

 Chapter 16 How to Specify a Component
Outline

To specify a type means to describe the behavior required of any object that may
claim to be of that type, regardless of its implementation. An object is a member of
that type if its behavior complies with that specification.

Documenting a type specification involves describing the relevant actions an
object participates in, and expressing the effect of those actions in terms of a type
model of that object. The specification should be satisfied by any correct imple-
mentation, and the type model is an abstraction of any correct implementation.

In this chapter we describe concrete steps towards building a system or compo-
nent type specification, to describe how an object behaves in response to any
external such as a request to perform some action. The approach here is mostly
top-down; Chapter 17, How to Implement a Component (p.629) describes how to
design the insides of a component, and Chapter 18, How to Reverse-Engineer Types
(p.671) covers how to reverse engineer a specification from an existing implemen-
tation.

This Chapter has two main parts. Section 16.1, “Patterns for Specifying Compo-
nents,” on page 582, describes patterns often useful when building a component
specification. Section 16.2 onwards illustrates the construction of a specification
for the case study.
© Desmond D’Souza & Alan Cameron Wills 1998/May/11 12:28 16-581 of 628

16.1 Patterns for Specifying Components

This section gives the major steps in building a component specification.

Pattern-27, Specify components (p.583) motivates the extra effort involved in separating
specification of expected behavior from its implementation. Pattern-28, Bridge require-
ments and specifications (p.585) outlines a pragmatic view of requirements, as stated
and understood by a user, and the more precise specifications that a developer might
use to understand what must be built. Pattern-29, Use-case led system specification
(p.586) explains why a use-case driven approach to requirements capture is prudent,
but should always be interleaved with tools of more precise specifications.

Pattern-33, Construct a system behavior spec (p.594) — Pattern-35, Using state charts in
system type models (p.600) describe concrete techniques to build the specification of the
system of interest. Pattern-36, Specify component views (p.603) and Pattern-37, Compose
Component views (p.604) explain how to show that separately specified components,
when composed together in a particular way, realize the required behavior.

A development process should not leave large “leap-of-faith” gaps between models.
Pattern-38, Avoid Miracles ... Refine the spec (p.605) describes how techniques of refine-
ment and re-factoring can help to reduce such gaps to a manageable level.

And lastly, Pattern-39, Interpreting Models for “Clients” (p.606) provides concrete
guidelines for reviewing formal specifications for clients or users.
16-582 Patterns for Specifying Components

Pattern-27 Specify components

SummarySpecify what you are going to build, separately from actually building it, and mostly
before you build it.

Objectives• Identify conceptual problems and obstacles early;

• Reduce misunderstandings between developers, and reduce confusion in each
developer’s mind

• Lengthen product life

ConsiderationsGetting straight into the code can be very useful for building a quick prototype. It can
also be all you need to do, in small projects (1 person-month or so). And when you
start with existing components, a detailed specification may not be achievable with
the parts you have.

But for anything bigger, it is useful to separate out the more important design-deci-
sions from the less important ones: so that they can be thought about and discussed
separately, before committing too much effort into generating the dependent detail.
Even for existing components, a slightly more abstract spec is still invaluable.

After the code has been written, a spec is valuable for two purposes:

• So that those who will maintain the code after you will understand your concepts,
and update it in accordance with your vision.

• So that users (whether external or software) will have a clear understanding of
what to expect from your component. This is especially important for a compo-
nent that will be reused in different contexts that you are aware of — we are no
longer in the days when the designer of the only component that talks to yours is
sitting in the next cubicle.

StrategyTherefore, write a specification for each component — whether it is a complete soft-
ware product, or a group of just a few objects in a larger program. Exceptions can be
made for small components, and rapid-assembly products that are not expected to
have a long life.

It is not always necessary to write the specification before writing the code. Indeed, it
isn’t unusual to write some experimental code, and then go back and try to make
sense of what you’ve done.

Nor should you get the spec more than 80% done without some implementation.

ConsequencesIt is a very common experience with anyone who uses more formal specifications, that
a single afternoon’s work on a model at the beginning of a project can raise all kinds of
subtle but important questions that would not have been noticed in writing the more
conventional informal requirements; and that would often not have been noticed until
the coding stage — too late to solve the problem coherently.

The objection is sometimes raised, that it is easy to get tied up in writing a specifica-
tion, in preference to getting on with the real work. Firstly, never wait until it is 100%
done. Secondly, the decisions you are writing down in a spec are just the most impor-
tant decisions that would have to be taken sometime in the design no matter how you
Patterns for Specifying Components 16-583

approach it. We’re only separating them out, to avoid needing to backtrack later. Any
extra time spent writing and maintaining a document is repaid within the 70-80% of
the product’s life that comes after its first delivery.
16-584 Patterns for Specifying Components

Pattern-28 Bridge requirements and specifications

SummaryRequirements are for users; specifications are for analysts and developers.

ObjectivesBridge the gap between users and developers, without loss of accuracy, when specify-
ing a software product with non-software users.

ConsiderationsThe notations we discuss in this book form a specialised language for developing and
discussing software and other systems’ behavior. It provides the benefit that we, the
analysts and designers of the system, can use it to form a clear picture of what we
intend to provide for the users.

Like the language of an electrical hardware specification, a formal specification (with
diagrams and formal descriptions) is not directed at end users.

StrategyTherefore, write and maintain two views of the specification: one in terms that users
understand, and the other in more formal terms.

They may be in separate documents, or they may be interleaved in a single document,
as we saw in Chapter 6, Effective Documentation .

There is a cycle between the two documents (or two views): use the formal statements
to form questions you use to improve the informal statements. In this way, you build
a good understanding of the users’ views, help them understand what’s possible, and
keep them well involved in the development. (Any book on Rapid Application
Development elaborates on this point.)

VocabularyRequirements A requirements document is a document written in terms that
can be discussed with users.

Specification A specification is a document primarily intended for our own
use as developers. It represents our current understanding of
what we’re providing for the users.

ConsequencesRequirements management. Use a suitable tool to link clauses in the informal narra-
tive to the relevant elements of the specification (such as invariants and postcondi-
tions). These requirements-management tools perform a kind of configuration
management function: if any modifications are made to one end of each mapping, the
other end is highlighted. Many-many mappings are allowed, and the linked elements
can be in the same or different documents. The tool cannot know what links to make,
nor how the different elements should be brought into line after a change occurs: but
they are very useful in tracing the propagation of updates.

Requirements and specification cycle. Requirements statements often look quite
solid when you first look at them; but as soon as you start a specification, gaps and
dislocations become painfully apparent.

Requirements

Specifications

formalise

query
& enhance

User Analyst

Figure 285: Typical user/analyst cycle with requirements and specification
Patterns for Specifying Components 16-585

Pattern-29 Use-case led system specification

Summary Create a specification for the requirements of a system, working from use-cases.

Objectives Create a specification of a substantial software component or product.

Deliverable: Unambiguous specification of system requirements.

Inputs: There may be a business model — either written as a precursor
to this step, or shared with other systems in the same business.
See Pattern-15, Make a business model (p.553).

Considerations The specification of a component goes hand-in-hand with the design for the process
within which it is used. You cannot specify the component without having some idea
of how it is going to be used; you cannot define how it will be used, without knowing
something about what it does.

Strategy Therefore, explore and document the context within which your component will be
used, as well as defining its behavior. See:

• Pattern-31, Make a Context Model with Use-Cases (p.589)

• Pattern-33, Construct a system behavior spec (p.594)

Often, the context model will yield several classes of user, each with a different view
of the system: see Pattern-36, Specify component views (p.603) and Pattern-37, Compose
Component views (p.604).

Vocabulary Context model: A document describing the business processes whereby a com-
ponent is used.

Behavioral spec: A type description that defines the behavior of a component by
treating it as a single object, and its interactions with the world
around it as operations on the component.

System: A component forming a substantially self-contained product.

Consequences There is not usually a clear order in which to perform context analysis ("use-case anal-
ysis") and system behavioral specification. There is some element of negotiation
between the two: how the users will work depends on what will be provided; and
what is provided depends both on how they wish to work, and on what is possible.

Therefore, don’t attempt to finish one before proceeding to the next; and don’t insist
on doing them in one order or the other (though most people start with use-cases).
Specifically, do not generate many detailed narrative use cases without iterating
through a precise modeling cycle.

System Behavior Spec

model

required behavior

system context system context

Figure 286: Use case model of system context
16-586 Patterns for Specifying Components

Pattern-30 Recursive decomposition — divide and conquer

SummaryEvery specification is part of a larger implementation; and every implementation
composes a solution from specified components.

ObjectivesPractical design.

ContextRequirement to produce a design.

ConsiderationsWe need to break up large problems into smaller ones.

We need to decouple the design efforts on the different partial problems, so that we
don’t have to keep them all in our heads at once — or indeed, in any one head.

StrategyConstruct the implementation to a specification as some form of composition of
smaller components.

Specify each component. There may be many (or many potential) implementations of
each component. Do not consider the internal details of the components, when devis-
ing the present implementation; they will have their own decompositions.

Do not confuse the use of a component with the definition of the component. One
component may be shared between the implementations of several others. In each
use, there may be particular restrictions or simplifications that apply; these are not
part of the intrinsic definition of the shared part. Use packages to distinguish these.

It is not usually sufficient to say what the constituents are: the way in which they are
combined is also required.

VocabularyComposite A relative term: the object of which a constituent forms part.

Constituent A relative term: an object that makes up a composite.

Recipe The extra information that defines how the constituents are com-
posed together to make the composite.

Known examples• A subroutine fulfills a requirement. It is implemented as a sequence of invoca-
tions of constituent subroutines.

• An object’s behavior is implemented with a composite of instances of smaller
objects, linked together in a collaboration.

