

 Chapter 12 Reuse and Pluggable Design —
Frameworks in Code
Outline

Code reuse is a much sought-after goal, but it does not happen automatically. It
costs money and needs explicit attention, both at the level of design, and in the
very structure of the development process within and across projects.

Reuse requires that components be built in a manner which is both generic — not
overlied tied to a specific application; and customizable — so it can be adapted to
specific needs.

Reuse comes in many flavors, from cut-and-paste, through building libraries of
low-level utiltity routines and classes, through skeletons of entire applications
with “plug-points” that can be customized. The latter requires a particular mind-
set to extracting commonality while deferring just those aspects that are variable.

The key to systematic use of frameworks in code is to make problem descriptions
more generic; and to have code techniques for implementing generic or incom-
plete problem specifications, then specializing and composing them.
© Desmond D’Souza & Alan Cameron Wills 1998/May/11 12:10 12-493 of 516

12.1 Reuse and the Development Process

Software assembly is
compelling

One of the most compelling reasons for adopting component-based approaches to
development, with or without objects, is the promise of re-use. We would like to build
software from existing components primarily by assembling and replacing interoper-
able parts. These components range from user-interface controls like list-boxes and
HTML-browsers, to components for networking or communication, to full blown
business objects. The implications on development time and product quality make
this very attractive.

12.1.1 What is Reuse?

Many forms of re-use
with the same aims

“Re-use” refers to a variety of techniques aimed at getting the most out of the design
and implementation work you do. We’d prefer not to re-invent the same old ideas
every time we do a new project, but rather to capitalise on that work and deploy it
immediately in many new contexts. That way, we can deliver more products in
shorter times. Our maintenance costs are reduced too, because an improvement to one
piece of design work will enhance all the projects in which it is used. And quality
should improve, since re-used components should have been be well tested.

12.1.1.1 Import beats Cut & Paste

Re-use should not just be
a one-time thing

Something like 70% of work on the average software design is done after its first
installation. That means that any measure aimed at reducing costs must be effective in
that ‘maintenance’ phase, not just in the intial design.

Cut-and-paste is one-
time re-use

People sometimes think of reuse as meaning cutting chunks out of an existing imple-
mentation or design and pasting it in to edit for use in a new one. While this acceler-
ates the initial design process, there is no benefit later on. Any improvements or fixes
made to the original component will not propagate to the adopted versions. And if
you’re going to adapt a component by such cut-and-paste, you must first look inside
it and understand its entire implementation thoroughly — a fine source of bugs!

older product newer product

adopt, adapt, & improve
Cut &

Paste

— benefits 1st 20% of work

generic component library products

include unaltered

Import

Generic

Components

— benefits whole lifecycle

— but requires more effort upfront

Figure 255: Cut-and-paste Vs. Import
12-494 Reuse and the Development Process

‘Import’-based re-use
works better

Good reuse therefore implies using the same unaltered component in many contexts,
very much like the idea of importing packages described in Chapter 13, Packages.
Texts on measuring reuse don’t count cutting and pasting as proper reuse.

12.1.1.2 The Open-Closed Principle and Reuse Economics

But that demands flexi-
ble components

But there is a difficulty. If alterations are not allowed, a component can only be useful
in many contexts if it is designed with many parameters and plug-points i.e. if it fol-
lows the well-known Open-Closed Principle:

Every component should be open to extension, but closed to modification.

Which costs money up
front

It takes effort to work out how to make a component more generic, and the result
when deployed might run slower. The investment will be repaid in savings every time
the component is used in a design, and every time maintenance only has to be done
on one component rather than many slightly different copies. But it is not always cer-
tain exactly when or how a component will be reused in the future: so, like all invest-
ments, generalising a component is a calculated risk.

12.1.2 What are the reusable artefacts?

Many artifacts are reus-
able

A reusable artefact is any coherent chunk of work can be used in more than one design.
For example:

• Compiled code — executable objects

• Source code — classes, methods

• Test fixtures and harnesses

• Designs and models: collaborations, frameworks

• Patterns for analysis and design

• User interface “look & feel”

• Plans, strategies

• Combinations of the above (e.g. spec + code + test harness)

We discuss reuse of exe-
cutable components

This list includes all kinds of development work. We have already discussed model
frameworks and template packages: these can be very valuable to an enterprise. They
are “white box” assets: that is, what you see is what is on offer. By contrast, an execut-
able piece of software, delivered without source code, can perform a useful and well-
defined function, and yet not be open to internal inspection. Software vendors prefer
“black box” components!

