

 Chapter 15 How to build a Business Model
Outline

This chapter, and the next three, illustrate the use of Catalysis on a sample prob-
lem, and discuss the how-to’s of applying Catalysis. This chapter is focused on
building a business model; this is usually a model of a problem domain or busi-
ness, not of some software “business-object” layer sitting behind a user-interface.
Of course, the software objects in the subsequent chapters will be based upon the
business objects, using some naming scheme to associate them.

We start with a set of patterns that describe the process of building a business
model, and then illustrate their usage on the case study.
© Desmond D’Souza & Alan Cameron Wills 1998/May/11 12:23 15-549 of 580

15.1 Business modeling process patterns

This section gives the major steps in building a business process model.

Pattern-11, Re-engineering (p.542) described re-engineering activities in general, and
building of as-is and to-be models to guide that effort. Pattern-14, Business Process
Improvement (p.551), discusses specifics that apply to business-process modeling. Pat-
tern-15, Make a business model (p.553), covers how to go about constructing a useful
business model. Pattern-45, Separate Middleware from Business Components (p.637), dis-
cusses a specific and common concern in business modeling — designing and extend-
ing heterogeneous and federated software components so they more directly track the
business independent of changes in technology.

Pattern-26, Action Reification (p.577) introduced a common modeling pattern: when an
use case is refined into a sequence of finer-grained actions, it is useful to model the
abstract use case ‘in progress’ as a model type in the detailed level, going through a
lifecycle as the detailed actions take place.

While this section’s patterns are about organising the process of business modeling,
Section 15.2, “Modeling patterns,” on page 561, gives some of the most essential pat-
terns that are useful in the actual construction of a business model.

Section 15.3 shows how some of these patterns have been applied to the case study of
a video-rental business at an abstract level. Section 15.4 details this model using action
refinement, showing the finer grained actions involved in the business.
15-550 Business modeling process patterns

Pattern-14 Business Process Improvement

SummaryAbstract and re-refine to get an improvement in business organization.

ObjectivesImprove the organization of a business —not necessarily involving software or com-
puting machinery. In the process, we may review roles and processes in the organiza-
tion, and may also require software systems development.

ConsiderationsA business improvement effort may be triggered by the installation or upgrade of a
software system; or a perceived quality problem in business performance; or the hir-
ing of a new senior executive. Although the explicit request may be simply to work on
a software project, the analyst’s scope often expands to include some of the former.
This is part of what the System Context Diagram (Pattern-31, Make a Context Model
with Use-Cases (p.589)) is about — the computer system as one element in the design
of a business process.

Companies, departments, people — and hardware and software systems — can all be
thought of as interacting objects; so can the materials and transactions in which they
deal. Designing the way in which a company or department performs its functions —
whether making loans, manufacturing light-bulbs, or producing films —is principally
a matter of dividing the responsibilities between differentiated role-players; and
defining flow of activities, and the interfaces and protocols through which they col-
laborate to fulfill the responsibilities of the organization as a whole (which of course is
one role-player in a larger world).

This is very similar to the problem of object-oriented design, and so the same notation
and techniques can be applied. (Indeed, an effective help in deciding the distribution
of responsibilities between software objects is to pretend they are people, depart-
ments, etc.; although the analogy can certainly be carried too far!) This should not sur-
prise us, since the big idea of OO programming is that the software simulates the
business.

StrategyApproach this problem as a particular case of Pattern-11, Re-engineering (p.542).

• Make a business model
(Pattern-15, Make a
business model (p.553))
including associations
and use cases, in which
you reflect the existing
process. This example
is merely a sketch, less
formal and complete
than would be useful.

Customer Café

use case makeOrder

use case getFood

use case pay

post new Order for customer, food

post customer has received ordered food

post Customer has paid for food that
was delivered, Café gets money

pre Customer has received food

pre customer has ordered food

Order*
*

TableService

ordered
Business modeling process patterns 15-551

• For any as-is element, ask
“why is it so?”. Abstract the
collaborations to single use
cases. Abstract groups to
single objects (for example
individual person roles to
departments). Specify
abstract use cases with
postconditions, rather than
sequences. It may be useful
to re-iterate this to several
levels of abstraction. Each
abstraction generally repre-
sents some goal or goals of a part of the process or organization.

• Refine the result to a
different design. Do
the new design and
document it as a refine-
ment of the abstrac-
tion (Chapter 7,
Abstraction, Refine-
ment, and Testing
(p.265)).

• Evaluate the result in
relation to aspects not
readily expressed as
postconditions, such as
error rate, cycle time,
costs. Acknowledge
that there are a great many of these. In the end, this technique can only suggest
alternatives. Human, political, and many other constraints will influence the deci-
sion.

• Consider how to plan the changes so as to cause minimal upheaval and at mini-
mal risk (Pattern-11, Re-engineering (p.542)).

Benefit As always, there are many benefits to the act of formalizing your understanding of the
situation in a well-defined notation, even1 at the business level.

• it exposes gaps and inconsistencies, and prompts questions you might never oth-
erwise have thought to ask;

• it facilitates clear discussion and mutual understanding among those concerned;

• it provides an unambiguous method of encoding your current understanding,
even if your clients don’t understand it directly (Pattern-39, Interpreting Models for
“Clients” (p.606)).

The abstract and re-refine technique helps ensure that overall goals of the organiza-
tion are still met, insofar as they can be expressed in a functional notation.

Customer Café

use case buyFood
post customer has aquired food from café, &

café has acquired money from customer

Café_Goals

TableService

ordered
received

paid
getFood pay

↑buyFood

makeOrder
Café Table Service Refine

Customer Café

use case selectFood

use case pay

post customer has received food

post customerhas paid café for received food
pre customer has received food

Item*
*

SelfService

received

Café_Goals

selected paid

selectFood
pay

↑buyFood

Café Self Service Refine

1. Experience suggests the benefit might be even greater here, where we are conditioned to
accept outrageously loose terminology
15-552 Business modeling process patterns

Pattern-15 Make a business model

SummaryBuild a type and/or collaboration model that expresses your understanding of some
part of the world, making it the final description of your understanding of your cli-
ent’s terminology.

ObjectivesUnderstand clearly the terms your clients are using before anything else; ensure that
they understand the terms as well, the same way as you do.

You may build a business model as a prelude to:

• Pattern-14, Business Process Improvement (p.551)

• System development, Pattern-10, Object Development from Scratch (p.541)

A business model is not oriented to any single design, and may serve as the basis for
many designs and structures within the business.