• A hardware component is a composite of smaller components, wired according to
a defined scheme.

when composing this...
think only of the recipe

and the specifications
of the constituents

Figure 287: Each design should be in terms of specifications of its parts
Patterns for Specifying Components 16-587

• The specifications of a component you are asked to design may come from a
larger design. This situation contrasts with the more user-facing situation of an
end-product design, where your team’s responsibility includes documenting the
system context use-cases (Pattern-29, Use-case led system specification (p.586)).
16-588 Patterns for Specifying Components

Pattern-31 Make a Context Model with Use-Cases

SummaryCapture collaborations with and around an object, component, or system, by building
a context model, showing all abstract actions (use-cases) involving the system.

ObjectivesTo define the scope and boundary of a system and its relation and interactions with its
immediate environment; to build the requirements spec for a system or subsystem to
be installed; or to review the context of a legacy system.

ContextIf this is a subsystem within a larger design, much of this work may already be done.
Otherwise, we begin by understanding how our system works within a larger system
to meet some larger objectives. For example, if we are asked to write an order pay-
ment application, we need first to understand the relevant procedures of the financial
department, what role is envisaged for our software, and what functions will be per-
formed by the users themselves, or other pieces of software.

ConsiderationsIn general, the different parties that interact with an object each have a separate view
of its concerns. A context model should cover all external roles and interactions, at
least at an abstract level, even if split across multiple collaborations.

Many of the collaborations will follow stereotypical interaction patterns e.g. an inter-
action which consists of log in, conduct some transactions, and log out; or make a
selection, and then operate on that selection. These can be abstracted as frameworks
(Chapter 10, Model Frameworks and Template Packages (p.389)), then applied and com-
posed to define the system context collaboration.

It can be difficult to understand all the operations on a system. It is easier to identify
the main user roles, which can then help define the operations and flow of informa-
tion across the system boundary.

However, there is a subjective choice here: what should you model as 2 separate roles?
For an interaction sequence: log in, conduct transaction, and log out, should you have
three separate user roles? For order fulfilment, should the order placer be modeled as
a separate role from the receiver?

How far out should you show actions? Should you just include actions that directly
involve the system? How fine-grained should the actions be?

What about time-triggered actions that have no explicit external initiator?

StrategyScope the Context Model. A context model consists of one or more collaboration
models (Section 5.6, “Collaborations,” on page 223) focused on the object we are prin-
cipally concerned with (typically a software system or component) and its interac-
tions with others (typically people, other software, or hardware).
Patterns for Specifying Components 16-589

Summarise the interactions
with the system as collabora-
tions between the system
being specified and other
objects, building scenarios to
validate the collaboration,
and modeling actions at a
consistent level of abstrac-
tion. Show all external roles
as types — also called “actors” — that participate in these actions. Also, document
those actions that can proceed concurrently on a single system, including constraints
on concurrency. For example:

Concurrent actions: Any number of members can be borrowing or returning book
copies, or reserving book titles at the same time; a given book copy can have only
one borrow or return involving it at any time.

Besides all actions that directly involve the system, also show actions between the
external actors if they are relevant to the collaboration. If there are relevant actions
even further removed from the system, either show actors and actions one level fur-
ther out, or model them as effects (Section 5.5.5, “Actions and Effects,” on page 219)
on the external actors already included.

Treat the system of interest as a single object, without internal
roles or objects. Be precise about the boundary of the system
you are describing in a collaboration e.g. is the database
within, or outside of that boundary? If outside, you should
describe interactions with the database; if inside, the database
and all interactions with it are abstracted into a simpler type
model and effects on that model (see Section 4.7.1 for an explanation).

Define for each object a set of responsibilities, and list them in the action section of
that type. In particular, list and document the responsibilities of the system within the
context of the larger organisation (or larger system); treat the system as part of the
design of the larger context.

Scenarios. Construct scenarios
and storyboards of the projected
use of the system, starting from a
known initial state. Pay particu-
lar attention to cases where the
system’s dealings with one object
affect those with another, and
cover interleavings of these in a
scenario. Create interaction dia-
grams for the scenarios, combin-
ing scenario narrative with the
diagrams; the interaction dia-
grams can depict directed arrows
or joint action occurrences (Sec-
tion 5.7.1 or Section 5.8.5); this example uses the joint action notation. A scenario
should show named objects; it is usually sufficient to use generic names for them, like
c1, c2, c3: Customer, and t1, t2: Title.

Member

Shelf

Librarian LibMgmtSysrestore

check
remove

borrow
reserve

return

find

Lend_Books Collaboration

db

db

1. Jo borrows Jaws

2. Pat borrows Jaws

3. Chris reserves Jaws

4. Jo returns Jaws
Chris is notified

5. Dani reserves Jaws

6. Chris borrows Jaws

JoPat
Chris

Dani
:Librarian

:Lib SysInitial state: Three copies
of Jaws, 1 checked out...
16-590 Patterns for Specifying Components

As a rule, each step of the scenario that involves the system should start with an exter-
nally initiated action and include all subsequent system response, including resulting
system-initiated actions e.g. step 4 in the example above. This will serve as the start-
ing point to identifying and specifying system operations.

Abstract and re-refine. Abstract some of the actions to understand goals more clearly;
good high-level actions often reflect goals of the user. For example, suppose we are
told that we must deal with separate actions:

made_order(agreed_price, items);
received_invoice(amount);
received_goods(items).

We could abstract this to a higher-level action buy_goods(price, items). The postcon-
dition is that we get and have paid for goods we have ordered. Re-refining this, we
can question whether the receipt of an invoice is relevant: so long as the goods have
been ordered, we can pay for whatever we receive, cutting out some administrative
work; this option can then be discussed with our client.

You can model the system context, and corresponding scenarios, system type model,
and action specs, at any consistent level of granularity. The actions should be refined
to the level where completion of the action accomplishes an atomic transaction with
the system, and must be completed in its entirety by the actor to be meaningfully han-
dled by the system.

Separate roles. Make separate context models for the system as used by different
groups of collaborators. In general the separation works best by considering the
abstract collaborations, rather than individual collaborators.
For example, the member and the librarian both interact with the Library system
about the different stages of an abstract ‘lend-books’ action (which encompasses bor-
rowing, returning, and reserving). Theirs would be one view — the system plays one
role in that collaboration. The stock-keeper’s ‘add-books’ would affect the other col-
laboration of course — you can’t lend books you haven’t got — but it isn’t part of the
lend-books collaboration, and the system plays a distinct role. So in this example, one
collaboration is separated from the rest.

Do not go overboard with separating actor roles. Specifically, if there are strong
dependencies in state or attributes of the actor involved across two actions, do not
needlessly split into two actor roles. For example, if the system requests authorization
from an external system for a credit card, and follows with an approval request for a
payment amount on that same card, it would be better to use a single external role for
the authorization system. Similarly, it would not be helpful to distinguish ‘reserver’,
‘borrower’, and ‘returner’ as separate roles in a library. Map the user-roles in the sys-
tem context to roles in the business model; perhaps eventually to job descriptions.

Time-Triggered Actions. In addition to explicit stimulus from exernal actors, a sys-
tem may need to respond on its own to the passage of time. Model this also as an
external input to the system, driven by a clock of arbitrarily precise frequency. Pick a
suitable name for this action e.g. end_of_day, or tick. For clarity, separately define
named effects to specify what happens at that time e.g. clear_outdated_reservations.
As always, you can have multiple specifications for the action.

action System::end_of_day
Patterns for Specifying Components 16-591

post: clear_outdated_reservations
-- all expired reservations have been cleared

effect System::clear_outdated_reservations
post: -- specification of the effect of clearing all outdated reservations

Many such time-triggered actions are better specified as static invariants initially:

inv System:: -- there must never be any expired reservation in the system, or,
inv Reservation:: -- cannot ever be expired

Benefit Many of us have experience of development where the designers don’t get to meet the
end-users: that is the analysts’ prerogative. (They know how to wear smart suits, I
guess.) The effect is that although they may implement the stated requirements, they
may do so in a way that isn’t very user-friendly — simply because they don’t have a
clear vision of the context in which the system works. The context model and its docu-
mentation gets around this, and provides a clearly scoped connection to the business
model.
16-592 Patterns for Specifying Components

Pattern-32 Storyboards

SummaryMake pictures of the user interface.

ObjectivesAnimate the system use cases in a form that can be discussed with end users, when
constructing a specification of a system that will have a graphical user interface.

ConsiderationsA rigorous specification expresses the common understanding that the developers
have, of what they intend to provide for the users. The act of constructing it raises use-
ful questions to put to the clients.

But it is not readily accessible to end-users who are not themselves computer people.
We therefore seek techniques that animate the specification for the end users.

Users relate most directly to what they see on the screen.

StrategyTherefore, make a slide show of what the users will see on the screen; or a prototype.

Summarise the different screens in a chart that shows all the possible transitions from
one to another: this is the ’storyboard’. Annotate the transitions with the names of
actions — which you should have documented with their effects on the system’s state.
Also annotate with the story — the reasons why people would choose different routes
through the user interface.

The chart forms a state chart of the refinement of the user actions. (See Section 7.5,
“Refinement #2: Action conformance,” on page 298, and Section 26, “Action Reifica-
tion,” on page 577). Once the chart is complete, abstract the major actions from the
GUI detail: the latter may change between now and the implementation, but the
major actions are what you require at present.

When discussing the storyboard with users, let them get involved in the detail of the
GUI at first: this will help fire their imaginations; but later, make the point that the
detail can be changed later, and what we want now is the major actions.

(See section 16.2.3 (Storyboards), p.613, for an example.)
Patterns for Specifying Components 16-593

Pattern-33 Construct a system behavior spec

Summary Treating your system as a single object, define the type of any system implementation
that would meet the requirements.

Obective To construct a type specification of (some view, or role, of) a system we are to build.

Deliverables: Type-specification of any implementation objects meeting the
requirements of this system (in the chosen role), embedded in
narrative documentation.

