Introduction to Aspectual Collaborations

January 29, 2002

0-0






Hello World

[

collab hw_greet;
participant Greeter {
void sayit () {{ System.out.println(”Hello_World!”); }}
}
collab hw_main;
participant Main {
expected void doit ();
public static void main(String[] args) {{
Main m = new Main();
m.doit ();

+H

}
collab helloworld;

participant X {}
attach hw_greet, hw_main {
X 4= Greeter, Main {
provide doit with sayit ;
export main;

2
3
4
5
6
7
8
9
0

}
}




Syntax

Looks like java with funny reserved words.

expected is like abstract, but

— is provided rather than overridden

— doesn’t hinder instantiation of the class
— fields can be expected as well

Double braces bracket 100% java, but that is just to avoid
having to parse it.

We generate a very similar java, which is then compiled.




Just out of curiosity: the compiled java

package hw_greet; // NOTICE that each of these compiles and is plain java
class Greeter {
void sayit () { /*beginverbx/
System.out.println(” Hello_World!”);
/*endverbx/ }
}
package hw_main; // NOTICE although they may throw exceptions
class Main {
/*expected*/ void doit() { /+beginverbx/
throw new IllegalStateException(” Unprovided_Expected_Method”);
/*endverbx/ }
public static void main(String[] args) { /*beginverbx/
Main m = new Main();
m.doit ();
/*endverbx/ }

17 package helloworld;
s class X {} // NOTICE: X is empty




Linking it all together

e Give X a body (main).

e point doit to sayit




Attachment

1 attach hw_greet, hw_main {
X 4= Greeter, Main {
provide doit with sayit ;
export main;

}

We insert hw_greet and hw_main in to the host collaboration
(helloworld). (line 1)

We map the participant names of the constituent
collaborations to the host collaboration. (line 2)

We provide an implementation of the expected doit method.

NB: signatures have to be exactly the same. (line 3)

We export the members. Members of an inserted
collaboration are by default unexported. We need to explicitly
export any members we want to appear in the interface of the
host collaboration. (line 4)




e Each time we insert some collaborations and deal with their
members, we call it an attachment. This example has one

attachment, but two inserted collabs.




Running it

shalmanser(112): ../acc collab: ../examples/helloworld.collab
added /tmp/classes to CLASSPATH
Processing ../examples/helloworld.collab
processing collaboration hw_greet
process source
compiling
munge
processing collaboration hw_main
process source
compiling
munge
dumping
getAllCollabClasses (hw_main)
writing /tmp/classes/hw_main/Main.class
processing collaboration helloworld
process source
compiling
munge
dumping
getAllCollabClasses (helloworld)
writing /tmp/classes/helloworld/X.class
shalmanser(113) : CLASSPATH=/tmp/classes java helloworld.X

Hello World!




Quick Vocabulary summary

collaboration: a closed set of participants. a generalization of

java package

participant: a generalisation of a java class with additional

features

host collaboration : the collaboration we are creating
constituent collaboration : the collaborations we are inserting
members : fields and methods in a participant

expected member : a member that hasn’t been specified yet,

appart from signature

provided member : a member that is not expected




Another example

collab vars;
participant Var {
Bar b;

}

participant Bar { }
We are going to:
e add getters and setters
add back pointers from Bar to Var
maintain the back pointers

Look at various composition strategies



Getters and Setters

collab getset;
participant Source {
expected Target field;
public Target get() {{ return field ; }}
public void set(Target t) {{ field =t; }}
}

participant Target { }

—

collab varsNgs;
participant V { } // Evil
participant B { } // Evil
attach getset, vars {

V += Var, Source {
provide field with b;
export get as getB;
export set as setB;

}
B += Bar, Target { }

2
3
4
5
6
7
8
9
0




Get and Set Explanation

getset is simple

we make a new result collaboration
laboriously make placeholders: V and B,

insert getset and vars into these

V = { Var, Source }, while B = { Bar, Target}

this is why Bar b can be provided to Target field

Apology

You shouldn’t have to make V and B yourselves, but I haven’t had
time to automate this yet.




Adding and Maintaining Backpointers

collab backPtr;
participant S {

expected T getT();
aspectual RetVal setter(SetMeth sm) {{

RetVal rv = sm.invoke();
T targ = getT();

if (targ.back != null) {
System.err. println (” Dropping._old_back._pointer”);

}

targ.back = this;
return rv;




Aspectual methods

Invoked implicitly — unlike expected methods
Don’t match the method they will be wrapping

Methods only — no aspectual invocations on field refs. IE: our
join point is method invocation.

Explicitly invoke the host method — can choose not to, or
when. In this case, we invoke the host method first: this is
after advice.

The host method is captured as a java object, with one
method: invoke(). This returns a RetVal object, which the
aspectual method must return.