Considerations“Business” covers whatever concepts are of primary relevance to your clients; not nec-
essarily business in the sense of a commercial enterprise that makes money. If you’re
being asked to design a graphical editor, your business is about documents and the
shapes thereon. Cursors and windows and handles and current-selections are possi-
ble parts of the mechanics of editing them: clients don’t care about those except as a
aid to produce their artwork. If you’re designing a multiplexor in a telecoms system,
your users are the designers of the other switching components, and the business
model will be about things like packets, addresses, etc. If you are redesigning the
ordering procedures of a company, the business model is about orders, suppliers, peo-
ple’s roles,....

There may be many views of a business. The concerns of the marketing director and
the personnel manager may overlap, even where they share some concepts, one may
have a more complex view of them than the other. See Chapter 7, Abstraction, Refine-
ment, and Testing (p.265).

You may have frameworks available from which this model can be composed.

StrategyAim. You should end up with a model showing the types of main interest. They
should have static associations and attributes; and action links showing how they
interact. The model consists of diagrams, invariants, and a “Dictionary” (Chapter 6,
Effective Documentation (p.237)). You should be able to describe any significant busi-
ness event or activity entirely in terms of the model.

Sources.

• Existing procedures, standards documents, software, and user-manuals: where
these do exist, they should be consulted. But keep in mind that procedures as
written often do not reflect the actual operations. User-manuals for existing sys-
tems are a rich source of information. They act as a key input to reverse-engineer-
ing an abstract model of a system; and therefore, of a business.

• Observation and interviews: actual observation of procedures at work, combined
with interviews with the persons involved in these procedures. Techniques such
as CRC cards can be very effective at eliciting information on as-is processes.
Business modeling process patterns 15-553

• Existing relational or E-R models: these provide a quick start on the terminology
and some of the candidate object types in the business. However, due to the mores
or normalization and the exclusive focus on stored data, these models can often
be considerably simplified to build a type model. Where used, triggers and stored
procedures often encode many business rules.

• Existing batch-mode systems: often those late-night Cobol batch jobs encode criti-
cal sets of business rules. Many of these rules can be captured as time-dependent
static invariants on the type model (the batch-job cuts in to make sure no objects
will be in violation of these invariants, come sunrise); or as effect invariants, of the
form “any time this thing has changed, that other thing must be triggered”.

• Feedback from prototypes, scenarios, models: as always, any “live” media pro-
vides very valuable feedback and validation of models being built. For example,
storyboards, prototypes of UI screens, CRC-card based scenarios, and model
walkthroughs, can all be used.

Techniques.

There are some basic yet useful rules of thumb for finding objects, attributes, actions:
looking through existing documents (business, requirements, user manuals, etc.) map
nouns to types, verbs to actions, static relationships to associations, rules to static and
dynamic invariants, and variations to subtypes or other refinements.

Focus on one type at a time and consider what interactions its members have with
other objects. Draw use cases ellipses, linked to participating objects. Some actions
may have several participants of the same or different types. Ask: What roles are the
participants playing within this collaboration? What information do they exchange?
What is the net result of an action?

e.g. for an airplane: control — Pilot; check-position — GPS, GroundStation; lift —
Atmosphere.

Focus on one type at a time and ask: At any one moment, what information would we
want to record about this type of object? Write these as queries (attributes and associa-
tions) sourced at this type. For each one, ask what the type of that information is, giv-
ing the target type. Don’t confuse static information with actions; actions abstract
interactions, while attributes represent information known before and/or after the
actions.

e.g. for an airplane: pilot, copilot: both of type Pilot; airspeed, groundspeed:
Speed; scheduled-to-land-at: Airport; previous hundred destinations: set of Air-
ports; pilot’s-spouse’s-favorite-shoe-color: Color.

Use snapshots to verify that all the information of interest can be represented by the
static associations.

Decide a consistent level of abstraction in relation to actions: are you going to worry
about individual keystrokes, or just talk about broad transactions? The highest level
action that could be useful should accomplish a business task or objective, or abstract
a group of such actions. The lowest level action that could be useful should constitute
an indivisible interaction; should the interaction fail to complete successfully, or oth-
erwise be aborted, there should be no effect that would be useful at the business level.
15-554 Business modeling process patterns

Some business models focus on the types that a single client can manipulate — such
as the Drawing example here. In this case, the actions are all shown localized in the
Drawing and its constituents. Other models need to be more concerned with interac-
tions between objects, like the Library example.

The resulting business model acts as a the central glossary of terms for all projects
associated with it — business engineering, software requirements, and so on.

Figure 269: Range of “Business” Models

Drawing

Shape
covers(Point)
color
move(Vector)
rotate(Angle)
scale(float)

addShape(Shape)
deleteShape(Shape)

*
content

Triangle Circle

Member

Library

Librarian

Stock

Title

Book
return

checkOut

reserve find

*
*

add
withdraw

StockKeeper

Library Business ModelDrawing Business Model

*
supervises

*

Business modeling process patterns 15-555

Pattern-16 Represent business vocabulary and rules

Summary The purpose of the model is to represent both the terms used in the business, and the
rules and procedures it follows. Reduce business rules to invariants, generalized effect
invariants, action specs, and timing constraints.

Objectives Reduce misunderstandings between colleagues, as to the terms and parameters of the
business. Making some of these business rules precise directly aids identification of
software requirements (which parts of the rules are dealt with by which component,
which by users), type models (the models provides the vocabulary that helps specify
the rules), and traceability from software to business.

Provide a well-understood set of terms and relationships, to which all other docu-
ments can be related.

Strategy Seek business rules in the current actual business process, the process as documented,
and rules encoded in existing software systems (from user manuals, database triggers,
batch mainframe programs; see Chapter 18, How to Reverse-Engineer Types (p.671)).
Restate these business rules in terms of (in descending order of preference):

• invariants over the model

• generalised effects-specs that must apply to every action

• timing constraints "this must be done within ..."

If an informal rule cannot be formalised in this way, suspect that the static model is
inadequate, and add material.
15-556 Business modeling process patterns

Pattern-17 Involve business experts

SummaryKeep the end-users involved in the business model.

ObjectivesThe business model is owned by the people who run the business. (The IS department
are just there to coordinate writing it down.)

ContextCreating a business model.

StrategyCreate the first draft of the model by interviewing experts, and by observing what
they do. Goals or achievements, tasks or jobs or interactions of any kind should be
sketched as actions; nouns are sketched as types.