Dictionary with specific meanings of types in this model.

Snapshots are thinking tools rather than true specifications (since they only deal in
particular scenarios) but may be used for illustration in the narrative.

Context We already have a system context model (Pattern-31, Make a Context Model with Use-
Cases (p.589)).

Considerations The result will nominally be a type box that defines our system as if it were a single
object (Section 7.6, “Refinement#3: Object conformance,” on page 306). Like all types,
the behavior presented to the external world — in the bottom section of the box — is
specified in terms of the hypothetical static type model — in the middle section.

Of course the whole thing won’t usually fit in one box on one page. So we split into
multiple drawings, or use “Refinement” (Chapter 7, Abstraction, Refinement, and Test-
ing (p.265)) to separate into subject areas.

Member

Library

Librarian

Title

Book
*

StockKeeper

*
supervises

*

Library Management System

Member

Librarian

borrow
reserve

return

borrow (Book, Member)
reserve (Title, Member)
return (Book)

find

find (String, out Title)
List of actions repeated here

Collaborations & responsibilities
of system from Context Model

Initial type model adopted from
Business Model
Links, attributes, actions are all
subject to refinement at this stage.
Actions, if used, are only to factor the specs
of the system-level actions, as effects.

Purpose of this phase is
to specify them

borrower

*

*
reservations

*

*
held_for 0,1 0,1

1

1

catalog
*

*membership

Figure 288: Initial type model derived from business model
16-594 Patterns for Specifying Components

StrategySeparate roles. As we noted in Pattern-31, Make a Context Model with Use-Cases
(p.589), most objects play several roles, and, when specifying requirements, it is useful
to focus on one at a time.

So in the example shown, we have listed only the operations from the lend-books col-
laboration, and will specify those operations. Ultimately the system’s roles may be
recomposed in preparation for designing it.

Summarise the set of actions for this role. This can essentially be read off the context
model. Actions (and hence model) should be as abstract as reasonable at first cut —
not individual keystrokes.

Each action needs to be given a parameter list. The parameters represent other infor-
mation that will be available to the action when implemented. They could be the
parameters of an API operation; or information that a user can be asked to enter as
part of a dialogue to which this action is refined. They can usually be read off the par-
ticipants and parameters in the corresponding action in the business model.
For example, reserve(Title, Member, Librarian) indicates that there is some way in
which those pieces of information can be entered — we don’t yet care how. (See Chap-
ter 7, Abstraction, Refinement, and Testing (p.265), for how parameters relate to action
refinement.)

In some cases, we may immediately decide that some information is not required —
for example Librarian in the reserve operation. This doesn’t stop you putting that
information back in a later refinement —the refinement rules allow you to add param-
eters, but not to take them away; so by paring down the parameter list at the most
abstract level, you are keeping your options open.

Adopt the business model as the initial type model. That is, the model part of the
type-box defining the system. Note that this gives us two of everything: the external
‘real’ object and its model inside the system. To distinguish where this might be
ambiguous, use LibraryManagementSystem::Member and ::Member. Note, however,
that actions from the business model do not translate into internal actions that must
be implemented in the system; they are candidate ‘effects’, there just to conveniently
factor out parts of the system behavior specification.

The ultimate purpose of a type model is to support the action specs — expect to add
to it, and eventually to drop parts as irrelevant. So for a drawing-editor, we might add
the idea of a current selection. For a library management system, we might drop the
business model’s Librarian-Librarian ‘supervises’ link, since the actions expected of
the system never use it.

An alternate approach is to start minimalist: the initial type model is not known i.e.
empty, and you draw elements from the business model into the system type model
as you uncover a need for them in describing the system behaviors.

Note that the model represents the state of the whole system from its external users’
point of view — not just the business logic, and not just the software: hardware may
be included too. So if a display shows the result of some calculation, and that display
is part of the boundary the system, then that value can be an attribute in the model,
even if the software forgets it immediately after sending it to the display. It’s the sys-
tem context model that sets this boundary.
Patterns for Specifying Components 16-595

It’s important to be aware that at this stage, we are not intending to design the system
internals. The type model is just a model: although the design may well be based on it,
the designer is free to produce anything that exhibits the same list of system opera-
tions. And in particular, the actions adopted from the business model illustrate only
the model-objects which may be involved in system-specified actions.

Exercise system queries. The most interesting actions are the ones that change the
state of the system; but that state would be unnecessary if no information ever came
out of the system. It should be possible to represent in a snapshot, any piece of infor-
mation that a user may wish to extract from the system. For example, from the library
system type spec on the previous page, it would be possible to draw snapshots show-
ing who is in possession of each book; but there is nowhere to record how long they
have been borrowing it.

Build State charts of key types. This helps clarify what is required of each action and
crosscheck the model for overlooked states, operations, and combinations of these.
Each statechart shows the effect of actions in which the system collaborates on the
model component of interest. See Pattern-35, Using state charts in system type models
(p.600).

For each state, define an invariant that relates it to other attributes in the type model.
States are boolean attributes, and can be parameterized just like attributes.

LibraryManagementSystem::Book::
-- State definitions for the above diagram:
lentTo(member) = self : (member.loaned)

-- to be lent to a Member means to be in the ‘loaned’
-- set of books for that Member.

holdingFor(member) = self : (member.held)
-- wasn’t in Business Model, had to add it!

on_shelf = (~loaned = null) and (~held = null)

Specify each action. See Pattern-34, Specifying a system action (p.598). The result is an
effects clause, and a review of the model.

action borrow (book, member)
pre: book.on_shelf
post: book.lentTo(member)

Exercise the spec with scenarios. Perform a walk-through of a senario and exercise
the specification, starting from the initial state of the scenario. Check that the progres-
sion of states and system-responses is as expected from the action specs.

LibraryManagementSystem::Book

on_shelf
addBook borrow(m:Member, self)

lentTo(m)

return(self) return
[title reserved

holdingFor(m)

for m]timeout
borrow (m, self)

[title not reserved]

/notify
librarian

Figure 289: Statechart of a spec type
16-596 Patterns for Specifying Components

Review model. Delete attributes not used in any action spec; add attributes that are
needed, or that simplify the specification, and relate them to other attributes by
invariants. Delete types not used for any query or action parameter. Update the dictio-
nary with definitions that relate model elements to the business or domain model, its
objects, and its events.

In the Library example, drop Librarian and StockKeeper from this model. They may
be required in models for other roles of this system.

BenefitThe exercise of writing a type spec in an unambiguous language always raises issues
that are relatively inexpensive to debate at this stage. In our experience, the more pre-
cision you aim for, the more questions you raise and the more gaps you fix.
Patterns for Specifying Components 16-597

Pattern-34 Specifying a system action

Summary Specify an action using snapshots to help create the formal spec.

Objectives Each system action, no matter how abstract or concrete, can be characterized by the
relation between its inputs, outputs, and states before and after the action. We want to
write action specs with pre and postconditions expressed informally and formally.

Context We are specifying the type of a system playing a role in a collaboration; that is, the
view that its collaborators have of it. We already have a initial type model. We may
improve it in the light of what we need to say about this action, and iterate between
specifying actions and updating the type model.

Strategy Write the spec informally. State in natural language what is required of it. Think in
terms of outputs, effects on external objects, and the initial and final internal state.
Think also of preconditions — interpreted precisely as the conditions under which
this particular postcondition make sense.

action return (book)
pre: — book is lent to someone
post: -- book is either back ready to be loaned again,

-- or, if someone has reserved its Title, it is held for them

Draw snapshots. Draw a snapshot conforming to your type model that shows the
system in a state conforming to the action’s precondition. Then modify it (preferably
in a different color) to show the state after the action. Intermediate states, and the
order in which things happen, are of no concern. Draw a snapshot regardless of how
complex the system is, introducing convenience or parameterized attributes to sim-
plify matters.

Delete links rather than whole objects. If necessary, draw an entire sequence of snap-
shots for a scenario, starting from the initial state.

Write formal pre/postconditions. Using the snapshots as a guide, write pre/postcon-
ditions in the more precise terms of the links or states. Expect to discover gaps and
inconsistencies. (See Section 4.5.2, “From Attributes to Operation Specification,” on
page 150, for detailed steps). Be aware of how your spec will be combined with other
specs for the same action (Section 9.1, “Sticking pieces together,” on page 368).

In this example, drawing snapshots helps us notice that an inaccuracy in the initial
attempt at the informal postcondition.

action LibraryManagementSystem:: return (book: Book)
pre: -- book is lent to someone

‘Kidnapped’ : Title

‘Trainspotting’ : Title

: Book

: Book

: Book Jo : Member

Pat : Member

Chris : Member

borrower

reserved

held_for

held_for

Figure 290: Snapshots of an action
16-598 Patterns for Specifying Components

book.borrower <> null
post: -- book is either back ready to be loaned again,

-- or, if someone has reserved its Title but doesn’t already have a copy held
-- it is held for them

-- the book is definitely not loaned out any more
book.borrower=null and
-- if this title had more reservations than held books
if book.title@pre.(reserved > book.title.books[held_for<>null])

-- it goes on hold; the new holder used to hold no books of this title
then book.held_for <> null

and book.(not title.books@pre.held_for includes held_for)
-- otherwise if goes back on the shelf
else (book.held_for = null)

Look for cases not covered by the snapshots. The snapshots only represent a typical
example, whereas the spec must cover every possibility within the scope declared by
your precondition.

In the Library example, it would be easy to overlook the case of returning a reserved
book. But drawing snapshots for the documented scenarios (Pattern-31, Make a Con-
text Model with Use-Cases (p.589)) usually exposes these cases, as do state-charts (Pat-
tern-35, Using state charts in system type models (p.600)).