12.1.3 A Reuse Culture

Reuse hinges on an
‘asset’ view of software

In a reuse culture, an organisation focuses on building and enhancing its capital of
reusable assets, which would include a mixture of all of these kinds of artifacts. Like
any investment, this capital needs to be managed and cultivated. It requires invest-
ment in building those assets, suitable development process and roles, and training
and incentives that are appropriate for re-use.
Reuse and the Development Process 12-495

To reuse you must gener-
alize your design

But designs have to be generalized to be reusable. Generalising a component can’t be
justified in terms of its original intended purpose. If you write a collision avoidance
routine for your airplanes, there’s no reason you should do the extra work to make it
usable by your maritime colleagues: you have your own deadlines to meet. And if
your product only deals with air traffic, you have no reason to separate out those
pieces of the airplane class that could apply to vehicles in general. All these require
broadening of requirements beyond what you immediately need to do.

It is easy to generalize for
your own reuse

On the other hand, if you notice three lines of code that crop up in six different places
in your own product, then you will easily see the point of generalising them and call-
ing a single routine from each place. That’s because you’re controlling the resources
for all the places it could be used; and the problem is small enough to easily get a han-
dle on what’s required.

On a larger scale it needs
organizational support

On the larger scale, reuse of components between individuals, between design teams,
and across and outside organisations takes more coordination. But it’s usually some-
one who holds responsibility for all the usage sites that can assign the resources to get
the generalisation done. Reuse needs an organisation and a budget to make it happen.

...and domain modeling A significant part of identifying large-gained reuse comes from careful modeling of
the problem domain itself, and of the supporting domains — UI, communications, etc.
— that would be a part of many applications in the problem domain. This activity
again crosses specific project boundaries, and also needs organization support.

Think carefully before
generalizing

Deciding that a component is to be made sufficiently general for reuse; and how
generic and reusable it should be: these are decisions that have to be made con-
sciously and carefully. We have all made such generalizations when deciding that
some few lines of code could be moved to a subroutine of their own. Parameterising a
whole class or group of classes is the same principle, but employs a wider variety of
patterns, and should be more carefully thought through.

How widely will it be
used?

Some components can be reused more widely than others. Some objects, routines, or
patterns might only be useful in several parts of the same software product: but if it is
a big product, or a product family, several teams may need coordinating.

Avoid “galloping gener-
alization”

“Galloping generalisation” is the syndrome where a group spend months producing
something that runs like a snail on dope, and has hundreds of interesting features,
most of which will never be used. The best strategy seems to be to generalise a compo-
nent only once it is definitely earmarked for use in more than one context; and then
only to generalise it as much as is necessary for the envisaged applications.

Lines of code are a poor
productivity metric

Naturally, the organization that measures developer productivity in terms of lines of
code written has some re-thinking to do before reuse can succeed. Suitable incentives
schemes should be based more on the ratio of code-reused to new code written.

12.1.4 Distinct Development Cycles

It has 2 distinct activities In a reuse culture, development tends to split into two distinct activities:
12-496 Reuse and the Development Process

Building products• Product development — the design and creation of applications to solve a problem.
This is centered around understanding the problem, and rapidly locating and
assembling reuse capital assets to provide an implementation.

and developing assets• Asset development — the design and creation of the reusable components that will
be used in different contexts. This is carried out with more rigorous documenta-
tion and thought. Because software capital assets will be used in many designs,
the impact of a change can be, for better or worse, quite large.

Asset development justi-
fies investment

It is therefore worth putting much serious
effort and skill into assets. Of course, the
products must work properly; but whereas
much may be gained by, for example, tuning a
reusable asset’s performance as far as possi-
ble, a product which is only used in one con-
text often only needs to be good enough for
that purpose. Strong documentation also pays
off more with assets than products.

Both use techniques from
this book, in different
ways

For developing reusable assets that you would generally want to apply many of the
techniques in this book. Reuse means investing in the quality of software; the old
arguments that “we don’t have time to document” can only have a negative effect in a
reuse culture. The development of products or applications will also use many of the
same techniques, but the process can be quite different (e.g. see Section 11.7, “Heter-
ogenous components,” on page 472).