• For each action that appears on your sketch, ask "Who’s involved in this action?
Who does it affect? Looking at different specific occurrences of it, what could be
different from one occasion to another?" These questions yield the participants
and parameters. Don’t forget to distinguish objects from types, parameters from
parameter types.

• For each type that appears on your sketch, ask "What can be known about this?
(Has it a physical manifestation? What do you record about it?) What creates it?
What alters its state?" Or if it is an active object (a person or machine), "Who does
it interact with? What tasks does it accomplish?" These questions yield attributes
and associations of the type, and actions it participates in.

• For each action, ask "What steps are taken to accomplish this?" For each type, ask,
what constituent parts can it have? These yield action and object refinements
(Chapter 7, Abstraction, Refinement, and Testing (p.265)).

• For each type, ask "What states does it go through? (Or stages of development, or
phases, or modes.) Draw statecharts, check state transition matrices (Section 4.9.5,
“Ancillary Tables,” on page 180). The transitions yield more actions.

• Remember to include abstract concepts (like "Problem" or “Symptom”) as well as
concrete things (like "Fault Report"), and relate them together.

• Ask "What rules govern this action/state/relationships between types?" This will
yield invariants.

With your analyst colleagues (who have perhaps being interviewing other experts
concurrently) work out how to make the picture cohere. Formalise action specifica-
tions, define states in terms of attributes, make conjectures and raise questions. Then
go back to the experts with questions. (Don’t be afraid to do so — people love explain-
ing their jobs!)

Once a reasonable (though still imperfect) model is drafted, hold workshops for the
expertsto review it. Take these in stages: static model first; then actions; then invari-
ants and use-case specs.

Post parts of the model around the walls in a large room. Begin with a general presen-
tation about types, associations and actions, so that they can read the diagrams. Then
have everyone walk around the room — don’t permit sitting — congregating around
the subject areas they are most interested in. Have one of the analysis team on hand to
walk people through the details. Also have scribes on hand to note all the comments.
Business modeling process patterns 15-557

Cycle until agreement is more or less (though not entirely) reached
15-558 Business modeling process patterns

Pattern-18 Creating a Common Business Model

SummaryRather than building a business model first, a common model is created from several
components in the business, and from the definitions of the interfaces.

ObjectivesDeliverable: a business model.

ContextThere is a variety of components, each with its own model. They have been developed
separately. You need to connect them toegether — whether through a ’live’ interface,
or just by enabling files to be written by one and read by another.

This problem is found wherever different software deals in the same area: most of us
have encountered the problems of translating from Word to or from some other docu-
mentation tool. The writers of the import and export and translation modules have to
begin by building a model of document structure.

It is also a common problem in large organisations: each department has bought its
own software, and the IS department has the task of making them talk together more
coherently. (See Section 11.7, “Heterogenous components,” on page 472). The problem
is particularly acute when two enterprises merge, and they each have their different
systems talking different languages.

Finally, the most high-profile cases are those which involve communication across the
boundaries of organisations: from banks to the trade exchanges; from one phone com-
pany to another; or between airlines and ticket vendors.

And the important thing is that we are not dealing with a model of any of the pro-
grams that communicate: it is a model of what they are talking to each other about —
whether documents, financial transactions, aircraft positions, or talking pictures.

Strategy• First agree with whomever is in charge of the various components, that you are
going to create a common standard. Try to ensure the most powerful player
doesn’t just go ahead and do things their own way.

• Second, accept that there will never be a standard model that all work to: there
will always be local variants and extras. Adapters will be used to translate from
one to another. Therefore, timebox the generation of the common model.

• Now we come to the technical part. Consider the models of each of the compo-
nents, and write a common model of which all of them can be seen as refinements.
Write abstraction functions (Section 7.1.5, “Model abstraction,” on page 269) to
demonstrate this, mapping each component model to your new model.

• There will be interesting features within some of the components’ models that not
all of them can deal with. Not all televisions can deal with color signals; not all fax
machines understand Group III compression; not all word processors understand
Tables; not all of the software components running book-library will understand
the concept of the aquisition date of a book, even though most will understand its
title.
Add to your common model, these additional features (perhaps in different pack-
ages). Work out whether and how each component will deal with the additional
information when it gets it and can’t deal with it; or the lack of it, when it expects
it.
Business modeling process patterns 15-559

Pattern-19 Choose a level of abstraction

Summary Agree with your colleagues how much detail you’re dealing with at each stage.

Motivation We have seen how it is possible to document objects and actions at any level of detail
or abstraction. This is a powerful tool; but two problems commonly arise:

• Keeping away from the detail and implementation is very difficult for program-
mers to do (especially good ones)

• Misunderstanding about the level of detail you’re working at is a common source
of arguments.

Strategy Use the abstraction and refinement trechniques (Chapter 7, Abstraction, Refinement,
and Testing (p.265)) to explore the levels more abstract and more detailed than you
have. For example, once you have identified some actions, think "What more abstract
action or object are these part of?" And, "What more detailed actions or objects would
form part of this?"

Make sure that for each action at any level, you at least sketch out the effects; and
make sure that you do so with sufficient precision to be aware what types in the
model are necessary to describe the effects.

Each layer of abstraction will have a coherent set of actions, that tell the full story at
that level of detail; and will have a static model that provides the vocabulary in which
that story is told. Different layers will have different sets of actions and static models.

This process of exploration tends to provide insights leading to a more coherent
model.

Begin by sketching the different layers — decide in advance how much time going to
spend in this exploration: anything from half an hour to one day, depending on the
size of the model. By the end of it, you should be able to make a more informed choice
about what level to focus on and elaborate completely.
15-560 Business modeling process patterns

15.2 Modeling patterns

The preceding patterns have been about planning the development process.

These next few are more in the conventional analysis and design style, relating to the
construction of a business model.

There are many good sources on patterns appropriate to this modeling (for example
[Fowler 97b] and [PLoP]). Our main concern here is to point out what we see as the
most essential ones.
Modeling patterns 15-561

Pattern-20 Type model = glossary

Summary Every term used within the field should appear in the model.

Objectives Ensure the type model fully represents the business domain.

Motivation The purpose of the business model is to represent all the vocabulary that is used by
the people in the business. It can augment or form a more structured variant of the
company or project glossary. Its advantage over the plain glossary or dictionary of
terms is that it can summarise complex relationships readily.

On the other hand, the alphabetical dictionary is more easy to look up.

Strategy Therefore model the business by drawing the glossary explanations in pictures:

• Ensure every concept written in documents that describe the business, or uttered
by experts in the business, is represented somewhere. Generally, nouns –> object
types; verbs –> actions.