Factor the spec into model types. If some parts of the pre or postcondition seem to be
particularly associated with types in the model, write them there as effects that you
use in the system operation specs (Section 4.7.5, “Effects,” on page 165). This helps
avoid replication in the spec, and allows it to be polymorphic. Although the type
model is not necessarily a blueprint for its design, this distribution of concerns obvi-
ously looks forward to the distribution of responsibilities in design.

effect LibraryManagementSystem::Book:: return ()
pre: borrower<>null post: etc...

action LibraryManagementSystem:: return(book)
post: book.return()

Don’t try to state all the effects at once. In general, we don’t specify every aspect of
an action in one go, or in one place. We will be specifying its effect from other collabo-
rators’ viewpoints when we come to them; and we will probably also keep excep-
tional circumstances separate, just dealing with the main cases at first. An advantage
of specification with pre/postconditions is that it is easy to combine different views
later; a decent tool will readily present the combination of specifications when
needed, yet the documentation can focus on different issues separately.

BenefitThe process of formalising the action spec always raises questions about ambiguities
and omissions in requirements. It is far better to deal with them at this stage than at
coding time. Formalisation also tends to expose shortcomings in the type model, and
leads to a clear and concise vocabulary shared across team members, which will ulti-
mately be the basis of the design.
Patterns for Specifying Components 16-599

Pattern-35 Using state charts in system type models

Summary Building statecharts to find actions and effects and overlooked cases.

Objectives Cross check the models and behavior specs. Tighten up the type model to capture dif-
ferent modes in which different combinations of attributes make sense. Take a differ-
ent perspective on the behavior specs i.e. from the point of view of each specification
type, what are all the actions that have an effect on it. Make statecharts of principal
types in a model.

This is a supplementary approach to finding the actions and their effects when creat-
ing a system specification. Except for special cases, statecharts are not good at repre-
senting the whole story, since they form a single object’s view of all the actions;
designers ultimately work better from postconditions. But where there are clear
changes in state, statecharts work well and provide a valuable cross-check for com-
pleteness.

Considerations The states are as you choose them. By a ‘state’ in a statechart, we mean the truth or
falsity of some predicate i.e. just like any boolean attribute, including parameterized
attributes as well. A library book is or isn’t out on loan; it is or isn’t withdrawn from
circulation; it is or isn’t on the shelf. Some choices of states are obvious, because they
make a significant difference to the postconditions and preconditions of the applicable
operations. The point of a statechart is to illustrate these broad relationships between
state and actions. But depending on your point of view, you can always choose a dif-
ferent set of states to illustrate — whether the book is or isn’t in poor repair, whether it
is over 10 years old, whether it is currently passing through the checkout desk,
whether it is overdue for return.

Other state differences can be too subtle to record effectively on a statechart — for
example, there is a difference between a book that has been loaned five times and one
that has been out on six occasions; but unless the library’s loan policy changes qualita-
tively at that number, it would be pointless, though valid, to draw separate states for
‘loaned more (or less) than five times’, and still more so to draw separate states for
each separate number of times out.

Statecharts may (but need not) focus on a single type. In this pattern, we use state-
charts to represent the state of the members of a particular type within a system type
model. A statechart can potentially be about universal truths; but we usually quantify
over one type e.g. any Book, so that the states depicted are truths about any one of its
members. We also use state charts to describe action sequence refinements in Chapter
7, Abstraction, Refinement, and Testing (p.265).

When devising a system type model (Pattern-33, Construct a system behavior spec
(p.594)) we usually play an extra trick. As we’ve said, the types within such a model
are at that stage just there for the purposes of specifying, and although the design
would typically be based on them, there is no mandate to follow them provided the
externally visible behavior is as modelled (although we usually want the design to
closely follow the specification model, it may sometimes differ due to performance
optimizations, or design re-use goals). The trick is to draw a statechart for one of these
specification types — for example, Book in the Library system model — but in which
16-600 Patterns for Specifying Components

the actions are those of the system being specified — for example, reserveTitle, return-
Book, deleteMember. A statechart can be drawn for each of several types in the sys-
tem model.

The thing to keep in mind is that when a system action occurs, it may affect several
objects simultaneously. E.g. deleteMember may have the effect of marking ‘lost’ any
and every book held by that member. It is as if the operations are broadcast simulta-
neously to all the objects inside the system, some of which take notice. The job of
design can be seen as one of enhancing the performance of this mechanism, and of
deciding how the information modelled as these objects will really be represented.

StrategyIdentify a type with interesting states and transitions. Some don’t have any. Any
boolean attributes are candidates for states. Similarly, if you have ‘optional’ attributes
or associations, there are frequently states in which those attributes must be defined.
Some continuous attributes may have values that signify a qualitative change in
behavior e.g. speed > 75mph may qualify as a ‘speeding’ state. Look also for radical
differences in behavior — eg, can be lent or not; and for equivalent manual system
stages or phases; or temporary tags or marks; or locations of an item or piece of paper-
work. E.g. Book on shelves or held at desk or with member. E.g. hotel reservation in
‘future’ folder or ‘today’ pile.

Draw transitions. At every state, decide the applicability of each operation, and link
to its result. You may discover more states at this stage, but it is okay to leave some
things underspecified for later refinement.

Label the transitions with the operations that cause them. Also mark preconditions —
the transition is only guaranteed to occur if the precondition is true; may also write
postconditions not indicated by the change of state — e.g. increment of counter.

Use only external operations — stages in the internal workings of the system are not
states in this abstract picture. It is also sometimes useful to show state transitions for
‘effects’ that you introduced as a way to factor the action specifications. You may con-
sider timeouts or the arrival of particular times as external operations.

Use snapshots to illustrate what is happening to each object on each transition. This is
especially useful to clarify situations where different things are happening simulta-
neously to different objects.

Formalize. States and transition-labels are usually defined informally at first. Some
attempt at formalisation raises more useful questions.

• Add each state to the Dictionary. Define its meaning in the users’ world-view, tak-
ing care to exclude and include exactly what is intended. Does ‘on shelf’ include
times when a browser is inspecting the book within the library?

• Define each state as a boolean function of the other attributes. It should be distinct
from the other states in the diagram (except those explicitly parallel or nested). If
it cannot be made distinct from another state, there is information missing from
the model.

• Such state definitions are often combinations of a few boolean terms — some
optional link present, some attribute > 0, and so on. Make a table of the combina-
tions, showing how each state has a different combination, and identifying combi-
Patterns for Specifying Components 16-601

nations that do not correspond to any state. The complete set of allowed states is
an invariant that should be documented for the model.

• Define pre and postcondition labels of transitions in terms of links and attributes
of this object in system model. Each statechart applies to each object of the rele-
vant type, can refer to ‘self’ and to action parameters.

• As another cross-check, write a state-transition matrix. List all states on one axis,
and all actions on the other. Check that each combination has been considered,
and mark it as one of: specified, unspecified, or impossible.

• Be aware that statecharts have more than one interpretation. Does the absence of a
transition between two states mean that there will never be any way in any mem-
ber of this type (including all its subtypes) of getting directly from one state to the
other; or does it just mean there are none we know about in this type, but sub-
types might have some? If the former, mark the chart, or a state therein, as
“closed” using a UML stereotype <<closed>>.

Integrate statechart information into specifications for each system action. Each
transition implies something about what an operation does to the relevant type of
object. Some operations will affect several types of object: AND the effects of these
together.

Benefits • The model is usually improved by defining states; some specifications become
simplified by directly referring to states (including parameterized states), and let-
ting the state invariants implicitly deal with the details. e.g.

• Actions cover more cases than initially envisaged. The state chart visually high-
light less usual states in which actions can also take place, particularly when
described as a state-event matrix. This fleshes out holes in the action specs.

• Model exercised in some detail, by adopting an alternate view of the behavior of
the component, from the perspective of each of its specification types.
16-602 Patterns for Specifying Components

Pattern-36 Specify component views

SummaryDefine partial views of a component, specifying behavior as seen from each interface.

ObjectivesCreate a specification of a system that has multiple interfaces, or many different users,
without being forced into a single description.

Deliverable: Type model of a partial view of a component.

ContextPattern-29, Use-case led system specification (p.586) or Pattern-30, Recursive decomposition
— divide and conquer (p.587).

Considerations1. When specifying a very large system (let’s say, a telecoms network and its sur-
rounding management software) , it is usual to find that different users have different
terms, and different detailed models. What Engineering thinks of as a Phone has
attributes like line_impedance; what Accounts thinks of as a Phone has attributes
such as call_charges. What the StockKeeper thinks of as a Book includes its purchase
date etc; but the Desk staff are interested in how long it has been on loan.

We need to keep these models separate, so that we can go back and talk sensibly to the
different users in their own terms; though we also need to merge them at some point,
so as to be able to implement an integrated system.

2. When specifying any component (with user or software interfaces), there are usu-
ally several interfaces. The different interfaces are aware of only part of the compo-
nent’s state and behavior. There may be several different classes of component that
possess an interface conforming to a particular model.

We need to keep the models separate, so that we can pick which interfaces a new
implementation conforms to.

In a hardware analogy, many different classes of device generate a video signal; and
many different implementations accept it. Each of those devices (such as a monitor or
projector) has other interfaces as well.

StrategyFollowing Pattern-31, Make a Context Model with Use-Cases (p.589), separate the differ-
ent interfaces, one for each external role (or one for each group of roles that always
occur together). Alternatively, you may identify the component and its interfaces dur-
ing Pattern-30, Recursive decomposition — divide and conquer (p.587).

Write a separate model for each interface. For each interface, consider only the con-
cepts that the user of that interface requires to understand. Write the model in terms
meaningful to that class of user.

