and resulting woven code into three different project
solutions in Visual J++: aspect, system , and woven.

The aspect solution comprises two packages of aspects:
networkConfiguration and general . The first package
contains the aspects and packages associated with the DSB. The
second package contains the debugging and performance tracking
aspects. Batch files are used to perform the weaves for these
aspects. Separate batch files were used to allow independent
application of the different aspects.

The system solution comprises the packages for the
AtlasService . These classes can be compiled and run
separately from the application of any aspect. Maintaining
independence of this functionality from the aspects was of
significant benefit since requiring weaves to test the core Atlas
functionality would have been immobilizing. Separating the
woven code out as a Visual J++ solution meant that the solution
could be compiled independently within the environment after

package netModes.remoteContextAspects;

 public aspect AtlasUserDatabaseAspect {
 advise * dsbServices.atlas.aUserManager.UserManager.UserManager() {
 after {
 // Reassociate the "userDbase"

 userDbase = (AtlastUserDatabaseI)
 com.objectspace.voyager.Namespace.lookup
 (<Global name of database>);
 }

 }
 }

Figure 10 Reassociation Advise

the weave with result placed in woven. This set-up also made
compile problems resulting from a weave easier to debug.

In setting up this configuration, one of our hopes had been that
we would be able to "physically" separate the core functionality
of Atlas, the AtlasService , from all aspect code. We did not
entirely achieve this goal. The snag we hit was that various forms
of class drivers are needed to start-up different network contexts
in the DSB. In particular, the DSBServer and DSBNexus
components must sometimes execute as independent processes.
The easiest way to achieve this is through separate class drivers.
As mentioned earlier, we weave the registrations needed for the
dynamic aspects into the drivers. The simplest approach was to
place these drivers into the system solution, in essence,
causing us to leak information about DSB into the object model.
This obstacle could have been overcome by building a more
sophisticated driver infrastructure.

5. DISCUSSION
The description of our use of aspects in the previous section
illustrates some of the changes that occurred as we gained more
experience with the technology. In this section, we provide some
higher-level perspective, discussing some of the lessons we
learned over the course of the project, and some of the more
difficult challenges facing others who might decide to use the
technology.

5.1 Lessons Learned
If we were to start building another system with aspect-oriented
technology, here are some guidelines we would apply.

• Try to limit the knows-about information in the aspect-class
association link (Section 4.1). We found it easier to manage
the evolution of our system when classes were not coupled to

aspects. Class-directional aspects facilitated the readability,
modifiability, and reusability of class and aspect code in Atlas.

• A reassociation policy, where an aspect acts as a factory, can
simplify the extension of an object’s behaviour (Section 4.2).
This policy kept the aspect code simple and clear; the aspect
code had a well-defined scope of effect on the class code,
making it easier to reason about and test.

• Using dynamic aspects provides runtime configurability, but
may complicate system set-up code (Section 4.4). We ended up
using dynamic aspects much more often than we had first
envisioned. Dynamic aspects provide more long-term flexibility
and support more sophisticated runtime behaviour, but require
the addition, or weaving in, of registration code. The
registration code does not always fit easily into the existing
system structure.

• Try to maintain a stand-alone object model, which aspects
extend (Section 4.4). From our object model, we could build an
executable system. This configuration enabled a workable edit-
compile-debug cycle since weaving was optional. This
configuration also helped in debugging the system: if the
default configuration worked and there was a problem when an
aspect was woven in, it was easier to isolate the fault.

5.2 Outstanding Issues
5.2.1 Aspect-oriented Design
By far the hardest decision facing a developer working with
aspect-oriented technology is determining what should be an
aspect and what should be a class. In the beginning of our
development, we thought we would have many more aspects. In
many cases, we started implementing an aspect and then found
that some straightforward changes to our object model could

Aspect Name

advise method(arg list)

introduce member : Type

attribute : Type = init. Value

Aspect Association Link

Class B

Component 1

Aspect A

Open:

Class BAspect A

Class Directional:

Class BAspect A

Aspect Directional:

Class BAspect A

Closed:
Super-aspect

Generalization

Sub-aspect 1 Sub-aspect 2

Aspect Component

operation(arg list) : ret. Type

Figure 11 Notation for Aspects

accomplish the same goal more effectively. Our current approach
to aspect-oriented design has been to start with an initial object
model, and then to incrementally consider cross-cutting additions
as aspects, using the concepts of class-aspect associations and
aspect style discussed earlier. More of these kinds of guidelines
are needed to help developers make appropriate choices.

5.2.2 Aspect Notations
In this paper, we have introduced a straightforward approach to
diagram some “aspects” of aspects. This notation captures only
the static structure of an aspect. We have not yet determined a
tractable way of illustrating dynamic aspects and the scope of
their effect on the object model. Illustrating the scope of effect of
a dynamic aspect seems useful: it is often hard to reason about
the effect without considering a substantial amount of code.

5.2.3 Aspect Scope
Aspects are helpful because they allow a developer to modularize
cross-cutting concerns. Once a concern is modularized as an
aspect, it can be tempting to apply that aspect across more parts
of a system. For example, modularizing look-and-feel as an
aspect in Atlas and applying it to both the building and
representation of web pages was a benefit. It was tempting to
extend this aspect to handle look-and-feel for the administrative
GUI for Atlas as well. But, we decided that there was no reason
to couple, however loosely, the look-and-feel for of the pages and
the GUI. The problem lies not necessarily in the original
development, but in later interpretations of the use of the aspect
by other developers and maintainers. The trade-offs of scoping
aspects to affect more or less of a system are not clear.

6. SUMMARY
This paper has described the development of a web-based
learning environment called Atlas that was built using aspect-
oriented programming as provided by AspectJ. In describing the
system, we have focused on our experiences with aspect-oriented

programming, synthesizing some lessons we have learned in
applying this new technology. Although we faced some small
hurdles along the way, this combination of technology helped us
build a fast, well-structured system in a reasonable amount of
time.

7. ACKNOWLEDGEMENTS
George Tsiknis and Ian Cavers helped design Atlas from the
perspective of a web-based course tool. We thank Rob Walker,
Gregor Kiczales, and Martin Robillard for helpful comments on
an earlier draft of this paper. Liz Kendall provided insight on the
aspect model notation and on the intersection of aspects and
patterns. The comments of the anonymous reviewers were
valuable in revising and improving the paper.

8. REFERENCES
[1] Booch, G., Jacobson, I. and Rumbaugh, J. The Unified

Modeling Language User Guide. Addison-Wesley, 1998.

[2] Gamma. E., Helm, R., Johnson, R., and Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[3] Gosling,, J., Joy, B., and Steele, G. The Java Language
Specification. Addison-Wesley, 1996.

[4] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J.-M., and Irwin, J. Aspect-oriented
programming. In Proceedings of ECOOP’97 (Jyväskylä
Finland, June 1997), Springer Verlag, 220-242.

[5] Lopes, C. and Kiczales, G. Recent Developments in
AspectJ . In ECOOP ’98 Workshop Reader, Springer
Verlag, 1998, 398-401.

[6] Stroustrup, B. C++ Programming Language. Addison-
Wesley, 1986.