• Remember you are modeling the business — not writing a database schema or
program; and not modeling purely physical relationships. The associations are
attributes drawn in pictures — not lines of communication or physical connec-
tions. (The latter would normally be drawn as an action.)

• Feel free to include redundant terms: if people talk about it, include it: write as an
invariant, how it relates to the other terms. For example:

• A level of detail you would have to optimise in an implementation is OK in a
business model. For example: ome pages in a Library Book may be torn. In an
implementation, a list of integers, representing damaged page numbers, could be
optionally attached to each Book Copy; but we want to model the world as
directly as possible, so let’s model a Book as a list of pages, and give every page a
boolean torn attribute.

• Although the static type model tells what snapshots could be drawn at any one
moment in time, a snapshot may contain plans for the future (schedules and time-
tables) as well as historical data (audit trails). So a list of past loans would be a
valid attribute of a book.

Complement the pictures with explanatory prose:

• Attach to every type and action, a glossary-style description of what these things
are. Have your tool dump an alphabetical list of these descriptions.

• Divide the model into smallish type diagrams, and write a narrative description
of the business, in which these diagrams are embedded. Use a modeling tool that
supports embedding within narrative. (See Chapter 6, Effective Documentation
(p.237)).

Library
catalog

*
Book Title

Book Copy
*

copies

*

stockLibrary :: stock = catalog.copies

Figure 270: Business model with convenient terms and invariants
15-562 Modeling patterns

Pattern-21 Separation of concepts — Normalisation

SummaryStarting with a draft model, enhance it by considering a number of rules.

MotivationAnalysts who have some experience with entity-relational modeling sometimes ask
whether constructing a static object-oriented model is any different. Much is the same;
and there is some that is different.

• In business and requirements modeling, the objective is not to design a database.
Therefore we do not need to be so strict about normalisation; and we need not dis-
tinguish attributes from associations.

• Redundant links and associations are OK.

• Object models have sub- and supertypes.

• Object models include actions, whether joint or local to an object type. Sometimes
the only distinction between one type of object and another is how it behaves
(that is, how the effects of actions depend on it). An entity-relational model would
not make these distinctions.

• In an entity model, each type should have a key: a set of attributes that together
define the object’s identity, and distinguish one from another. In an object model,
every instance has an implicit identity: two objects may have all the same
attribute values and yet still be different objects.

Nevertheless, we can take over some of the techniques from E-R modeling, to
improve a model.

StrategyTherefore, look for these triggers in your model:

• For a type with many associations and attributes, consider whether it should be
split up into several associated types.

• For any association, but particularly many-many associations, consider modeling
it as a separate type.

• Object identifiers, names, keys, tags, and similar attributes: use associations.

Book

due: Date
borrower name: String
borrower address: String
title: String
author : String

Book Copy
due: Date

Member

name : String
address: Address borrower

0,1
*

Book Title
name:String

*

1
Author

1..

Figure 271: Splitting types

Member Book Copy
borrower
0,1

*

Member Book Copy
borrower
0,1

*

Loan
due: Date 0,1

1 1

Book Copy :: borrower = loan.member
Figure 272: Reifying associations

Book Copy
borrower: Member ID link to Member as above
Modeling patterns 15-563

Pattern-22 Items and Descriptors

Summary Distinguish things from descriptions of things.

Motivation When someone says "I wrote a book" and someone else says "I bought a book", do
they mean the same thing by "book"? If the latter is a publisher, then maybe; but when
most people buy a book, they are buying one copy.

In a Library control system, we would have to distinguish individual Copies of books
from the book Title. When a Member borrows a book, they borrow a specific Copy; if
they reserve a book, they’re actually reserving a Title, and don’t usually care what
copy they get. There are many Copies for one Title. Titles have attributes like author,
and the actual title in the sense of a name (oops — another potential confusion here).

We often find the same potential confusion. A manufacturer’s marketing people will
discuss the launch of a new Car; the customer will buy a Car: but one means a model
or product line, while the other means a specific instance of it. On the restaurant’s
menu, we see a variety of meals, with descriptions and prices; the meal a customer
eats is not a description or a price, but a more physical item that conforms to the
description. The Flight you took the other day is one occurrence of the Flight on the
timetable.

The item/descriptor distinction is exactly the same as instance/class. (We use differ-
ent words to avoid any additional confusion between the modeling domain and the
software.) Indeed, in some programming languages (such as Smalltalk), classes are
represented by objects, and each instance has an implicit link to its class. The class
objects are themselves instances of a Class class, and new ones with new attributes
can be created at run time. This property of the language is known as ’reflection’.

Strategy In the most straightforward cases of Items and Descriptors, reflexive techniques are
not necessary. The attributes of interest are the same for every book Copy in the
library: who is borrowing it, what its Title is. Once we have spotted the distinction,
there is no further complication.

A more difficult situation comes about where we need to model a system in which the
users may decide, while the system is running, that they need essentially new classes
of item, with new attributes, business rules, and actions.

Few systems genuinely allow end-users to make arbitrary extensions; those that do
need to provide a programming or scripting language of some sort. Normally there is
some restriction — the additions all fit within some framework. An example is a CAD
(computer aided design) system, in which new kinds of mechanical part can be
added, and the users can write operations that extend the code. Another is a work-
flow system, in which users can define new kinds of work object, and their flows
through the system.

In these cases, a framework can be defined (Chapter 10, Model Frameworks and Template
Packages (p.389)) that imposes global constraints. The scripting language can be
defined separately.
15-564 Modeling patterns

Pattern-23 Generalise and specialise

SummaryUse subtyping and model frameworks to simplify and generalise the model.

ObjectivesMake the model applicable to a wider range of cases; provide insights that will help
broaden the scope of the business, and/or make it easier to understand.

MotivationA supertype describes what is common to a family of types. A new variant can be cre-
ated just by defining what is different in the new type. (See Chapter 4, Behavior Models
— Object Types and Operations (p.129)).

A model framework describes a family of groups of types. A collaborating group of
types can be created by parameterising the template. (See Chapter 10, Model Frame-
works and Template Packages (p.389)).

The effort of generalisation, either to a supertype or to a framework, usually leads to
useful insights into the model. Also, it tends to simplify things: you find common
aspects where you didn’t notice them before, and recast the model to expose them.
Furthermore, the result is more easily extensible.

StrategyTherefore,

• Find common aspects between types in your model. Check that the similarities
are real — that the users use a concept covering them both. Construct a supertype,
and redefine the source types as its subtypes.