Applications

generalise

enhance

select &
specialise

Asset
library

“we might need a …”
“… and it could also do …”

certify
Reuse and the Development Process 12-497

12.2 Generic Components and Plug-Points

To make a component that can be reused in different contexts, it must be sufficiently
generic to capture the commonality across those contexts; yet it must offer some
mechanisms so it can be specialized as needed.

Build plug-points for
variations

This means you must understand what
bits are common across those contexts.
Design it so those bits that vary across
those contexts are separated from the
component itself at carefully selected
plug-points — places where specialized
components can be plugged in to adapt
the overall behavior.

Examples For example, an editor component might work with any suitable spell-checker com-
ponent that could plug into the interface provided. The spell-checker itself might
work with many possible dictionaries, each with its own internal rules about repre-
senting and matching its lexicon. Or, a hotel component might use many different
room-allocator components that could plug in, each providing different allocation
policies via the same interface.

12.2.1 Plugs — the interfaces

Let us look at two kinds
of component interfaces

Let’s look at a couple of ways in which components can be made to plug together. In
particular, it helps to distinguish between composing components to build something
bigger, and plugging parts into a generic component in order to specialize its behavior
to current needs. Although they both place similar demands on modeling and design,
their intent is different.

plug-points

plug-ins
12-498 Generic Components and Plug-Points

Upper interfaces — for “normal” use

Components have
“upper” interfaces to
others they interact with

The components we use are of course made from other components. Figure 256 illus-

trates how a larger component (a video-rental system) might be assembled by plug-
ging together large components for membership, reservations, and stock
management. We think of this as the “upper” interface — it is the direct and visible
connecting of parts which provide some well-defined services, without having to
adapt or customize them in any significant way. Examples of such “upper interfaces”
are the APIs of databases, windows systems, and so on; and, of course, the primary
services offered by the membership, reservations, and stock management compo-
nents.

Lower interfaces — for customization

Components often need
to be specialized

Each of the components whose “normal” interface we used is itself an incomplete
implementation; it needs some additional bits to be plugged into it for it to provide its
services. Figure 257 illustrates the use of “lower” interfaces via which a generic com-
ponent is specialized with several ‘plug-ins’ which customize its behavior to the prob-
lem at hand; in this case, a generic membership manager is being adapted by
plugging in specifics for video-store members and their accounts.

Membership
manager

Reservations
manager

Stock
mgr

Video Store system

we use these
components

To build this
component,

Figure 256: Using upper interfaces to build a larger component

Generic Membership
manager

we use these
components,

To build this
component,

(part of)
Video Store system

providing plug-ins
to customize them

Member class
Account class

specifics about video members

specifics about video accounts

Figure 257: Using lower interfaces to customize a component
Generic Components and Plug-Points 12-499

Generic components are
designed with specializa-
tion “plug-points”

Generic components have ‘plug-points’ — parameterized aspects that can be filled in
appropriately in a given context — both for implementation components, as well as
for generic model components that are built to be adapted and re-used. When design-
ing a complex component, we might reach into a component repository and build our
specific models from generic model components in this library. Of course, the generic
versions must provide mechanisms for extension and customization to the specific
domain at hand.

Today’s software is full
of such plug-points

Modern desktop software bristles with plug-points. Web browsers, as well as word-
processors and spreadsheets, accept plug-ins for displaying specialized images; desk-
top publishing software accepts plug-ins for doing specialized image processing. In
those cases, the plug-ins generally have to be designed for a particular parent applica-
tion. The plug-ins are coupled with the parent application when it begins to run,
using dynamic linking technologies.

OOP languages support
their own plug-ins

Every OO language provides some form of plug-ins. The most common form is the
use of “framework” classes: the super-classes implement the skeleton of an applica-
tion — implementing methods that call operations that must be defined in the sub-
classes — and a set of subclasses serve to specialize that application. The “plug-
points” are the subclasses and their overriding methods. In C++, a template List class
can be instantiated to provide lists of numbers or lists of elephants, or of whatever
class the client needs; the “plug-point” is a simple template parameter.

Frameworks of multiple
classes also constitute
generic components

The principle is not limited to single classes, but can span multiple abstract classes
that collaborate with each other, and have to jointly extended before use. Many class
libraries provide user interface frameworks (like Smalltalk’s Model-View-Controller).
You make a user interface (either manually or with a visual builder tool) by inherit-
ance from the framework classes and plugging-in specializing methods into your sub-
classes.