Notice that one actor’s view of the component often includes some understanding of
the component’s effect on third parties, if the actor has some means of access to them
outside the system. For example, suppose I press some buttons on my phone, and
then say "come to dinner at 8pm" to it: I do not expect the phone to appear at the table
in the evening; nor do I imagine that my only access to my invitees is by shovelling
the food down the wire. Instead, I understand that what I do to the phone has an
effect on people with whom I have other means of interaction.
Patterns for Specifying Components 16-603

Pattern-37 Compose Component views

Summary Join several views of the requirements of a component.

Objectives Make a single combined model of a component, prior to implementing it.

Context 1. We have several separately constructed views — Pattern-36, Specify component views
(p.603).

2. We are developing a component that has to conform to some existing interface spec-
ification — either from Pattern-30, Recursive decomposition — divide and conquer (p.587),
or from an externally-defined standard.

Considerations It is not unusual to have requirements provided from several sources, all of which are
defined according to a separate set of terms and rules. The differing views can come
from:

• different interfaces, to different external actors;

• different industry, legal and business constraints imposed by different organisa-
tions and expressed in different terms.

For example, a financial system typically has not only the bare functional require-
ments (of settling trades or whatever); but also must conform to the company’s busi-
ness rules; and the legal constraints; and the interface conventions of the external
accountancy systems. Each of these sets of rules is defined with its own model, and
each may impose its own rules on the system.

Strategy • Construct a common static model encompassing the concepts in each of the con-
stituent models. This will be the static model for the component.

• The simplest way of doing this is to import the models into a single package,
and then define invariants defining how the attributes from one view are
related to those from another, just as you would for redundant attributes.
However, you may then need a separate refinement stage to get to the code.

• The component model is a refinement of each of the views. Construct abstraction
functions from the component model to the attributes of the views.
(Section 7.4.2, “Documenting model conformance with a Retrieval,” on
page 291).
If done fully, the abstraction functions provide a way in which the assertions of
the views can be checked against the implementation.

• If you use the slam-together method, the abstraction functions are trivial.??

• Join the action specifications and invariants from different views, as decribed in
Chapter 10, Model Frameworks and Template Packages (p.389). The covariant ’join’
semantics permits different views to impose their own restrictions on the whole.

An example may be found in Section 11.7, “Heterogenous components,” on page 472.
16-604 Patterns for Specifying Components

Pattern-38 Avoid Miracles ... Refine the spec

SummarySystematically go into more detail about actions and models, always mapping back to
the abstract versions as a sanity check.

ObjectivesBridge the gap between abstract model and implementation

ContextMost people have seen the cartoon — a big complex diagram of some outfit’s Method-
ology; it’s got all sorts of purposeful-sounding tasks, numerous feedback loops and
checkpoints, extensive forms and documentation templates to fill out, matrices to put
check marks against and metrics to tell you how well you are doing. Inputs to analysis
at one end, code out at the other. But in the middle of all this busy activity, all arrows
converge sooner or later on the box that says “And Then A Miracle Happens”!

We don’t have so much of that. The miracle is your creativity as a designer — there’s
no algorithm for that; but it is spread evenly over the whole process, without a phase
transition in the middle. Partly, this is to do with the object approach: the software’s
structure mirrors reality. But we also can document refinements, which show the rela-
tion between a detailed description (often a design) and a more abstract one (often a
specification), map between them, and justify choices made and key options rejected.
We can also use ‘frameworks’ (Chapter 10, Model Frameworks and Template Packages
(p.389)) to memorialize common forms of refinement as recurring patterns, again
helping eliminate the magical miracle.

StrategyGolden rule. Wherever possible, let your design reflect the model of the problem
domain (Pattern-119, The OO Golden Rule (Seamlessness or Continuity) (p.325)). This
makes it much easier to bridge the gap from business models to implementations.

Design review. Focus on refinement during a design review. The designer should
explain:

• how the design is a valid refinement of the specification, including documenting
conformance (Section 7.4.2, “Documenting model conformance with a Retrieval,”
on page 291)

• justifications for particular choices made, whether based upon performance,
understandability, previous systems, etc.

The resulting description provides the context of the problem (the specification), the
context and considerations involved (the justification), and the solution (resulting
design).

Rearrange the spec. When the gap between the specification and design gets larger,
try to re-arrange the specification so it’s structure is somewhat closer to the implemen-
tation. It may be easier to rearrange the problem description itself and then map to the
solution.

Frameworks. When you find a recurring pattern of transformation between spec and
design, abstract that pattern into a framework.
Patterns for Specifying Components 16-605

Pattern-39 Interpreting Models for “Clients”

Summary Use concrete examples with familiar notations, while still enforcing strict rules about
terminology and definitions, to review and interpret formal models for customers
who may not want to see models. Strictly separate external and internal views.

Intent Building models helps clarify requirements and designs, but the models themselves
may not be appropriate to present to the customers. You need a way to validate the
requirements, or designs, as captured in your models.

Strategy Concrete Review. Specification models capture all possible behaviors (action specs
and statecharts) and all possible states (type model). It is always simpler to under-
stand concrete examples, rather than generalized specs. To do this, review:

• scenarios: narrative and interaction diagrams that trace through a collaboration
with the system, with named objects in the initial state and consistently named
objects for any information exchanged with the system. If you show the ‘graph’
form of interaction diagrams, use a consistent layout and position for all objects
involved; this helps comprehension across multiple interactions.

• snapshots: drawings of the state of the business/domain, or of the state of the sys-
tem. Illustrate how the snapshots change through a scenario; this is the surest way
to communicate their meaning to customers. The snapshots interpret the type
model and static invariants; snapshot pairs interpret the action specs and
dynamic invariants.

Positive and Negative. When reviewing concrete example of behaviors and states,
include both an example that is valid according to the spec, and one that is invalid.
Include the constraints imposed by static and dynamic invariants. Generalize from
the invalid ones, and discuss how the informal specification prohibits them. Similarly,
generalize the required valid cases, and discuss how the formal specification enforces
them.

Informal Specs. The formal behavior specifications start with informal narrative, and
end with much clearer narrative description (see Section 4.5.2, “From Attributes to
Operation Specification,” on page 150). Always review this narrative specification,
and the definitions in the Dictionary. Explain to the customer that the terms reflect the
system’s view of the domain, not necessarily every aspect of the domain itself.

Familiar Notations. When showing objects, either in snapshots or scenarios, feel free
to substitute graphical icons that are more suggestive of the objects involved. Use
problem-specific drawings to show attributes and relatioships between objects (e.g. a
batch of silicon wafers positioned inside a particular crucible in a machine), to explain
the meaning of corresponding snapshots.

Draconian Dictionary. Despite using largely informal and narrative descriptions to
review the models, you should be very particular about terminology. Treat the dictio-
nary as the definitive glossary; terms outside it are suspect, and should be avoided as
far as possible. Re-interpret the customer’s descriptions in terms of the dictionary and
have the customer validate your description; update the dictionary with terms to
make communication easier (Section 4.7.4, ““Convenience” attributes simplify specs,”
on page 164). If discussions with the customer regularly evolve into long and unfo-
16-606 Patterns for Specifying Components

cused discussions of ill-defined terms, or if the same issue is being repeatedly re-vis-
ited, take on a more proactive role: build models, and use them to suggest defintions
and proposed interpretations of requirements.

User-Interface Review. Customers are happy to discuss what they shoud see on the
user-interface. Start user-interface sketches early. However, use these appropriately:

• Do not get caught up in look-and-feel issues too early; focus on information
exchanged, expected behavior seen on the UI, and the flow of actions and corre-
sponding UI elements for the user.

• Any drawing of a user-interface is a particular visual presentation of a snapshot.
e.g. attributes may translate into colors; an association between two objects may
show up as master-slave lists, or relative visual positions of the graphical presen-
tations of each object. Every element on the user-interface should map to some
element on the underlying model, though the names may not be exactly the same:
e.g. presentation labels map to attributes or parameters, window names map to
types, buttons and menu items map to actions. Keep this mapping consistent, and
make it a part of your dictionary (at least in the package that includes both the
models and the user-interface specification or prototypes). You are responsible to
ensure the user-interface bits are kept consistent with the underlying models.

• An appropriate review would include scenarios, corresponding user-interface
prototypes and flows, and the dictionary corresponding to the type model.

External vs. Internal Review. Be very conscious of who you are presenting to, and
why. It is a common mistake to review internal mechanisms and design decisions
with a ‘customer’ who should never even know whether you implement things that
way. This is probably the most common error made when reviewing models among
developers1. Distinguish carefully between a review of a component from an external
perspective (end-users; or clients who will call your code); and a review of the internal
design (for the team that will implement that design of collaborating pieces).

The former is always centered around type models and operation specifications, and
should very rarely discuss classes and inheritance. The latter is focused on collabora-
tions between objects, and includes the corresponding type models of each one; it can
include many more details of code structure and re-use e.g. class inheritance.

Prototyping and vertical slices. In short-cycle development (Section 12, “Short-Cycle
Development,” on page 545), the most effective way to get the users’ feedback is to
produce something that works minimally. The only drawback is the users’ tendency
to imagine that you have already done the whole thing.

1. As opposed to end users
Patterns for Specifying Components 16-607

16.2 Video Case Study — System Specification

16.2.1 System context

Software component will
become a part of busi-
ness process

Here we introduce the idea of a software system we wish to build, and explore the
roles it plays from the viewpoints of various users and areas of activity. Effectively,
this means zooming in on the interactions of the Business Model, to understand
exactly what goes on when, for example, a customer hires a video. It is often useful to
build and compare descriptions of what happens now (with a manual or old system)
and what will happen when our new system is installed; though only the latter is
illustrated here.

This is ‘business-design’ Some of the techniques described in this section are things you might do to try to
think ahead to how people (or other pieces of software) will work with your system; it
is rare to start with clearly defined system behavior requirements; even in cases, such
as telecommunications standards, where voluminous ‘specifications’ are available, a
clear and understandable statements of requirements is usually not a part of these
specs!