• Find common aspects between groups of types in the model. Construct a template
package containing everything that is common to the different occurrences, and
then rewrite them as applications of the framework.

Some specific triggers:

• Same types of attributes and associations in different types: form a supertype.

• Several associations with the same source and mutually exclusive 0,1 targets:
form a supertype for the targets.

• Several n-ary associations with a common source, where invariants and postocn-
ditions frequently need to talk about the union of the target sets: form a supertype
for the targets.

• Invariants and postconditions focused on type A only use some subset of the
attributes of B, an attribute (or association) of A: put the unused attributes in a
subtype of B. (Reduces spurious dependency.)

• Similar ’shapes’ in different parts of the type diagram and action diagrams: form a
model framework that can be applied to recreate the collaborating groups.

A B
d

e
E

b

f
F...b.e...

inv
A B

d

e
Eb

f
F...b.e...

inv
B1

Figure 273: Introducing subtypes to decouple
Modeling patterns 15-565

Pattern-24 Recursive composite

Summary Model an extensible object structure with a recursive type diagram.

Strategy This is a general framework for modeling extensible structures:

For a tree, set np to be 0,1; for a directed graph (with shared children) set np to *.

An issue to decide is whether you want to permit loops in the instance snapshots. If
not, import instead the no-loops package:

Examples np=1, no loops:

• Programming languages: some statements (if, while, blocks) contain other state-
ments; some do not (function calls, assignments).

• Graphical User Interfaces: some elements of a screen are primitive, such as But-
tons or scrollbars; others are composites of the smaller elements.

• Military or organizational hierarchies.

np=2, no loops:

• Family trees.

np=*, no loops:

• Macintosh file system

• Spreadsheets (each cell may be the target of formulae in several other cells)

np=*, loops allowed:

<Node>

<Leaf> <Branch>

children

parent

*

<np>

Recursive Composite

Figure 274: Template for recursive composite

<Node> <Branch>
ancestors

*
Node:: ancestors = parent + parent.ancestors

Node :: not ancestors#includes(this)

— my ancestors are the set of my parents and all their ancestors

— I am not among my own ancestors

No-Loops Recursive Composite

import Recursive Composite

Figure 275: Recursive composite without instance loops
15-566 Modeling patterns

• Road maps

• Program flowcharts
Modeling patterns 15-567

Pattern-25 Invariants from association loops

Summary Loops in a type diagram suggest the possibility of an invariant.

Objectives Flush out useful constraints.

Context Building a static type model (as part of a business model or component spec).

Motivation A static invariant is a condition that should always be true — at least in between the
executions of any action that forms part of the same model. As a boolean, it is com-
posed of comparisons between pairs of objects. They might be < or = comparisons
between numbers or other scalars; or more complex comparisons defined over more
substantial types; or identity comparisons (is that the same object as this).

As a comparison, each term of an invariant must take two values of the same type (or
at least with a common supertype). So an invariant can only be constructed when
there is a loop1 in the static type model: two different ways of coming at items of the
same type.

For example, a Library’s books may only be lent to its own members. We could write:

LoanItem :: borrower != nil => borrower.library = this.library

We can see the loop easily:

Here’s another: Member :: age >= library.minimumAge

So where’s the loop? Well, we said
that attributes and associations are
interchangeable in analysis. We
could have drawn int as a type in its
own box, like this:

The only exception is where you write a constant into the invariant itself.

Strategy Whenever you notice a loop in the static type diagram, ask yourself if there is any
applicable invariant. The loop may have any number of links, from two upwards; and
a link may traverse up to a supertype.

1. Not refering to loops in instance snapshots here, as in “Recursive composite” on page 566

Library

Member

members *

LoanItem

stock

*
0,1
borrower

age: int

minimumAge: int

loop

*

Reference Item

Stock Item

Figure 276: Association loops need invariants

Library

Member

int

age
1

*

1

minimumAge
*

members *
loop
15-568 Modeling patterns

15.3

Video Case Study

1

 — Abstract Business Model

15.3.1 Informal description of problem

“The business sells and rents videos to people, through many stores. To rent a video from a
store, a customer must be one of its members; becoming a member can be done within a
few minutes. Anyone can buy a video, without being a member.

Members can reserve videos for rent if all copies of it are currently hired. When a copy of
the video is returned, the member will be called and the copy will be held for up to three
days; after which the reservation will be cancelled if not claimed.

Only a limited stock of videos is kept for sale, but a member can order a video for purchase.
A store may order and acquire copies of a video from head office.

The business head office sets the catalogue of videos and their sale prices; this is common to
all stores.

Each store keeps copies of a subset of the catalogue for rent and for sale, and each store sets
its own rental prices (to adjust for local competition). For strategic purposes, statistics are
kept of how often and when last a video has been rented in each store. It is also important
to know how many are available in stock for rent and for sale.”

15.3.2 Formalized model

We want to make the
requirements precise,
across subject areas

The aim is to get a more precise statement of the requirements. We will segment the
requirements into different overlapping areas of concern, or subject areas, but focus in
this description on the primary subject area of customer rentals and sales. There could
be other subject areas for things like marketing, purchasing, collections, etc.; they
would define overlapping types and attributes, and might even add further specifica-
tions to common actions.

Object and action
abstraction at work

There will be two distinct forms of abstraction at work, on objects
and actions. We must be clear about the boundary of objects and
actions being modeled. We could model abstract actions, such as
a complete rental cycle; or we could describe finer-grained inter-
actions, such as reserve, pick up, return, etc. Similarly, we could
model a video store as one large grained object — an external
view; or, we could describe internal roles and interactions, such
as the store clerk, the stock-keeper, and the manager — an inter-
nal view. We will illustrate two levels of action abstraction in this
chapter; the object granularity will be refined later, when we have
to define the system context and user roles.

Subject Area — The Customer-Business relationship

Rq 1 The business rents and sells videos through many stores.

1. Thanks to Texas Instruments Software / Sterling Software for permission to use the video
case study in the book; the authors originally developed this example for them.
Video Case Study — Abstract Business Model 15-569

This type model summarizes the interactions between Stores and Customers. The ele-
ments on the diagram are:

Object types The boxes represent types of objects. There may be many Video
Businesses, Video Stores, and Customers in the world.

Associations The arc ‘corporation’ is a link-type (or ‘association’): it shows
that for any given Video Store, there is exactly one Video Busi-
ness which is its corporation (though different Stores may have
different Businesses). The

*

 shows that there may be any number
of Video Stores which share a single Video Business as their cor-
poration.

