
Aspectual Collaborations
Modules and Aspects

Johan Ovlinger

February 5, 2002

0-0

Modules and Decomposition

• Modules decompose programs into encapsulated units.

• The encapsulation interfaces are strong – cannot be broken (a

module could have several such interfaces).

• Architectural decomposition of program

• Promotes reuse and separate development.

Representative examples are: Units.

1

Concerns and Aspects

• Concerns decompose the program into overlapping units.

• Functional decomposition of program.

• Concerns seldom fit module boundaries.

• Promotes separate specification of overlapping tasks.

Representative examples: HyperJ, AspectJ.

2

Aspectual Collaboration Motivation

Some weaknesses of Aspects without Modules

• Aspects cannot be analyzed in isolation: need global insight

into program.

• For this reason, Aspects are hard to reuse in different programs.

Some weaknesses of Modules without Aspects

• Tangling / Scattering

• Puts interaction between concerns into code, rather than into

module linking language

3

Aspectual Collaborations

Address these issues by adding a modular encapsulation to aspects.

• Closed set of participant classes, enhanced with ability to have

deferred members and aspectual behavior

• Participants generalize Javaclasses.

• Collaborations generalize packages.

• Collaborations composed by point-wise composition of

constituent classes

This achieves:

• Flexible reuse.

• Separate compilation.

• Compositional construction.

Prototype Implementation: acc

4

Example

c1:Container

c2:Container

c3:Container apple:Simple

pencil:Simple orange:Simple

kiwi:Simple

4

1

1

1

2

4

Assume all simples have weight 1. Capacities for containers are in

the upper right corner. c1 is OK, c3 is OK, but c2 is overloaded.

5

Example

c1:Container

c2:Container

c3:Container apple:Simple

pencil:Simple orange:Simple

kiwi:Simple

4

1

1

1

3

5

banana:Simple

Adding a banana, we also overload c1, but why recheck c3? Our

goal is to write a caching aspect, to avoid this recheck.

6

Example UML

Item
+name: String
+check(): boolean

Container
+capacity: int
+check(): boolean
+addItem(Item): void

Simple
+weight: int

 contents
0..n

7

Caching behavior requirements

We need to:

• Capture and cache the result of checking a container.

• invalidate this cache when the container or a sub-container is

modified.

More precisely:

• Add and maintain a contained-in, to know which containers

need to be invalidated.

• wrap check() in advice to implement caching behavior.

• wrap addItem() in advice to invalidate the cache.

And of course, we want it to be done

• without modifying the original program (aspectual)

• without tying the aspect to the host program (reuse)

8

Item
+name: String
+check(): boolean

Container
+capacity: int
+check(): boolean
+addItem(Item): void

Simple
+weight: int

 contents
0..n

Target

+getBack(): Source

Source

#modifyTargets()

back

targets
0..n

The backlink behavior
1 collab backlink;
2 import java. util .∗;
3 participant Source {
4 expected Vector targets;
5 aspectual RV modifyTargets(EM e) {{
6 RV rv = e.invoke();
7 Iterator trgs = targets . iterator ();
8 while (trgs .hasNext()) {
9 ((Target)trgs.next()).back = this;

10 }
11 return rv;
12 }}
13 }
14 participant Target {
15 Source back;
16 Source getBack() {{ return back; }}
17 }

The backlink collaboration expects 1) an association (vector) from

Source to Targets, and 2) some method that modifies this association.

From these it ensures that each Target has a backlink to the source

9

Container += Source
+capacity: int
+check(): boolean
+addItem(Item): void
#modifyTargets()

C
+cvalue: ChdRetVal
+clearCache(): void
-allInvalidated(): Vector
#invalidate()
#cachedmeth()

Item += Target
+name: String
+check(): boolean
+getBack(): Container

Simple
+weight: int

 contents
0..n

back
0..1

The caching behavior
1 collab caching;
2 import java. util .∗;
3 participant C {
4 ChdRetVal cvalue;
5 void clearCache() {{
6 System.err.println(”clear cache”);
7 cvalue = null ;
8 }}
9 expected Vector allInvalidated ();