Building a prototype is an important option for many projects, and can be used as a
vehicle for finding and asking the same questions. It can be built in parallel with the
scenarios of this section and the system specification illustrated in the next section,
and will be based on a set of classes that reflect the business model’s types directly.
See Section 14.3, “Typical Project Evolution,” on page 532, and Pattern-12, Short-Cycle
Development (p.545), for a discussion on prototyping.

16.2.2 Scenarios and User-Interface Sketches

Scenario = story A scenario is a story about how the system will be used. It has several benefits.

• It works as a medium for communicating with end-users, who would not be
expected to understand the more formal notation of the system specification.
Most scenarios should be defined by the users, with the goal of capturing their
ideal task flow and sequence.
16-608 Video Case Study — System Specification

• It helps understand the likely frequencies and sequences of use of different opera-
tions, influencing the user interface design and internal architecture.

Important action bound-
aries during scenario

In this scenario, we have highlighted the commits of major transactions on the video
store system: these are points at which the interaction is not just with the user inter-
face, and not just reading the business core; but represent important changes to the
state of business objects in the software. These will be the actions we focus on first
when we specify the system’s behavior.

Walks in.
Selects copies of Trainspot-
ting and Star Trek from
shelves.
Presents them at desk.

Jo: Person Fred: Clerk

Asks for membership card.
Explains membership; OK?

Selects new membership.
Asks details & fills form
Print details asks signature

Confirm

Selects hire
Swipes Jo’s new card

Scans each video

Suggest 3 days
3 days; done
$6 OK?
Get payment; mark paid
Hand over receipt & videos

Not a member.
Yes.

Gives details.

Signs

Displays form asking new
member details.

Prints details and card.

Records new member.
(Displaying menu)
Displays: hire, member?

Displays member = Jo
for new hire
Adds video to this hire
How many days?

Charge = $6
Confirm hire
Print hire receipt

: VideoStore System

(Displaying menu.)(Idle.)

OK

OK
pays charge for 3 days

leaves

Jo hires Trainspotting

Figure 291: A scenario for a video rental
Video Case Study — System Specification 16-609

Responsibilities are sepa-
rated

The scenario makes it clear how the responsibilities are divided between the various
parties. For example, the System expects the member card before anything else, and
the Clerk therefore finds out that Jo is not a member at an early stage. Contrast with
this scenario, in which the Clerk breaks off the hire operation in order to record the
new member:

Scenarios do not replace
system specs

This scenario makes it clear that the user interface is essentially modeless; but there is
no reason why the system should not be able to accommodate both scenarios. Each is
just a single example of the system’s use: this semi-formal description does not cap-
ture all of the variations, so we need to do quite a few to get a clear idea of the main
patterns. In the end, the system specifications of the next section are the definitive
specification.

We like this style of showing scenarios as they distinctly separate what each partici-
pating object does, without using any technical notation. Popular modeling tools do
not support writing narratives in this manner, but instead support interaction dia-
grams (Section 7.1.1, “Interaction Diagrams,” on page 226). These can sometimes be
annotated with narrative for each interaction arrow.

The next scenario describes a member making a reservation for a title.

Walks in.
Selects copies.
Presents them at desk.

Jo: Person Fred: Clerk

Selects hire
Scans each video
Asks for card
Explains membership; OK?
Selects new membership.

Asks details & fills form
Print details asks signature
Confirm

Not a member.
Yes.

Gives details.
Signs

: VideoStore System

(Displaying menu.)(Idle.)

OK

OK
pays charge for 3 days
leaves

Displays form asking
new member details.

Prints details and card.
Records new member.

Displays hire form
Adds video to this hire

Continues filling hire form:
Suggest 3 days
3 days; done
$6 OK?
Get payment; mark paid
Hand over receipt & videos.

Charge = $6

Conform hire
Print hire receipt

Jo hires Trainspotting (2)

Figure 292: Scenario: rental with new member creation
16-610 Video Case Study — System Specification

A scenario for hiring and returning videos.

Walks in; browses shelves.
Enq: “Play it again Sam”

Jo: Person Fred: Clerk

Press Title search
Types “Play Sam”
Wish to reserve?
Press New Reservation

Asks for card & swipes
(or presses Member search
and enters name)
Presses Resn>confirm
Notices Jo has 1 o/due;
Reminds Jo of this
Presses o/due flag
“Trainspotting”

Yes.

: VideoStore System

(Displaying menu.)(Idle.)

Which one?

Displays Reservation form
for “Play it again Sam”.
Blank member field.

Fills Resn member field;
also shows Jo’s details

Displays Title info:
1 out, 1 held

Making a Reservation

Presents card

Displays copy list, selecting
o/due copies out to JoOK.

Records reservation

Figure 293: Scenario: reserving a title
Video Case Study — System Specification 16-611

Reminding customers to pick up reserved copies:

Walks in, selects Casablanca
from shelves.
Presents 2 copies to a clerk
with card

Pat: Person Fred: Clerk

Press New hire
Scans a copy

Scans other copy (returned)

Puts video in Hold Bin
Demands fine
Presses O/D flag

Gives details

Close old hire
Press Waive Fine
Receive cash for new hire
Press paid in full
Hand over receipt

Finds Casablanca in Hold Bin,
scans, returns to shelf

: VideoStore System

(Displaying menu.)(Asleep.)

Disputes o/due

Displays details of copy of
“Play it again Sam” with
HOLD flag and
O/D RETURN £0.80
Also displays Pat’s details
=>sets member in new hire
=>flags Casablanca in hire list
as ‘≠HELD’
Displays original hire atop
current new hire
Current hire reappears
Delete O/D flag

Print receipt & record hire.
Cancels Pat’s reservation for
Casablanca,
displays held copy with
‘Return to Shelf’
Sets copy status = shelf

Start hire: blank hire form
Displays details of copy of
Casablanca & adds to hire

Returning and taking out copies

Pleads poverty

OK
Give cash

Takes receipt, leaves

Figure 294: Scenario: returning, waiving fines, check outs
16-612 Video Case Study — System Specification

16.2.3 Storyboards

UI flows from scenariosIndividual user interface windows and the flow between them can be captured as a
storyboard. Each window is often associated with a particular task, at some level of
abstraction; a flow sequence will refine a more abstract use case. Once again, users
should be very actively involved in the actual design of the interface, even if that
means teaching them a bit about what is achievable with the target system.

Fred: Clerk

Press Holds

Select a hirer
Calls hirer to inform
Clicks on calls count

or
Presses Cancel

Finds copy in Hold Bin,
scans & returns to shelf

: VideoStore System
(Displaying menu.)(Getting bored.)

Displays member details
and reservation
Increments call count,
sets last-called date=today

Cancels Reservation,
Displays held copy with
‘Return to shelf’
Sets copy status= shelf

Displays Copy-list, selecting
on status=hold (those in
hold bin) with hirers

Pestering Customers

Figure 295: Scenario: reminding customers about reservations
Video Case Study — System Specification 16-613

Of each type of window, at most one is visible at a time. Those strongly outlined are
always visible: the current title, copy, member, and hire. Italics show information only
displayed in certtain states. Underlined items are hypertext links —navigation as
shown.

This is a partial view Only one subject area is dealt with here: the scenarios of the hires and reservations.
Moreover, only those aspects immediately visible at the user interface are shown. If
the system is expected to compile statistics about the monthly hirings of each title,
that is not apparent here, and the user interface for it is not illustrated.

Title Being There

Unbearable lightness of being
Being & Nothingness
Being There

Title Being There

Title search [F1]

Sellars 1978

Sale stock: 1 $8

Rent stock: 5 $1.00/day

Out: 3 O/due: 1

Reserved: 3 Held: 2

Shelf: 1

Being ThereCopy: VHS7341

Hold for VV Smith 27/3/96 2

Aquired: 24/6/94 Hires: 24

Copy Title Member status since called

VHS6345 Being There F Bloggs o/due 1/4/96 0

VHS2287 Being There Jane Doe out 8/4/96

Being There Max Hall reserve 28/3/96

VHS7341 Being There UZ Jones hold 1/4/96 1

VHS6878 Being There VV Smith hold 27/3/96 2

VHS2058 Being There shelf

(Inconsistent illustration. Unallocated reservation and copy
on shelf of same title should not exist simultaneously.)

(scan video copy)

Member: 9602113

Joined: 4/2/96
Rented: 5 videos
Long o/due: 0
No-shows: 1
Name: Fred Bloggs

Phone: 713 225 3240

P/code: M19 2EB House: 24

24 Any Street
Big Town, 78735

Addr:

DoB:

Got: 2 Reserved: 2 Held: 1

24/3/72

Notes:

Owes: $ 0

Account Save Edits

(swipe card)New Member [F9]

Hire: Fred Bloggs 9602113

Notes:

Days: 2 due 1/5/96

Charge:

Paid: [$ 5.00]
$5.00

Overdue: $0.80/day

Confirm Cancel

Being ThereVHS7341 out$1.
CasablancaVHS8354 out$1.

Hire [F3]

(While active and unconfirmed,
scanning video adds to hire ;
adopts current member.)

/clear Member

Reservation

: Being Ther

Member:

Fred Bloggs, 0161 22

9602113

Expected available:

Confirm Cancel

New Reservation [F2]

(Adopts current member
and title.)

Held since 27/3/96 2

O/DUE Return F Bloggs

O/Due

: 1

Figure 296: Storyboard: user-interface sketches and flow of windows
16-614 Video Case Study — System Specification

It is usually necessary to draw scenarios and storyboards dealing with several subject
areas.

UI prototype is helpful

Animations and Prototypes.

A slide show illustrating the scenarios is valuable for
discussing requirements with end-users. Better still is a prototype which can be taken
through many situations. A prototype should be viewed as an analysis tool, and is
usually designed very simply from the principal types in the specification model (next
section) together with a user-interface generator. In some cases, the core design of the
prototype can be adapted to form the core of the system. However, it should be a clear
part of the development plan, exactly which parts of the prototype are to be carried
forward, and which are to be thrown away. Proper development practice should be
applied to those parts to be carried into the design.