Use cases The ellipse represents a use case action called ‘sell’. (Actually,
since exactly the same set of participants is involved in ‘rent’, we
have written two labels in the same ellipse: but there are really
two action-types here.) ‘Sell’ is an action each of whose occur-
rences involve one Video Store, one Customer, and one Video. (If
there were several of any participant, we could use cardinality
decorations.) We have not distinguished action participants from
parameters visually here.

Use case recap

An occurrence of a use case action is some dialog of interactions, usually causing a
change of state in some or all of its participants. The participants are all those objects
whose states affect or may be affected by the outcome. An action is spread over time,
and will actually, when we look at it more closely, be composed of smaller actions
(like ‘scan shelves’, ‘choose’, ‘pay’, ‘take away’).

15.3.3 Dictionary

Accompanying the diagrams should be a Dictionary carrying definitions of each
object type, attribute, and action.

Video Business A company with branches through which it sells and rents
Videos.

Video Store One of the branches of a

Video Business

.

Customer A legal entity to whom videos may be sold or hired.

Video An individual item which can be sold or hired.

sell(VideoStore, Customer, Video)

Figure 277: High-level business collaboration

Video Business

Video Store Customer

corporation

vendor
customer*

1

rent, sell

Video
15-570 Video Case Study — Abstract Business Model

The interaction between a Video Store and a Customer whereby
the Customer acquires ownership of an instance of a particular
Video previously owned by the Business, in exchange for some
money.

rent(VideoStore, Customer, Video)

The interaction between a Video Store and a Customer whereby
the Customer is given possession of an instance of a particular
Video owned by the Video Business and normally kept at the
store, for some period of time, in return for a payment to the
Store.

15.3.4 Use case actions — precise specs

Make use cases precise

It would be better to describe the use case actions more precisely. This cannot be done
without the ideas that both VideoStores and Customers can own Videos, and can pos-
sess money. Something like this:

use case sell (vendor:VideoStore, cust:Customer, v:Video)
post:

v is removed from stock of videos owned by vendor, and is added to the videos owned by cus-
tomer; the vendor’s cash assets are increased by the price of v set by the vendor, and the cus-
tomer’s are depleted by the same amount.

Introduce attributes

So what exactly do we mean by ‘the stock of videos owned by the vendor’? Let’s aug-
ment the model to include this, then rewrite this statement more succinctly

.

VideoStores and Customers are both kinds of Owner; Owners have cash assets and
own Videos. A VideoStore has a price for many Videos. We should augment the Dic-
tionary with these new types and attributes.

Attributes vs. links

An attribute is, like a link, a read-only query. The main difference is that it is shown as
text rather than pictorially. The two forms are in theory interchangeable, but in prac-
tice the attribute form is used when the target type is defined in some other body of
work. The inventor of Money does not know about Owners or VideoStores.

Now we can rewrite the description of sell. It should be written both in natural lan-
guage (more readable) and precise terms (less ambiguous):

use case sell (vendor:VideoStore, cust:Customer, v:Video)
post:

Figure 278: Revised, improved business collaboration for ‘sell’

Video Store sell Customer

Owner
cash: Money

Video
owns

priceOf(Video):Money

*

customervendor
Video Case Study — Abstract Business Model 15-571

-- v is removed from the stock of videos owned by the vendor:

vendor.owns –= v

-- and added to the customer’s stock:

and cust.owns += v

-- The vendor’s cash is increased by the vendor’s price for v:

and vendor.cash += vendor.priceOf(v)

-- and the customer’s assets are depleted by the same amount:

and cust.cash -= vendor.priceOf(v)

No sequence in ‘post’

Every postcondition is a predicate (Boolean, true/false condition) stating what must
be true if the designer has done the implementation properly. So the clauses are con-
nected by ‘and’, and there is no sequence of execution implied. The purpose is to state
properties of the result at the end of the use case, abstracting away from any details
about sequences and how it is achieved. It is a relation between two states, before and
after the use case has occurred. In later examples, you can sometimes see the ‘before’
value of a sub-expression referred to as ‘expression@pre’

‘+=’ abbreviations

The construct ‘x += y’ is an abbreviation for ‘x = x@pre+y’ — x is what it used to be,
plus y; it is pre-defined as an effect. This is not an assignment as in programming lan-
guage: just a description of a part of the relationship of the two states.

Extensible ‘built-in’s

There are many uses for operations on sets in abstract descriptions. Since the tradi-
tional mathematical symbols are not available on most keyboards, OCL defines ascii
equivalents; it is easier to use + for union, * for intersection, – for set difference
(Section 3.4.5, “Collections,” on page 111), and in Catalysis these features can be
extended by the modeler.

15.3.5 Preconditions and more modeling

Complete ‘rent’ use case

Now let’s try to describe the ‘rent’ use case. To be comparable to ‘sell’, the intention is
to let it encompass the whole business of renting a video, from start to finish. We will
separately describe how this refines into a sequence of constituent actions like hiring
and returning.

Need model of watching
videos

There’s a slight conceptual difficulty here. Although there’s an obvious transfer of
money from one participant to another, what you’ve got for it once you’ve handed the
video back is less concrete than in the case of a sale. The most you’re left with as a sou-
venir is whatever impression the video has made on your mind. Nevertheless, there’s
no reason why we shouldn’t model this abstract notion as a Past Rental, and model
the rent use case as adding to your list of them.

Figure 279: Model for ‘rent’

Video Store rent Customer
hireCharge(Video, Period):Money

PastRental
* score

Video *of

days: Period
15-572 Video Case Study — Abstract Business Model

Multiple appearances in
little diagrams

We’ve already said in another part of the document, that VideoStores and Customers
are kinds of Owner, which have cash and own Videos; so it is unnecessary to repeat it
here. Each diagram is in effect a set of assertions about the elements that appear in it;
if an element appears in several diagrams, then all of their assertions apply to it.
Rather than show all of the parameters pictorially by linking the use case to the types,
they can be shown as attributes within the use case ellipse.

One further complication is the requirement:

Rq 2 To rent a video from a store, a customer must be one of its members.