10 aspectual RV invalidate(EM e) {{
11 RV retval = e.invoke();
12 Iterator inv =allInvalidated (). iterator ();
13 while (inv.hasNext()) { ((C)inv.next()).clearCache(); }
14 return retval ;
15 }}
16 aspectual ChdRetVal cachedmeth(ChdMth e) {{
17 if (cvalue==null) { cvalue = e.invoke(); }
18 else { System.err.println(”using cache”); }
19 return cvalue;
20 }}
21 }

10

Container += Source + C
+capacity: int
+cvalue: ChdRetVal
+check(): boolean
+addItem(Item): void
#modifyTargets()
+clearCache(): void
-allInvalidated(): Vector
#invalidate()
#cachedmeth()

Item += Target
+name: String
+check(): boolean
+getBack(): Container

Simple
+weight: int

 contents
0..n

back
0..1

After inserting cache and backlink

11

Container += Source + C
+capacity: int
+cvalue: ChdRetVal
+check(): boolean
+addItem(Item): void
#modifyTargets()
+clearCache(): void
-allInvalidated(): Vector
#invalidate()
#cachedmeth()

Item += Target
+name: String
+check(): boolean
+getBack(): Container

Simple
+weight: int

 contents
0..n

back
0..1

Item

-getContainer(): Container

Container

+allContainers(): Vector

The allcont behavior
1 collab allcont ;

2 import java. util .Vector;

3 participant Item {

4 expected Container getContainer();

5 }

6 participant Container extends Item {

7 Vector allContainers() {{

8 Vector v = new Vector();

9 Container c = this;

10 while (c != null) {

11 v.add(c);

12 c = c.getContainer();

13 }

14 return v;

15 }}

16 }

12

Container += Source + C + Container
+capacity: int
+cvalue: ChdRetVal
+check(): boolean
#cachedmeth()
+addItem(Item): void
#modifyTargets()
#invalidate()
+allContainers(): Vector
-allInvalidated(): Vector
+clearCache(): void

Item += Target + Item
+name: String
+check(): boolean
+getBack(): Container
-getContainer(): Container

Simple
+weight: int

 contents
0..n

back
0..1

Linking up the result

1 attach backlink , caching, allcont {

2 Item += Target, allcont.Item {

3 provide getContainer with getBack;

4 }

5 Container += Source, C, allcont.Container {

6 provide allInvalidated with allContainers ;

7 provide targets with result :contents;

8 around result:addItem do modifyTargets;

9 around result:addItem do invalidate;

10 around result:check do cachedmeth;

11 }

12 }

13

Conclusion

We have demostrated a simple system which attempts to combine

aspectual programming with a module system.

• We are able to program (and separately compile) aspectual

behaviors.

• The behaviors are written against their own class graph

interface, with “holes” to plug in attachment specific behaviors.

• The aspectual collaborations are composed by pointwise class

insertion, creating a collaboration with hopefully fewer “holes”.

• When all holes are filled, we have (potentially) runnable

application. Of course composition can continue further.

• By varying attachment details, the same collaboration can be

reused in different ways in the same application.

14

The End

Backup slides beyond this point.

15

What we haven’t told you about

Features

• Exported vs unexported members

• Matching and multiple attachments

• Sharing between multiple attachments

• Accessing arguments and return values to aspectual methods

Futures

• Self hosting

• Object Graph constraints

• Refinement between collaborations

• Parametric Collaborations

• We may be able to be more flexible w.r.t. mimicking class
structure in allcont.

Difficulties

• Constructors

• Wrapping and providing overrid(den/ing) members

16

Differences to AspectJ

• Separate Compilation

• Encapsulation

• JPM : we only have member defintion/invocation as join point

17

Differences to HyperJ

• Cannot do post-hoc remodularisation – not without either
wasting alot of space or implementing dead def removal.

• Shares idea of inserting code into classes to compose.

• Have more flexible combinators than Hyper/J

18

Differences to Units

• Binding time; we are inherently early, but with funky linking
language. Units bind classnames late. Some of the
programming patters units use are applicable to collaborations
as well.

• Use inheritance rather than insertion

• Overriding should be able to get some aspectual benefits.
Would need program generator to do the generic aspectual
stuff.

19