12.2.1.1 Infrastructure Services: a special kind of "lower" interface

Common services, not
customized plug-ins

Many components need some underlying set of infrastructure services to be provided
to operate properly (Section 11.1.4, “Components and Standardization,” on page 443).
These do not customize the behavior of the component in any interesting way; they
simply provide an implementation of a common “virtual machine” for use by all com-
ponents.

Obvious examples of this include the POSIX interface that provides a common view of
many different operating systems; and the Java virtual machine, which provides all
the services needed to run Java components. However, this underlying virtual
machine may be more specialized to the problem at hand e.g. a state-machine inter-
preter, or a graph transformation engine.
12-500 Generic Components and Plug-Points

12.3 The “Framework” approach to code reuse

Frameworks — large
grained flexible reuse

In object-oriented design and programming, the concept of a “framework” has
proven to be a very useful way to re-use large-grained units of design and code, while
permitting customization to different contexts. The style of reuse with frameworks,
and mind-set for factoring out commonality and differences, is quite distinctive.

12.3.1 OOP frameworks

Traditionally, a frame-
work is a collection of
collaborating adaptable
classes

An object-oriented framework is often characterized as a set of abstract and concrete
classes that collaborate to provide the skeleton of an implementation for an applica-
tion. A common aspect of such frameworks is that they are adaptable i.e. the frame-
work provides mechanisms by which it can be extended, such as by composing
selected sub-classes together in custom ways, or defining new sub-classes and imple-
menting methods that either plug-into or override methods on the superclasses.

A framework has impor-
tant differences from
more traditional re-use
forms

There are some fundamental differences between the framework style and more tradi-
tional styles of re-use, as illustrated by the example below.

Design and implement a program for manipulating shapes. Different shapes are displayed
differently. When a shape is displayed it show a rendering of its outline and a textual
printout of its current location in the largest font that will fit within that shape.

In the next two sections we will contrast the traditional approach to reuse with the
framework style of factoring for reuse.

Class-library with “traditional” reuse

Main method is
“abstract” on Shape

A “traditional” approach to re-use
might factor the design as follows.
Since the display of different shapes
varies across the kind of shapes, we
design a shape hierarchy. The display
method is abstract on the superclass
— since shapes display themselves
differently — and each subclass pro-
vides its own implementation.

Common bits are imple-
mented on Shape

There are some common pieces to the display method e.g. computing the font size
appropriate for a particular shape given its “inner” bounding box, and printing out
the location in the computed font. Hence we implement a computeFont and printLoca-
tion method on the superclass (marked ‘protected’ in Java, to be subclass-visible).

class Shape {
// called from subclass: given a Bounding Box and String, compute the font

Shape «class»

#computeFont ()
#printLocation ()
+ display () «abstract»

Oval «class»
- ovalData

- innerBox ()
- render ()
+ display ()

#=”protected”
+ = “public”
- = “private”

anOval: Oval
Shape::computeFont ()
Shape::printLocation ()
Oval::display ()
Oval::innerBox ()
Oval::render ()
The “Framework” approach to code reuse 12-501

protected Font computeFont (BoundingBox b, String s) { }
// called from subclass: print location on surface with Font
protected void printLocation (GraphicsContext g, Font f, Point location) { ... }
public abstract void display (GraphicsContext g);

}

Subclass calls inherited
common bits

A typical subclass would now look like this:

class Oval extends Shape {
// shape-specific private data
private LocationInfo ovalData;
// how to compute my innerBox from shape-specific data
private BoundingBox innerBox() { }
// rendering an oval
private void render (GraphicsContext g) { ... trace an oval ... }
// display myself
public void display (GraphicsContext surface) {

render ();
BoundingBox box = innerBox();
// let the superclass compute the font
Font font = super.computeFont (box, ovalData.location.asString());
// let the superclass print the location
super.printLocation (surface, font, ovalData.location);

}
}

Framework-style re-use and “Template method”

An inversion With framework development, the skeleton of the common behavior is a 'template
method' in the superclass; the variant bits and pieces are deferred to the subclasses.