At present, there is nothing in our model representing membership, so we add it:

Final spec

Now we can state a precise description of the use case:

use case rent (hirer:VideoStore, cust:Customer, v:Video, days:Period)
post:

-- if customer is a member, then...

hirer.members#includes (cust) implies
(

-- a new PastRental of v is added to customer’s ‘score’:

cust.score += PastRental.new [of=v]

-- The vendor’s cash is increased by
-- the hirer’s hire rate for v at the time of commencement of the hire:

and hirer.cash += hirer.hireCharge(v, period)@pre

-- and the customer’s assets are depleted by the same amount:

and cust.cash -= hirer.hireCharge(v, period)@pre
)

It does not cover all cases

Notice that nothing is said about the meaning of rent if the precondition is false. There
might be another description of this use case elsewhere that covers that eventuality;
but if there isn’t, then we are just saying nothing about what that might mean. Since
we’re describing ‘rent’ and not ‘attempt to rent’ or ‘enquire about renting’, we leave it
to some later more detailed description to define precisely what happens when a non-
member demands to rent a video. It’s part of the value of the postcondition approach
that it allows you to paint the big picture, leaving the less important detail until later.

The construction ‘Type.new [predicate]’ means a member of Type which didn’t
appear anywhere beforehand, and conforming to the predicate. The use of @pre in
relation to the hireCharge allows for a possible change in the price list during the
period of the hire.

Deferring detail with
parameterized attributes

We could have modeled the hire charge as a per-day rate, and multiplied it by the
length of the hire. But doing it this way leaves the charging scheme open, allowing for
reductions for longer rentals.

Figure 280: Incorporating the term ‘members’

Video Store Customer*
* members
Video Case Study — Abstract Business Model 15-573

15.4 Video Business — Use Case Refinement

Use Case refinement on
‘rent’

Deciding we’re interested in looking into one of the above use cases in further detail
— let’s choose rent as an example — we can show how it breaks into smaller constitu-
ents. The entire business of renting may involve reserving beforehand — so we could
think of a rental as possibly reserving, followed by hiring and returning:

The diamond indicates the relationship between an abstraction and its more detailed
constituents; it can include annotations such as multiplicity. Here it states that some
combination of the constituent actions can be used to accomplish a complete rent; but
we have yet to detail exactly how and in what order. This is just a summary diagram.

This need not be the only
way to rent

There may be other actions not mentioned here which can also be composed to make
a rent; and these constituents may also be used in some other combination to make
other abstract use cases. The constituent actions have their own participants, which
we could have shown here, or separately. They will generally intersect with, or at least
be mapped to, the participants of the abstract use case.

The relevant part of the informal business description is:

Rq 3 Members can reserve videos for rent if all copies of it are currently
hired. When a copy of the video is returned, the member will be
called and the copy will be held for up to three days; after which the
reservation will be cancelled if not claimed.

Show the states of an
abstract rental use case

In order to show the possible sequences of constituent actions, and to specifically
define which sequences correspond to an abstract rent use case, model Rental as an
object which goes through a sequence of states. In the transitions, ‘s, v, c, d’ refer to a
store, video copy, customer, and rental period. Frequently, such a ‘reified action’ exists
in the type model as an actual object, such as a progress record.

Notation Round-cornered boxes are states, which may have substates; black dots are starting
points. Arcs are state changes, labelled with the actions that cause them. The square
brackets are guards: the transition happens only if the guard is true. / marks a post-
condition. This diagram formally documents an action sequence refinement; any
sequence of detailed actions starting from a top-level ‘ ’ and ending with ^rent..,
constitutes an abstract rent use case.

Figure 281: Refinement of ‘rent’

rent

reserve
cancel

call return
hire

Video Store Customer

Video

0,1
0,1

0,1
15-574 Video Business — Use Case Refinement

15.4.1 Refined model

Specs of detailed actionsWe should write down descriptions of the more detailed actions; in this case we
would likely still call each finer-grained action a ‘use case’. To begin with, let’s keep it
relatively informal, extending the Dictionary with action definitions.

reserve (VideoStore, Customer, VideoTitle)
(At this point, we notice that there is a distinction between indi-
vidual copies of a video — objects of type Video — and titles or
catalogue-entries.) This use case represents the reservation of a
given title by a member of a store. The title must be available at
that store. The reservation will be recorded pending the return of
a copy of that title to the store.

return (Video)
The return of a copy to its owning store. If there is a reservation
for that title at that store, it will be held for the reserver to collect;
otherwise it goes back on the shelves. The hire-record is marked
‘returned’.

call(VideoStore, Customer, Video)
Applies when a returned Video has been held for this reserva-
tion. The reserver is notified by telephone that the Video can be
collected. The reservation record is date-stamped, and if the
member has not picked up the copy within a fixed time, the res-
ervation may be cancelled.

hire(VideoStore, Customer, VideoTitle, Period)
A member takes away a copy of a particular title, for an agreed
period. If this customer had a reservation for this video and
there is a copy held, then that copy should be the one taken.
Only makes sense if there is a copy on the shelves beforehand, or
a held copy. A record of the hire is kept.

cancel_reservation(VideoStore, Customer, Video)
Occurs when the store becomes aware that the customer no
longer wants the video. If a copy has been held, it is reallocated

Figure 282: Refinement sequence for ‘rent’

waiting

held

to_collectcall(c)
/t=today

return(v)

reserve(s,c,v.title)

cancel_reservation t+3<today

Reservehired

reserved out

Reserveoverdue

[date>due]

returned

return(v)

purge [c.balance=0]

Rental (s: Store, c: Customer, v: Video, d: Period)

remind

hire(s, c, v.title, d)

[s.members#

^ rent (s, c, v, d)

includes (c)] hire(s, c, v.title, d)
Video Business — Use Case Refinement 15-575

to another reservation or put back on the shelves. The reserva-
tion is deleted from the records.

The distinction between Videos (individual copies) and VideoTitles which has now
become apparent gets documented, together with an invariant:

VideoTitle The set of individual Videos having a particular title.

VideoStore::catalogue

The set of VideoTitles known to a VideoStore.

VideoStore::shelf

The set of Videos currently available for hire. A subset of the
total stock of all titles.

Refined use case diagram We could also draw pictures showing the participants in each use case. This would
just duplicate the Dictionary entries for the use cases. In practice, this seamless
switching between text and diagrams may or may not be supported by particular
tools.

15.4.2 Formalized refined use case specs

Need to track the state of
a ‘rental’

Looking again at the spec of reserve above, it’s clear that we must represent the idea
of a reservation in the model (in order to be able to state that the use case creates a
record of one). The same applies to rentals. In fact, there may be some advantage in
regarding these two records as two states of the same thing — then it will be easy to
include any initial reservation as being part of the history of a rental.