Context may be human
users, or larger software

Predefined context design.

Throughout this study, we conjecture that we’re con-
cerned with building a computer ‘System’ that will work within some human context.
Of course, many of the contracts that software designers have with their clients or
employers are about building components within a larger piece of software; or a sys-
tem embedded within a complex design of many pieces of hardware.

In such cases, most of the work illustrated in this section should already have been
done; and in considerably more formality than shown here. In fact the relationship
betwen our system and its context is then exactly that of a Major Component as illus-
trated below in Section 16.3, “System context diagram,” on page 616.
Video Case Study — System Specification 16-615

16.3

System context diagram

Use cases and system
context

From the scenarios, we arrive at a picture of the system’s situation within its context.
We can summarise the major use cases that we identified as being core state changes.

This makes it clear that we regard our System as spanning the entire business: there is
one per VideoBusiness. It will probably be designed as a distributed system of inde-
pendent subsystems in each store; but that apsect will be captured separately.

System is modeled as
one object

More generally, any single system can be seen as an object that interacts with its envi-
ronment, which we can characterise with a type-specification. The operations it per-
forms can be specified in terms of a model of its state. This system model is based on
the business mdoel — it represents what the system knows about its surroundings.

16.3.1 Business vs. system context models

How is software spec
related to business?

Software systems are a part of the business and its operations, and should be a part of
business models — at least at some level of detail. So what is the link between busi-
ness models, the system context for a particular software component, and the subse-
quence software specifications and designs?

User + software actions
constitute abstract busi-
ness actions

Suppose we want to improve some part of the business, as shown in Figure 298. Sup-
pose the video business today conducts its operations by some combination of man-
ual and automated processes. Memberships are recorded by issuing cards with
unique numbers on them; video rentals and returns are tracked in an Excel spread-
sheet; and reservations are recorded by placing a slip with the member number into
the cassette cover for the title. An

as-is

 model of the business (’A’) represents one
refinement of the essential business requirements (’B). A corresponsing

to-be

 model,
incorporating the new target system (‘S’), and revised business processes, will be an
alternate refinement of the essential business model; this model is based on certain
expected behaviors of the system (i.e. its specification) being used in particular ways

SystemCustomer

VideoBusinessVideoStore *

Clerk
*

confirm member
change details
delete

hire

reserve
cancel

return

Figure 297: System context diagram
16-616 System context diagram

by the business actors. Section 11.7.2.3, “Retrievals,” on page 478, illustrates with an
example how a model comprised of multiple software components and manual busi-
ness processes can be shown to map to the essential business model.

The distinction is recur-
sive

Similarly, an internal design of the system is one refinement of the system specifica-
tion. It, in turn, is based on the individual specifications of each of the internal compo-
nents inthe design, configured so they interact in specific ways.

 16.3.2 UI Scenarios vs. System Operations

Backing up from UI spe-
cifics

In identifying the system context and use cases, we have actually considered some
details of user-interfaces and fine-grained interactions; yet the system context seems
to step back to a more abstract level of use case. This process can be rationalized as fol-
lows:

• It can be helpful to make scenarios detailed enough to animate the imagination
about how the system might be used in reality, and to engage its users more
actively in designing

1

 this interface.

• However, realise that the GUI may change quite dramatically, from a traditional
window/dialog-box approach, to direct manipulation, to a voice-driven com-
mand interface. We would like to specify the main functions on the system inde-
pendent of the interface mechanisms used to use those functions.

• So we look at the scenarios and think "what are the real core state changes, and
what are the less stable GUI aspects?" — what DB or IS people would call "trans-
action commits"; we have already begun the process by highlighting them in the
storyline. Each of these comprise a “success units” which delivers some value to
the user.

B

B

S

S

S

d1

d2

d3

d4

d1

d2

d3

d4

essential business model
system specification

how to-be usage of system
realizes business requirements

how internal design of system
realizes system specification

internal design of system

as-is business
model

A

Figure 298: Relationship between business, system, and design models

1. Yes, this is a design activity — albeit "external", or "business" design.
System context diagram 16-617

• Now we specify those more abstract actions, and separate the interface details to
another package e.g. when a refinement adds a particular user-interface to the
"business core".

• We also separate out queries on the core — how to look up member details, titles,
etc. Typically these will not be specified in detail, so long as the type model offers
the required information. The user-interface prototypes will capture the required
query paths that the design must support.
16-618 System context diagram

16.4 System specification

The main deliverableThis is the deliverable of the analysis phase, though it can be somewhat more detailed
than the traditional deliverables of analysis, so as to provide a less ambiguous and
more consistent understanding of what is required of the system. A feature of an OO
analysis (by contrast with other rigorous methods) is that the description centres on a
type model derived from the business model: it is therefore easier to relate to the busi-
ness, especially when changes need to be made.

Partitioned into subject
areas

A Specification is best presented as a set of Subject areas — an informal division
which relies on the idea that different things can be said about a type in different
places: so we can focus separately on different aspects of a type’s relationships and the
behaviour associated with it.

With narrative, type
model, and specs

For each subject area, we will present:

• an informal description of the system’s role and knowledge in this area;

• a type model of the relevant aspects of the system’s state; which is a vehicle for
describing the operations the system can perform in this area.

• each operation-spec, given as a postcondition, written

• informally and
• formally, in terms of links in the system type model.

16.4.1 Subject areas

Membership subject areaMembership
Rq 4 The System records membership of each store, including making

new members, changing their details, and deleting them. Members
who have not been heard of for ages are periodically deleted.

Start informalAt present we are able to give only informal descriptions of these operations:

action confirmMember (store: Store, person: Person)
-- If person is not a member of store, makes new membership relation between them

action changedDetails (m:Member, p:Person)
-- Replaces old personal details for m with the new ones in p.

action delete (m:Member) -- Deletes m from records
action purge (Store, today:Date)

-- remove from members list all those who have not hired in > 2 years

Made precise by building
system type model

More precise descriptions can be achieved if we model the state of the system using
types adapted from the Business Model. In other words, we will assume that the sys-
tem’s internal state can in some way represent some aspects of the Business.

Parts of the Business model relevant to membership are:

Rq 5 A video Business services its customers through its Stores. A Person
System specification 16-619

may be a Member of any number of Stores.

• As we said earlier, the (Video Business) System knows about exactly one Business,
with its many stores.

Distribution deferred • This is an abstract model of the state of the whole System, and says nothing about
its construction — whether it is distributed or centralised, whether the links are
database keys or pointers, whether the types can be found in the implementation
as individual classes. These matters are all left to the design phase; a distributed
object implementation, or a server-based one with remote screen-control clients
would both be equally valid choices.

• We’ve represented the membership twice — as a direct association, and also
refined to a type. The first makes it directly obvious how the relation works; the
second makes it easier to attach more detail. The invariant tells how the two are
related.

• This is of course only part of the system type model — more in a moment. The
diagram can be interpreted as a set of assertions about Video Business Systems;
and it so happens that there are other assertions presented later.

Precise specs The actions can now be written in more detail, stating exactly what effects they have
on the links in this abstract picture of the system’s state. (They could all be written
inside the diagram, but we’ll move them outside to save clutter.) Snapshots help visu-
alise the intention of the more formal statements:

action Video_Business_System:: confirmMember (store: Store, person: Person)
post If person is not a member of store, makes new membership relation between them

(store.members@pre[who=person]=0)
=> -- store’s members now include person, joined today

store.members[who=person] <>0
& store.members[who=person]::(joined=today & noShows=0)

Membership

StoreBusiness Person

joined: Date
lastHire:Date

* name:String
address
phone

* *

* *membership

members who

inv Store::membership = members.who

stores

Video Business System

action confirmMember (store: Store, person: Person)
action changedDetails (m:Member, p:Person)
action delete (m:Member)
action purge (Store, today:Date)

Figure 299: Type model for membership management
16-620 System specification

SnapshotsTo understand exactly what these statements are saying, it often helps to draw ‘snap-
shots’ of the relveant parts of the system’s states before and after the operation occurs:

• From the Object Type Diagram, we see that each Store can have many links to
Memberships, and the name of the sheaf of links is ‘members’. This snapshot or
Object Instance Diagram shows an example store with its members. Two states
are shown, before and — in bold — after the action has occurred. In this case, a
pre-existing Person object (perhaps set up by the user interface) has been linked to
the store through a new Membership object.

• Snapshots show only an example of a particular occurrence of an action in a par-
ticular situation. They are therefore used only for illustration, and are not ade-
quate documentation by themselves.

To continue with the other action specs:

action Video_Business_System:: purge (store:Store, today:Date)
post remove from members list all those not hired for > 2 years

store.members –= store.members[today–lastHire > 2.years]

action Video_Business_System:: changedDetails (m:Member, p:Person)
post m.who = p

action Video_Business_System:: delete (m:Member)
post remove m from list of members of what used to be its store

(m.~members@pre).members –= m

Rental subject areaRental
Rq 6 The system records Rentals made by members. Each Rental is a con-

tract whereby several Copies of a video may be taken away for an
agreed period in exchange for a set charge. If any copy is kept beyond
the date it is due for return, the system records a fine for it; the
charges are made separately. The store’s rates may vary, and are dif-
ferent for different video titles, and may include discounts for long
periods; but rates charged for a rental are as they were at the time of
hire.

Rq 7 Records of rentals are kept until they are no longer needed for statis-

pat:Person

soho:Store jo:Person
name=”Jo”

address=”24/M19 2EB”
phone=”161 225 3240”

:Membership
:Membership

chris:Person
name=etc

:Membership
joined=6/5/96

lastHire=0

members

:Membership
joined=3/3/95

lastHire=12/12/95

name= etc
chris:Person

Figure 300: Snapshot: membership action
System specification 16-621

tical and accounting purposes.