Frameworks — seek
variations to defer

With a “framework” approach to re-
use our factoring looks quite differ-
ent. We start off with the assumption
that all shapes fundamentally do the
same thing when they are displayed:
render, compute a font for their inner
bounding box, and print their loca-
tion in that font. Thus, we implement
at the level of the superclass:

Skeletal code in super-
class

class Shape {
public void display (GraphicsContext surface) {

// delegate to subclass to fill in the pieces
render (surface); // plug-point: deferred to subclass
BoundingBox box = innerBox(); // plug-point: deferred to subclass
Point location = location(); // plug-point: deferred to subclass

Shape «class»

#computeFont ()
#printLocation ()
+ display ()

Oval «class»
- ovalData

innerBox ()
render ()

#=”protected”
+ = “public”
- = “private”

anOval: Oval
Shape::computeFont ()
Shape::printLocation ()
Shape::display ()
Oval::innerBox ()
Oval::render ()
12-502 The “Framework” approach to code reuse

// then do the rest of “display” based on those bits
Font font = computeFont (box, location);
surface.printLocation (location, font);

}
}

Defer variation points to
subclass plug-ins

The actual rendering and computation of the inner box and location must be deferred
to the subclasses — plug-points. However, if a subclass provided the appropriate bits
as plug-ins, it could inherit and use the same implementation of display. Thus, we are
imposing a consistent skeletal behavior on all subclasses, but permitting each one to
flesh out that skeleton in its own ways.

class Oval extends Shape {
// implement 3 shape-specific “plug-ins” for the plug-points in Shape
protected void render (GraphicsContext g) { ...trace an oval ...}
protected BoundingBox innerBox () { ... }
protected Point location () { return center; }

// private shape-specific data
private Point center;
private int majorAxis, minorAxis, angle;

}

Extends across multiple
collaborating classes

Although this example focuses on a single class hierarchy, it extends to the set of col-
laborating abstract classes that are characteristic of frameworks. The Shape hierarchy,
for example, requires certain services from the GraphicsContext object to display
itself; there could be different implementations of GraphicContext as well, for screens
and printers, using a similar framework-styled design. It is this partitioning of respon-
sibility — between different shape classes, and between shapes and the GraphicsCon-
text — that gives the design its flexibility. Thus, any packaging of a class as a re-usable
unit must also include some description of the behaviors expected of other objects i.e.
their types.

Contrast of styles

A different mind-setNote the contrast between the approaches, in terms of factoring of code, degree of re-
use, and consistency of resulting designs.

Traditional Framework
Begin with the mind-set that the display
methods would be different, and then seek
the common pieces that could be shared
between them

Assert that the display methods are really
the same, and then identify the essential
differences between them to defer to the sub-
classes

Focus on sharing the lower-level operations
like computeFont and printLocation. The
higher-level application logic is dupli-
cated, and each one calls the shared lower-
level bits.

Share the entire skeleton of the application
logic itself. Each application plugs into the
skeleton the pieces (like render, innerBox,
particular GraphicsContexts) required to
complete the skeleton
The “Framework” approach to code reuse 12-503

These differences are summarized in Figure 258, showing the contrast between base
and application levels in the two approaches.

Frameworks provide
plug-points as interfaces
for customization

A significant part of framework design is factoring the plug-points that are provided
for adaptation or customization. This example requires that a subclass provide the
missing behaviors. Other frequently recommended design styles for frameworks are
based on delegation and composition; by composing an instance of a framework class
with an instance of a custom class that implements a standard framework interface,
we adapt the behavior of the framework.

12.3.2 Non-OOP Frameworks

Object-oriented programming provides some novel ways to implement with plug-
points and plug-ins. However, the underlying style of implementing a skeletal appli-
cation, while leaving places in it that can be customized, can be achieved with other
techniques as well, the most central of which is delegation (Section 12.5.3, “Polymor-
phism and Delegation,” on page 512).

Most calls go from the application to the
shared base

Most (many) calls go from the framework
skeleton to the individual “applications”; in
fact, one of the hallmarks of a framework is
“don’t call me — i’ll call you”

Define an interface that the applications
can use to call the reusable parts

Define an interface representing demands
that the reusable skeleton framework makes
on the applications — the plug points for
extension

The application contains the newer code;
the base contains old code; newer code
calls existing code

Application contains newer code; however,
the existing (base) code calls newer code to
delegate specialized bits.

Traditional Framework

Figure 258: Traditional vs. framework-style designs

Application

Base

Calls

Base

Application with “plug ins”

FrameworkTraditional

Shape
Graphics
Context

skeletal code with “plug points”
12-504 The “Framework” approach to code reuse

12.4 Frameworks — Specs to Code

In the previous section we saw how framework techniques in object-oriented pro-
gramming can help build a skeletal implementation, with plug-points for customiza-
tion to specific needs. We saw in Chapter 10, Model Frameworks and Template Packages ,
that pieces of code are not the only useful re-usable artifacts; recurrent patterns occur
in models, specifications, collaborations. Moreover, the basic OOP unit of encapsula-
tion — a class — is not the most interesting unit of describing designs; it is the collabo-
rations and relationships between elements that constitutes the essence of any design.

