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Modules and Decomposition

• Modules decompose programs into encapsulated units.

• The encapsulation interfaces are strong – cannot be broken (a

module could have several such interfaces).

• Architectural decomposition of program

• Promotes reuse and separate development.

Representative examples are: Units.
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Concerns and Aspects

• Concerns decompose the program into overlapping units.

• Functional decomposition of program.

• Concerns seldom fit module boundaries.

• Promotes separate specification of overlapping tasks.

Representative examples: HyperJ, AspectJ.
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Aspectual Collaboration Motivation

Some weaknesses of Aspects without Modules

• Aspects cannot be analyzed in isolation: need global insight

into program.

• For this reason, Aspects are hard to reuse in different programs.

Some weaknesses of Modules without Aspects

• Tangling / Scattering

• Puts interaction between concerns into code, rather than into

module linking language
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Aspectual Collaborations

Address these issues by adding a modular encapsulation to aspects.

• Closed set of participant classes, enhanced with ability to have

deferred members and aspectual behavior

• Participants generalize Javaclasses.

• Collaborations generalize packages.

• Collaborations composed by point-wise composition of

constituent classes

This achieves:

• Flexible reuse.

• Separate compilation.

• Compositional construction.

Prototype Implementation: acc
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Example

c1:Container

c2:Container

c3:Container apple:Simple

pencil:Simple orange:Simple

kiwi:Simple

4

1

1

1

2
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Assume all simples have weight 1. Capacities for containers are in

the upper right corner. c1 is OK, c3 is OK, but c2 is overloaded.
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Example

c1:Container

c2:Container

c3:Container apple:Simple

pencil:Simple orange:Simple

kiwi:Simple

4
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banana:Simple

Adding a banana, we also overload c1, but why recheck c3? Our

goal is to write a caching aspect, to avoid this recheck.
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Example UML

Item
+name: String
+check(): boolean

Container
+capacity: int
+check(): boolean
+addItem(Item): void

Simple
+weight: int

 contents
0..n
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Caching behavior requirements

We need to:

• Capture and cache the result of checking a container.

• invalidate this cache when the container or a sub-container is

modified.

More precisely:

• Add and maintain a contained-in, to know which containers

need to be invalidated.

• wrap check() in advice to implement caching behavior.

• wrap addItem() in advice to invalidate the cache.

And of course, we want it to be done

• without modifying the original program (aspectual)

• without tying the aspect to the host program (reuse)
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Item
+name: String
+check(): boolean

Container
+capacity: int
+check(): boolean
+addItem(Item): void

Simple
+weight: int

 contents
0..n

Target

+getBack(): Source

Source

#modifyTargets()

back

targets
0..n

The backlink behavior
1 collab backlink;
2 import java. util .∗;
3 participant Source {
4 expected Vector targets;
5 aspectual RV modifyTargets(EM e) {{
6 RV rv = e.invoke();
7 Iterator trgs = targets . iterator ();
8 while ( trgs .hasNext()) {
9 ((Target)trgs.next()).back = this;

10 }
11 return rv;
12 }}
13 }
14 participant Target {
15 Source back;
16 Source getBack() {{ return back; }}
17 }

The backlink collaboration expects 1) an association (vector) from

Source to Targets, and 2) some method that modifies this association.

From these it ensures that each Target has a backlink to the source
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Container += Source
+capacity: int
+check(): boolean
+addItem(Item): void
#modifyTargets()

C
+cvalue: ChdRetVal
+clearCache(): void
-allInvalidated(): Vector
#invalidate()
#cachedmeth()

Item += Target
+name: String
+check(): boolean
+getBack(): Container

Simple
+weight: int

 contents
0..n

back
0..1

The caching behavior
1 collab caching;
2 import java. util .∗;
3 participant C {
4 ChdRetVal cvalue;
5 void clearCache() {{
6 System.err.println(”clear cache”);
7 cvalue = null ;
8 }}
9 expected Vector allInvalidated ();