A Rental Item represents the hire of an individual Copy. Each Copy may have many
RentalItems, though at most one may be not yet returned.

Invariants for states A Copy is said to be ‘out’ iff it has an unreturned hire; it is ‘o/due’ iff it is out and
today is later than the rental due date. It is ‘in’ iff not out.

Copy:: (isOut = (hires[returned=null] <> 0)
& isOD = (isOut & hires[returned=null].~items.due < today)
& isIn => not isOut)

A Rental is said to be complete iff all of its RentalItems are returned.

Rental:: isComplete = (items[returned=null] = 0)

Rental action specs System operations involving these types:

action hire (store:Store, to:Date, copies:Set(Copy), m:Membership)
post -- a Rental for these copies is added to this store’s list of rentals

store.hires += new Rental[member=m & from=today & due = to
& charge = (store.charge(copies.title,to–today))..sum
& items=(new RentalItem[copy:copies

& odRate=store.od_charge(copy.title)
& returned=null])]

action return (copy:Copy, store:Store)
post -- if this copy is out, this copy’s rental is marked returned

copy.~stock=store & copy@pre.isOut)
=> hires[returned@pre=null].returned=today

action purge(store:Store)
post -- get rid of all complete Rentals made longer than 6 years ago

store.hires –= hires@pre[isComplete & (today–from)> 6.years]

Reservations subject area Reservation

Store

Membership

*

*

RentalItem
odRate:Money Copy

* returned: [Date]

Rental

from: Date
due:Date

charge:Money

*items
charge(Title, Period):Money

hires

od_charge(Title):Money

member Title

copy

title
*

inv Copy::hires[returned=null]#size<= 1

hires
* stock

Figure 301: Type model: rentals

Store

Membership

*

*

Hold
called:[Date]

Copy

identifiercallCount:int

Reservation

made: Date 0,1
0,1

Title

name:String
details:String

*

where

who

holding

what

title

hold

0,1

*
catalogue

*

junk: [Date]
got: Date
hired: int

*

Figure 302: Type model: reservations
16-622 System specification

Definition of ‘hold’A Hold represents the fact that a Copy is being kept aside for a Reservation, waitiing
for the Reserver to come and get it. A Hold not linked to a Reservation represents a
Copy which is in the Hold bin, having been held; and for which the reservation has
been cancelled, so that it should be returned to the shelves.

...with state invariantsIf it is ‘in’, a Copy is said to be ‘held’ if it is in the Hold Bin for some Reservation;
‘hold-cancelled’ if it is in the Hold Bin but has no Reservation; ‘shelf’ if available to be
hired; ‘sale’ if it can be sold; ‘junk’ if it has been withdrawn from circulation.

Copy:: (isHeld = (isIn & hold <> null)
& isHoldCancelled = (isHeld & hold.holding=null)
& isShelf = (isIn & not isHeld)
& isSale = (hired=0)
& isJunk = (junk <> null))

Actions relevant to these types:

action reserve (member:Membership, here:Store, title:Title)
post -- if title is in the store’s catalogue, add a Reservation for this title

title : here.catalogue
=> new Reservation

[made=today & where=here & who=member &
what=title & holding = null]

action cancel(res: Reservation)
post delete res

action return (copy:Copy, here:Store)
post -- if there are pending reservations for this title, hold copy for one of them

copy.title.reservations@pre[holding=null & where = here].size>0)
=> copy.hold.reservation:: (holding@pre=null & what=copy.title & who)

action hire (here:Store, to:Date, copies:Set(Copy), m:Membership)
post -- clear any reservations for these titles and member,

-- and clear the Hold of any copies actually taken away
delete copies.title.reservations[who=m & where=here]

& delete copies.hold

Accounting subject areaAccount

Operations relevant to these types:

action credit (ac:Account, what:Money, why:String)
post ac.items+= new AccountItem[amount=what &

reason=why and when=today]

action hire (store:Store, to:Date, copies:Set(Copy), m:Membership)
post -- add hire charge to account

(store.hires–store.old(hires))::

Membership Account

Account Item
amount:Money
reason:String

when:Date*

items

Figure 303: Type model: accounting
System specification 16-623

(member.account.items+= new AccountItem [
amount = charge & reason=”hire” & when=today])

action return (copy:Copy, here:Store)
post -- add overdue charge, if any, to account

let thisHire= copy.hires [returned@pre=null],
(thisHire::(rental.due<returned))
=> thisHire.rental.member.account += new AccountItem [

amount=thisHire::(odRate*(returned–rental.due))
& reason=”overdue” & when=thisHire.returned]
16-624 System specification

16.4.2 Putting it all together ...

‘Joining’ the modelsLet’s summarise the pieces of model we’ve seen so far in a single diagram. A good
tool would make it easy to switch between the topic-specific views and this large
view.

Join action specsWe could also bring together the various pieces of specification we’ve seen for each
action. For example, return has cropped up in several places. Its spec is the conjunciton
of them all:

action return (copy:Copy, here:Store)
post
(

-- if this copy is out, this copy’s rental is marked returned
copy.~stock=store & copy.isOut@pre

Reservation

Membership

Rental

Store

Business

Title

Copy

Account

Account Item
Person

*

*

joined: Date
noShows: int

amount:Money
reason:String

when:Date

*

*

*

from: Date
due: Date*

*

charge:Money

name:String
details:String

*

*

name:String
address
phone *

* *

Hold
called:Date

callCount: int
0,1

0,1

identifier

RentalItem
odRate:Money
returned: [Date]*

stock
*

junk: [Date]
got: Date
hired: int

sale:Bool

Video Business System

action confirmMember (store: Store, person: Person)
action changedDetails (m:Member, p:Person)
action delete (m:Member)
action hire (to:Date, copies:Set(Copy), m:Membership)
action return (copy:Copy, store:Store)
action reserve (member:Membership, here:Store, title:Title)
action cancel(res: Reservation)
action credit (ac:Account, what:Money, why:String)
action purge (Store, today:Date)

what

who

1

1 1 who1

where

Figure 304: Combined type specification
System specification 16-625

=> hires[returned@pre=null].returned=today
) &
(-- add overdue charge, if any, to account

let thisHire= copy.hires [returned@pre=null],
(thisHire::(rental.due<returned))
=> thisHire.rental.member.account += new AccountItem [

amount=thisHire::(odRate*(returned–rental.due))
& reason=”overdue” & when=thisHire.returned]

) &
(-- if there are pending reservations for this title, hold copy for one of them

copy.title.reservations@pre[hold=null & where = here]->size>0)
=> copy.hold.reservation:: (@pre.hold=null & what=copy.title)

)

16.4.3 Statecharts

Statecharts for selected
types

It is often useful to express the behaviour of a system by showing diagrammatically
the effect of each of its operations of some part of its state. The ‘part of its state’ we
consider is usually (though not necessarily) one object in its model. By doing this for
all the parts, we can build a picture of the behaviour of the whole thing.

Copy

Collecting states from all
subject areas

We’ve already defined various states for Copies (under ‘Rental’ and ‘Reservation’
above). Here’s a statechart for them. (Technically, it’s a statechart for the entire system,
where each state represents the truth of a predicate about any given Copy recorded
within it.). Most of the guards needed in a statechart can be made very simple by
introducing convenience attributes, including parameterized ones, on the type model.

When a copy is created or returned, it is either held for an outstanding reservation, or
put onto the shelf. It is held if it is ‘wanted’ — that is, if there is a reservation for this
title and in this store which does not have a Hold.

ReserveisShelf

ReserveisHired

isIn isOut

ReserveisOD

[today>due]

Copy

hire(t,cc,m)

ReserveisHeld

ReserveisHoldCancelled

[not wanted] wanted=

[wanted]
hire(t,cc,m) [not_me(cc, m)]
cancel(res) [res.hold.copy=self]

not_me(cc, m)=

return(self)

[self:cc]

[not wanted]

[wanted]

 (title.reservations[r, r.hold=0

 (not (self:cc) & hold.member=m)

& r.store=self.store] = 0)

Figure 305: Copy statechart
16-626 System specification

Action effects in different
states become very
apparent

A copy ceases to be ‘in’ when it is hired (that is, when a hire event occurs in which it is
one of the copies hired). If a copy is held and the reservation is cancelled, the copy is
either reallocated to another reservation, or becomes Hold-Cancelled until the clerk
checks it back to the shelf. The same happens if another copy of the same title is hired
to the member it’s held for.

And missing transitions
and actions surface

A statechart frequently throws up questions not noticed previously. For example, how
is a new Copy introduced? What is the operation whereby the clerk puts a hold-can-
celled copy back into the shelf?
System specification 16-627

16-628 System specification

	Chapter 16 How to Specify a Component
	16.1 Patterns for Specifying Components
	Pattern-27 Specify components
	Pattern-28 Bridge requirements and specifications
	Pattern-29 Use-case led system specification
	Pattern-30 Recursive decomposition — divide and conquer
	Pattern-31 Make a Context Model with Use-Cases
	Pattern-32 Storyboards
	Pattern-33 Construct a system behavior spec
	Pattern-34 Specifying a system action
	Pattern-35 Using state charts in system type models
	Pattern-36 Specify component views
	Pattern-37 Compose Component views
	Pattern-38 Avoid Miracles ... Refine the spec
	Pattern-39 Interpreting Models for “Clients”

	16.2 Video Case Study — System Specification
	16.2.1 System context
	16.2.2 Scenarios and User-Interface Sketches
	16.2.3 Storyboards

	16.3 System context diagram
	16.3.1 Business vs. system context models
	16.3.2 UI Scenarios vs. System Operations

	16.4 System specification
	16.4.1 Subject areas
	16.4.2 Putting it all together ...
	16.4.3 Statecharts