12.4.1 Generalize/Specialize: models and code

We want to apply frame-
work-like approaches
throughout the develop-
ment lifecycle

In order to systematically apply framework-based techniques to development, we
start with template packages to construct domain models, requirements specifica-
tions, and designs from frameworks. The specifications for a particular problem could
be constructed by applying the generic framework and “plugging” in details for the
problem at hand. On the implementation side, an implementation for the generic
specification should be correspondingly customizable for the specialized problem
specification (Figure 259).

We can implement a
solution to an abstract
problem

A framework implementation thus provides a customizable solution to an abstract
problem. If done right, the points of variability in the problem specifications — plug-
points on the specification side — will have corresponding plug-points on the imple-
mentation side as well1.

Figure 259: Frameworks for Specification vs. Implementation

Framework
Implementation

Implementation A Implementation B

ImplementationsSpecifications

then specialize to different
requirements....generalize the prob- specialize the implementation

implement abstract solution
Framework Spec

Requirements-A
Specification

Requirements-B
Specification

.... by “plugging-in”
differences

1. The relation between these plug points is analogous to refinement
Frameworks — Specs to Code 12-505

12.4.1.1 Combining Model Frameworks

Example of a seminar
company

Consider the operations of a service company that markets and delivers seminars.
Different aspects of this business, and hence its software requirements, can be
described separately: allocation of instructors and facilities to a seminar, on-time pro-
duction of seminar materials for delivery, trend analysis for targeted marketing of
seminars, invoicing and accounts-receivable, etc.

Each such aspect can be generalized to be independent of seminar specifics, creating a
library of re-usable abstract specification frameworks, shown in Figure 260 with
details of invariants and action specs elided.

This framework uses abstract types like Job, Requirement, and Resource, and abstract
relationships like meets, provides, etc. These will map in very different ways to a car
rental application (Resource=Vehicle, Job=Rental, meets=model category matches) than to
assigning instructors to seminars (Resource=Instructor, Job=Session, meets=instructor
qualified for session topic).

Figure 260: Specification frameworks for the seminar business

<Requirement>

<Job>
*

<Capability>

<Resource>
*

*

*
allocated

0,1

provides
meets

requires

*

*

Resource Allocation

<Product>

stock
threshold

<Item>
*

<Producer>

<Order>
0,1

*

Production

<Product>

<Indicator>

reliability

<Customer>

<Trend> <Indication>

* *

*

*

Marketing Trend

assign a resource to a job if

 track purchasing trend of different products

its capability meets the job requirement

for each customer, based upon different indicators.

if product stock drops below threshold, place an order

schedule
12-506 Frameworks — Specs to Code

It can be modeled by
framework composition

These frameworks must now be mapped to our problem domain, and related to each
other by shared objects, attributes, etc. Figure 261 shows the overall problem model as
an application of these frameworks.

The composite specifies
framework interactions

Of course, these frameworks must interact with each other. A session must have both
an instructor and room assigned; failure of either means the session cannot hold.
When a session holds, copies of course materials must be produced, and the customer
trends get updated. Note that each problem domain object can play multiple roles in
different frameworks. For example, a Course Title serves as a Requirement in the two
applications of the Resource Allocation framework, and as a Product in the applications
of the Marketing and Production framework.

12.4.1.2 Combining Code Frameworks

Each model framework
could have an implemen-
tation

Each of the model frameworks in Figure 261 could come with a default implementa-
tion frameworks. Our design, at the level of framework-sized components, would
look like Figure 262:

Figure 261: Specification by composing frameworks

Session

CourseTitle Facilities

Instructor Room

Skill

Customer

Copies CopyCenter

Resource

Capability

Job

Requirement

Product

ProducerItem

Customer

Indication

Resource

CapabilityRequirement

Job

Product

Resource Allocation Resource Allocation

Production

Marketing Trend

allocate instructors allocate rooms

produce copies

track title trends
Frameworks — Specs to Code 12-507

With suitable plug-ins Each of the components has its plug-points suitably filled by implementation units
from this problem domain. Thus, the instructor allocator has Instructor and Session as
plug-ins for Resource and Job; and the trend watcher has Session and Topic plugged
in for Indication and Product.