There’s a useful pattern here, called Action Reification (see box). We’ll reify the use case
as Rental, but preserve the distinct idea of a Reservation as a state type:

Now the finer use cases can be expressed more formally:

use case reserve (store:VideoStore, cust:Customer, title:VideoTitle)
pre: store.catalogue#includes (title) -- The title must be available at that store,

and store.members#includes (cust) -- the customer must be a member
post: store.rentals#includes (

 Reservation.new[reserves=title and customer=cust and copy=null])
--There is a new Reservation in the store whose title and customer are as requested;

Figure 283: Clarifying video title and copy

Video Store Video Title*
catalogue

Video
stock*shelf

*inv VideoStore:: catalogue.stock#includes(shelf)

*

15-576 Video Business — Use Case Refinement

Pattern-26 Action Reification

Objectives: Systematic progression from succinct abstract actions (or use cases) to
detailed dialog, supporting the strategic aim to expose most important decisions up
front, and keeping reliable tracability to the details.
Context: A sequence of action-occurrences (not necessarily contiguous — there may
be other unrelated actions in between them) can often be seen as a group with a single
outcome — which can be documented with its own postcondition. Conversely, when
specifying a system, detailed protocols of interactions should be omitted at first, so as
to understand overall effects.
Example: The transaction of obtaining cash, between a customer and a bank ATM. It
has a clear postcondition, is often mentioned in everyday life, and can usefully be dis-
cussed between ATM-designers and banks. The detail of how it happens — log in,
select a service, etc. — can be deferred to design, and may vary across designs.
Terms: The finer actions refine the abstract one, and the relationship is documented as
an action refinement, consisting of a model refinement and an action refinement sequence.
There may be many possible refinements of one action.
A sequence constraint may govern actions, stating the possible sequences; it may be
expressed in the form of a state-chart. Of all possible sequences of finer actions, only
some may constitute an occurrence of the abstract action — for example, the card
reader and keys at the ATM can always be used, but only some sequences constitute a
‘withdraw’ action. An action refinement sequence relates finer sequences to specific
abstract actions, and can be expressed in the form of a statechart.
Pattern: Model the abstract action as an object — ‘reify’ it. Implementations are not
constrained to follow models, but the reification often corresponds to a useful object.

A Baction(x)

fa1

fa2

fa3

Action
a

b

Action BA * *a b

fa1

fa2
fa3 fa3

x

fa1

^action

Figure 284: Using ‘state-types’ for a rental

Video Store Rental* Customer*

Video

*
Reservation CurrentHire PastRentalVideoTitle *

copy

reserves

rentals

copy

0,10,1

copy

held

0,1

currentHire
Video Business — Use Case Refinement 15-577

No software objects — as
yet

Notice that we are still talking about the interactions between the real-world objects
here — the Rental is not an object in the store’s computer system, but an abstraction
representing the agreement between the parties.

Relate states to attributes Notice also that the postcondition restates (in more detail perhaps) what is shown in
the statechart — given an interpretation of the states in terms of the model. This
reminds us that we should never write a statechart without defining the states in
terms of the model attributes.

inv Rental::
reserved = self:Reservation -- reserved state is a Reservation state-type
and waiting = (reserved and copy=null) -- waiting substate: no copy
and (held or to_collect) = (reserved and copy<>null) -- other substates

-- we’ll need a boolean attribute to distinguish held from to_collect
and out = self:CurrentHire -- ‘out’ state is a CurrentHire state-type
and hired = (out and date=<due) -- substates of ‘out’
and overdue = (out and date>due)
and returned = self:PastRental -- the returned state

Other use cases Continuing with the other use case specs, return can be specified separately for its two
effects on the statechart (of two separate Rentals):

use case return (v:Video)
pre: v.currentHire<>null -- v is rented out
post: v.currentHire@pre : v.pastRental -- the rental is now part of v’s past

use case return (v:Video)
pre: v.title.reservation<>null and v.reservation.waiting

-- v is a copy of a title that is the subject of a Waiting Reservation
post: v.title.reservation[waiting@pre and held and copy=v]#size = 1

--Of the resulting set of reservations for this title, there is exactly 1
-- that was waiting and is now held for this video

Splitting out effects The spec of hire can conveniently be split into a general part and two effects, one for
hiring based on a reservation, the other without:

use case hire (store:VideoStore, cust:Customer, title:VideoTitle, period:Period)
pre: -- title from catalogue, and customer among members

store.catalogue#includes (title) and store.members#includes (cust)
post: -- an available video copy of the title has been hired by the customer

 (Video#exists (v | v.title=title and v.currentHire@pre = null
and v.currentHire.videoStore=store
and v.currentHire.customer=cust
-- either based on a reservation, or without a reservation
and (hireFromReservation (store, cust, title, video)
 or hireFromCold (store, cust, title, video))

-- we hire the video kept for this reservation
effect hireFromReservation

(store:VideoStore, cust:Customer, title:VideoTitle, video:Video)
= (title.reservation@pre <> null and title.reservation@pre.copy=video)

-- we hire the video without a reservation
effect hireFromCold
15-578 Video Business — Use Case Refinement

(store:VideoStore, cust:Customer, title:VideoTitle, video:Video)
= (title.reservation@pre = null)

Cancelling a reservation clears it from the ken of customer, store, and the video:

use case cancel_reservation (r:Reservation)
pre:
post: (r.copy@pre <> null implies r.copy@pre.held = null) -- any held copy is released

and r.videoTitle@pre.reservations –= r -- remove r from reservations for its title
and r.videoStore@pre.rentals –= r and r.customer@pre.rentals –= r

We omit further detailing of these use cases, and coverage of other subject areas.
Video Business — Use Case Refinement 15-579

15-580 Video Business — Use Case Refinement

	Chapter 15 How to build a Business Model
	15.1 Business modeling process patterns
	Pattern-14 Business Process Improvement
	Pattern-15 Make a business model
	Pattern-16 Represent business vocabulary and rules
	Pattern-17 Involve business experts
	Pattern-18 Creating a Common Business Model
	Pattern-19 Choose a level of abstraction

	15.2 Modeling patterns
	Pattern-20 Type model = glossary
	Pattern-21 Separation of concepts — Normalisation
	Pattern-22 Items and Descriptors
	Pattern-23 Generalise and specialise
	Pattern-24 Recursive composite
	Pattern-25 Invariants from association loops

	15.3 Video Case Study — Abstract Business Model
	15.3.1 Informal description of problem
	15.3.2 Formalized model
	15.3.3 Dictionary
	15.3.4 Use case actions — precise specs
	15.3.5 Preconditions and more modeling

	15.4 Video Business — Use Case Refinement
	15.4.1 Refined model
	15.4.2 Formalized refined use case specs
	Pattern-26 Action Reification