10 aspectual RV invalidate(EM e) {{
11 RV retval = e.invoke();
12 Iterator inv =allInvalidated (). iterator ();
13 while (inv.hasNext()) { ((C)inv.next()).clearCache(); }
14 return retval ;
15 }}
16 aspectual ChdRetVal cachedmeth(ChdMth e) {{
17 if (cvalue==null) { cvalue = e.invoke(); }
18 else { System.err.println(”using cache”); }
19 return cvalue;
20 }}
21 }
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Container += Source + C
+capacity: int
+cvalue: ChdRetVal
+check(): boolean
+addItem(Item): void
#modifyTargets()
+clearCache(): void
-allInvalidated(): Vector
#invalidate()
#cachedmeth()

Item += Target
+name: String
+check(): boolean
+getBack(): Container

Simple
+weight: int

 contents
0..n

back
0..1

After inserting cache and backlink
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Container += Source + C
+capacity: int
+cvalue: ChdRetVal
+check(): boolean
+addItem(Item): void
#modifyTargets()
+clearCache(): void
-allInvalidated(): Vector
#invalidate()
#cachedmeth()

Item += Target
+name: String
+check(): boolean
+getBack(): Container

Simple
+weight: int

 contents
0..n

back
0..1

Item

-getContainer(): Container

Container

+allContainers(): Vector

The allcont behavior
1 collab allcont ;

2 import java. util .Vector;

3 participant Item {

4 expected Container getContainer();

5 }

6 participant Container extends Item {

7 Vector allContainers() {{

8 Vector v = new Vector();

9 Container c = this;

10 while (c != null ) {

11 v.add(c);

12 c = c.getContainer();

13 }

14 return v;

15 }}

16 }
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Container += Source + C + Container
+capacity: int
+cvalue: ChdRetVal
+check(): boolean
#cachedmeth()
+addItem(Item): void
#modifyTargets()
#invalidate()
+allContainers(): Vector
-allInvalidated(): Vector
+clearCache(): void

Item += Target + Item
+name: String
+check(): boolean
+getBack(): Container
-getContainer(): Container

Simple
+weight: int

 contents
0..n

back
0..1

Linking up the result

1 attach backlink , caching, allcont {

2 Item += Target, allcont.Item {

3 provide getContainer with getBack;

4 }

5 Container += Source, C, allcont.Container {

6 provide allInvalidated with allContainers ;

7 provide targets with result :contents;

8 around result:addItem do modifyTargets;

9 around result:addItem do invalidate;

10 around result:check do cachedmeth;

11 }

12 }
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Conclusion

We have demostrated a simple system which attempts to combine

aspectual programming with a module system.

• We are able to program (and separately compile) aspectual

behaviors.

• The behaviors are written against their own class graph

interface, with “holes” to plug in attachment specific behaviors.

• The aspectual collaborations are composed by pointwise class

insertion, creating a collaboration with hopefully fewer “holes”.

• When all holes are filled, we have (potentially) runnable

application. Of course composition can continue further.

• By varying attachment details, the same collaboration can be

reused in different ways in the same application.
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The End

Backup slides beyond this point.
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What we haven’t told you about

Features

• Exported vs unexported members

• Matching and multiple attachments

• Sharing between multiple attachments

• Accessing arguments and return values to aspectual methods

Futures

• Self hosting

• Object Graph constraints

• Refinement between collaborations

• Parametric Collaborations

• We may be able to be more flexible w.r.t. mimicking class
structure in allcont.

Difficulties

• Constructors

• Wrapping and providing overrid(den/ing) members
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Differences to AspectJ

• Separate Compilation

• Encapsulation

• JPM : we only have member defintion/invocation as join point
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Differences to HyperJ

• Cannot do post-hoc remodularisation – not without either
wasting alot of space or implementing dead def removal.

• Shares idea of inserting code into classes to compose.

• Have more flexible combinators than Hyper/J
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Differences to Units

• Binding time; we are inherently early, but with funky linking
language. Units bind classnames late. Some of the
programming patters units use are applicable to collaborations
as well.

• Use inheritance rather than insertion

• Overriding should be able to get some aspectual benefits.
Would need program generator to do the generic aspectual
stuff.
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