Here are two (of many) schemes to make these frameworks interact with each other:

Can share objects across
roles

• A shared object for the session, offering different interfaces for each role it plays.
Its class will override some framework methods to make explicit invocations into
the other frameworks, if necessary.

// one interrface for each role this shared object plays
class Session implements Indication, Job, ... {

// just became confirmed from the allocation framework
void confirm () {

...do normal confirmation stuff
// but confirmation must update the marketing indicators
MarketingTrendMonitor::indicationConfirmed (self);

}
}

Or use cross-component
links

• Separate objects for each role in each framework, with some form of cross-compo-
nent links between them. These objects can inherit a default implementation.

class SessionJob implements Job extends DefaultJob {
.// link to the corresponding “Indication” object
Indication trendIndication;

// just became confirmed from the allocation framework
void confirm () {

super.confirm () // do normal confirmation stuff
// but confirmation must update the marketing indicators: directly, ...
MarketingTrendMonitor::indicationConfirmed (trendIndication);
// or, delegate to the indication object

Figure 262: Customizing and connecting implementation frameworks

Instructor
Allocator

Room
Allocator

Producer

Marketing Trend
Monitor

Session

cross-component links, or

shared object with 2 interfaces
12-508 Frameworks — Specs to Code

trendIndication.confirm ();
}

}

A third way is to uniformly compose roles (Pattern-8, Role delegation (p.514)).
Frameworks — Specs to Code 12-509

12.5 Basic Plug Technology

There are several implementation mechanisms for achieving the effect of plug-points
and plug-ins. This section discusses the main ones.

12.5.1 Templates

Type-parameterized
class family

C++ provides a compile-time template facility which can be used to build generic
classes, or families of generic classes. One way to implement a framework for resource
allocation woudl be to use a family of C++ template classes that are mutually parame-
terized:

template <class Job>
class Resource {

Set<Job*> schedule;
makeUnavailable (Date d) {

...
for (the job in schedule overlapping d, if any)

job.unconfirm ();
}

}

template <class Resource>
class Job {

Resource* assignedTo;
Range<Date> when;
unconfirm () { }

}

template <class Resource, class Job>
class ResourceAllocator {

Set<Resource*> resources;
Calendar<Resource*, Job*> bookings;
...

}

With inheritance for roles We can use inheritance to have an instructor get the resource behavior for a session:

class Instructor :public Resource<Session*>, ...

We might use multiple-inheritance1 to have our Session play the role of Job for 2
resources:

class Session :public Job<Instructor*>, public Job<Room*> {
....

}

1. Some circularities in type dependencies will not work with C++ templates.
12-510 Basic Plug Technology

12.5.2 Inheritance and the Template Method

For an inheritance-based design, the template method (Section , “Framework-style re-
use and “Template method”,” on page 502) forms the basis of plug-ins. This was a
greatly overused design style initially, and has now fallen out of favor.

12.5.2.1 Inheritance is just one narrow form of reuse

Inheritance with free
overriding was touted as
the key to flexibiilty

Inheritance was initially touted as the preferred object-oriented way to achieve re-use
and flexibility. In the early days of Smalltalk (one of the earliest popular OO program-
ming languages), several papers were written promoting “programming by adapta-
tion”. The principle was that you take someone else’s code, make a subclass of it, and
override whichever methods you require to work differently. Given, for example, a
class that implements Invoices, you could define a subclass to implement BankAc-
counts: they both are lists of figures with a total at the end.

This caused problems
with code revisions

Although the code runs OK, this wouldn’t be considered good design. The crunch
comes when your users want to update their notion of what an Invoice is. Because a
BankAccount is a different thing, it’s unlikely that they’ll want to change that at the
same time, or in the same way; or that the overrides retain the behavior expected of an
Invoice. It then takes more effort to separate the two pieces of code after the change,
losing whatever savings there were in the first place.

Do not inherit, or re-use,
code unless you want its
spec as well

The programmer who uses inheritance like this has forgotten the cut and paste keys:
they provide the proper way to start a design that takes over some ideas from another
one. If the concepts are unrelated, then the code should be as well.

Do not re-use code unless you also intend to re-use its specification, since the internal
implementation itself is always subject to change without notice.