The names RetVal and SetMeth are taken from the declared
signature of the aspectual method. The classes to implement
these are created automatically. These cannot be mapped by




the user (ie they are local to the collaboration).




Attaching the aspectual method

collab varsNgsNbp;
public participant Source { }
public participant Target { }
attach varsNgs, backPtr {
Source += V, S {
provide getT with getB;
around setB do setter;
export getB as getTarget;
export setB as setTarget;

[

2
3
4
5
6
7
8
9
0

}
Target += B, T {
export back;




Around setB do setter

We want to replace setB with the setter method, but they have
different signatures.

Instead, we automatically generate a method with the same
signature as setB, but which calls setter.

Our generated method also creates the SetMeth object that
needs to be passed to setter. In addition, we need to unpack
RetVal and extract any returned object — in this case, the

return is void, so that is unnecessary.

SetMeth.invoke() calls setB with the intented argument.




1 package test;
2 import varsNgsNbp.*; // since collaborations are java, just import!
class M {
public static void Main(String args|]) {{
Source s1 = new Source(); // which is why these participants were public
Source s2 = new Source();
Target t = new Target();
sl.setTarget(t ); // invokes not just the setter , but the aspectual method
System.err. println (s14” _has_target_” +s1.getTarget()+
” _with_back_pointer.” 4+sl.getTarget().back);
s2.setTarget(t);
System.err. println (s24” _has_target..” +s2.get Target()+
” _with_back_pointer.” 4+s2.get Target().back);

System.err. println (s1+” _has._target.” +sl.getTarget()+
” _with_back_pointer.” +sl.getTarget().back);




Re-use

That export of back as a variable is kinda ugly. Let’s add getters

and setters to it:
collab varsNgsNbpNgs;

public participant Source { }
public participant Target { }
attach varsNgsNbp, getset {
Src += varsNgsNbp.Source, getset.Target { // NB fqcn
export getTarget;
export setTarget;
}
Trg += varsNgsNpb.Target, getset,Source {
provide field with back;
export get as getSource;
// let’s not provide the setter

And since we don’t export back, it is gone from our sight. Good!




Composition review: Accumulation

e We have built up more and more functional collaborations:
vars, varsNgs, varsNgsNbp, varsNgsNbpNgs.

e We've accumulated behavior bit by bit.

(picture)




Composition alternative: parallel
collab allAtOnce;
public participant Source { }
public participant Target { }
attach vars, getset, backPtr { first :
Source += Var, getset.Source, S {

provide field with b;

around set do setter;

provide getT with get;

export get as getTarget;

export set as setTarget;

—

© 0 N O o b~ W N

}
Target += Bar, getset.Target, T { }

}
attach getset { second:
Source += getset.Target { }
Target += getset.Source {
provide field with first :back;
export get as getSource;
export set as setSource;




Composition review: Parallel

We add it all at once.
Can get messy, keeping track of what goes where

each collaboration can be added at most once per attach
clause, so getset needs two clauses.

We can refer to members from other attachments by naming
each attachment.

Attachment names are only visible within the host
collaboration (cannot be exported).

(picture)




Composition alternative: parallel variation
collab varNinsert;
public participant Var { Bar b; }
public participant Bar { }
attach getset, backPtr { first :
Var += Source, S {
provide field with varNinsert:b;
around set do setter;
provide getT with get;
export get as getTarget;
export set as setTarget;
}
Bar += Target, T { }
}
attach getset {
Var += Target { }
Bar += Source {
provide field with first :back;
export get as getSource;
export set as setSource;




Composition review: Parallel 1.5

e So it’s parallel too.

e The point is that we don’t always have to insert into an empty

host collaboration.

e The host collaboration’s members are accessed as if they were
inserted in a previous attach clause. The name of the
attachment is the same as the collaboration.




Composition alternative: the good way

collab getsetNbp;
participant Src {}
participant Trg {}
attach getset, backPtr { bkptr:
Src += Source, S {
export field ; // export of expected method
around set do setter;
provide getT with get;
export get as getTrg;
export set as setTrg;
}
Trg += Target, T { }
}
attach getset {
Src += Target { }
Trg += Source {
provide field with bkptr:back;
export get as getSrc;

}
}




the good way, cntd, and Review
collab varsNgoodway;
public participant Source { }
public participant Target { }
attach vars, getsetNbp {
Source += Var, Src {
provide field with b;
export get'Trg as getTarget;
export set'Trg as setTarget;
}
Target += Bar, Trg {
export getSrc as getSource;
}
}

e We've built up a composite collaboration which only expects a
field, and will add getters and setters and a back pointer, and
maintain them behind the scenes.

e we need to export the expected field, else we would be unable

to provide it (as only exported members are visible).




(picture)

27



Recap

e Collaborations are compiled separately

e Collaborations are attached to a host by attach clauses

e Every member of an attached collaboration must be exported

to be visible outside the host collaboration.




Homework!

29



Aspect J container example

I have implemented this in ACs.
luckily, this works at least.

We have several nested containers, and we want to make sure

their weights are not over the limit.

Several pages:




collab result ;
import java. util .x;

—

public abstract participant Item {
String name;
Container container;
public abstract int check();

}

public participant Simple extends Item {
int weight;
public static Simple make(String n,int w) {{

Simple res = new Simple();

res.name — n;
res.weight = w;
return res;
+}
public int check() {{
System.out.println(” Simple_object.” +name+” _weighs.” +weight);
return weight;




1 public participant Container extends Item {

2
3
4
5
6
7
8
9
0

Vector contents;
int capacity;
public static Container make(String n,int c) {{
Container res = new Container();
res.name = n;
res .capacity=c;
return res;

+H

public void addItem(Item i) {{
if (contents == null) {
contents = new Vector();

}

contents.add(i);

+H




1 // container continued
public int check() {{
Iterator it =contents.iterator ();
int total = 0;
while (it .hasNext()) {
Item child = (Item)it.next();
total +=child.check();

}

System.out.println(” Container.” +name+” _weighs.” +total);

if (total >capacity){
System.out.println(” Container.” +name+” _overloaded” );

}

return total;




1 public participant Main {
static public void main(String args[]) throws Exception {{

Container c1=Container.make(” Container.1”,5);
Container c2= Container.make(” Container.2” 1);
Container c3= Container.make(” Container.3” 1);
Simple apple= Simple.make(” apple”,1);

Simple pencil= Simple.make(” pencil”,1);

Simple orange= Simple.make(” orange”,1);
Simple kiwi= Simple.make(”kiwi”,1);

Simple banana= Simple.make(”banana”,1);

c3.addItem (kiwi);
c2.addItem(c3); c2.addItem(apple);
cl.addItem(orange); cl.addItem(pencil); cl.addItem(c2);

cl.check();
cl.addItem(banana);
cl.check();




e This is of course just a plain java implementation.

e Notice how we use factory methods rather than constructors
with arguments. This is beacause acc ignores constructors

write any constructor. (A known bug).

CLASSPATH=/tmp/classes java result.Main
Simple object orange weighs 1
Simple object pencil weighs 1
Simple object kiwi weighs 1
Container Container 3 weighs 1
Simple object apple weighs 1
Container Container 2 weighs 2
Container Container 2 overloaded
Container Container 1 weighs 4
Simple object orange weighs 1
Simple object pencil weighs 1
Simple object kiwi weighs 1
Container Container 3 weighs 1
Simple object apple weighs 1
Container Container 2 weighs 2
Container Container 2 overloaded
Simple object banana weighs 1

Container Container 1 weighs b5




I've also implemented a few aspectual collaborations:

1. one to keep track of which Items are constained in which

contalners

2. one to cache the calculated weight of containers.




collab backlink;
participant Parent {
aspectual RV childset(ChildSetterMethod csm) {{
System.err. println (” set._child” );
csm.child.parent = this;
return csm.invoke();

+H
}

participant Child {
Parent parent;
Parent getParent() {{ return parent; }}

}

participant ChildSetterMethod {
// partial requirement on what can be wrapped
expected Child child;




1 collab caching;
> participant 1 { expected C getC(); }
3 participant C extends I {
RV?2 cached;
void clearCache() {{
System.err. println (” clear _.cache” );
cached = null;
H
aspectual RV invalidate(EM e) {{
RV retval = e.invoke ();
C ¢ = this;
while (c != null) {
c.clearCache();
c = c.getC();
}
return retval ;
H
aspectual RV2 cache(EM2 e) {{
if (cached == null) cached = e.invoke();
else System.err.println (” using_cached_value!”);
return cached;




attach it to the non-caching implementation (result)
attach backlink, caching {
Container += Parent, C {
around result:void addItem(Item child) do childset;
around result:addItem do invalidate;
around result:check do cache;

}

Item += Child, I {
provide getC with getParent;




set child

clear cache

set child

clear cache

set child

clear cache

set child

clear cache

set child

clear cache

set child

clear cache

Simple object orange weighs 1
Simple object pencil weighs 1
Simple object kiwi weighs 1
Container Container 3 weighs 1
Simple object apple weighs 1
Container Container 2 weighs 2
Container Container 2 overloaded
Container Container 1 weighs 4
set child

clear cache

Simple object orange weighs 1

Simple object pencil weighs 1

using cached value!
Simple object banana weighs 1

Container Container 1 weighs b5




assignment

My version uses parallel attachment. You should do two things:

e create a composite collaboration of the two aspects, and attach
that

e manually work implement an attachment (either of my
example, or your own), and show that it produces the same
output when run as this example does.