12.5.2.2 Inheritance does not scale for multiple variants

Perhaps inheritance can
be used to handle vari-
ants

So what else might inheritance be good for? Perhaps multiple variants of a basic class.
Take for example a hotel booking system. When a guest checks in, the system does
various operations, including allocating a room. Now, different hotels allocate their
rooms with different strategies: some always choose the free room nearest the front
desk; some allocate circularly to ensure no room is used more than another; and so on.

So we have several subclasses of Hotel, one for each room-allocation strategy. Each
subclass overrides allocateRoom() in its own way. The main checking-in function del-
egates to the subclass.

class Hotel
{ public void check_in (Guest g)

{ ... this.allocateRoom (g); ...}
protected abstract

Room allocateRoom (Guest g);
}
class LeastUsedAllocatingHotel extends Hotel
{

public Room allocateRoom (Guest g) {....}

check_in
allocateRoom

LeastUsedAllocatingHotel
Basic Plug Technology 12-511

But how to combine dif-
ferent variant features?

But of course the problem is that it is difficult to apply this pattern more than once: if
Hotels can have different staff-paying policies, does that mean we must have a differ-
ent subclass for each combination of room-allocation and staff-payment? That will not
scale very well, even if you did have multiple-inheritance.

12.5.3 Polymorphism and Delegation

Polymorphic delegation
works much better

The solution is to delegate these tasks to separate specialist ‘strategy’ objects that
implement different policies behind a common interface [Gamma, State p305]; this is
the essence of good polymorphic design.

class Hotel {
Allocator allocator;
public void checkInGuest (Guest g)
{... allocator.doAllocation(g);..}

}

class Allocator {
Room doAllocation (...); // returns a free room

}

class LeastUsedAllocator implements Allocator {
Room doAllocation (...) {...code ...}

}

class EvenSpaceAllocator implements Allocator {
Room doAllocation (...) {...code ...}

}

Each Hotel object is coupled to a room-allocator object, to which it delegates decisions
about allocating rooms. Separately, it is coupled to a staff-payer, and the same for
whatever other variant policies there may be. Different policies are implemented by
different classes, which may be completely different in their internal structure. The
only requirement is that all room-allocator classes must implement the doAllocation()
message: that is, they must conform to a single interface specification.

You can assemble many
combinations from few
parts

This polymorphic coupling between objects is far more important as a design princi-
ple than inheritance. It is what enables us to link one component to many others, and
thereby to build a great variety of systems from a well-chosen set of components. Both
component-based and more ‘pure’ objects-oriented approaches can take good advan-
tage of this delegation-based approach via interfaces.

Going back to the BankAccount and Invoice example: if there is really any common
aspect to the two things, the proper approach is to separate it into a class of its own. A
list of figures that can be added up might be the answer; so while BankAccount and
Invoice are separate classes, they may both use ListOfFigures.

allocator

a Hotel

a LeastUsedAlloca

an EvenSpaceAllocato

allocateRoo

check_in
12-512 Basic Plug Technology

12.5.4 Good uses for inheritance

There are some good
uses, and many bad ones

So is there any good use for inheritance? Extremists would say we can do without it,
and write very good object-oriented software, provided we have the means (a) to doc-
ument and check interface implementation, and (b) to delegate efficiently to another
object without writing too much explicit ‘forwarding’ code. All object-oriented pro-
gramming languages support these techniques, though some do so better than others.
Java, for example, has good support for interfaces, while C++ confuses implementa-
tion and inheritance. Smalltalk has support for inheritance, but no type-checking.
Languages properly supporting delegation are few: it can be done in Smalltalk, and
Java gets half-way there with its inner classes. Perhaps the next fashionable successor
to Java will have explicit support for delegation.

More pragmatically, class inheritance does have its place and value; but it should not
be used where delegation via a polymorphic interface would work. Inheriting from an
abstract class, which provides an incomplete or skeletal implementation, and then
extending it to plug-in bits specific to your need, is reasonable; inheritance with arbi-
trary overriding of methods is not advisable.

12.5.5 A Good Combination

Layer interface, abstract
class, and concrete class

One good way to combine these techniques is as follows:

• For every role define an interface:

interface IResource { }

• For every interface, define a default implementation with inheritance plug-points:

abstract class CResource implements IResource {
protected abstract plugIn ();
public m () { plugIn(); ...}

}

• Each default implementation should itself delegate to other interfaces:

abstract class CResource implements IResource {
private IJob myJob;

}

• Concrete classes will typically inherit from the default implementation; but they
could also independently implement the required interface.

• Use a factory to localize the creation of new objects of the appropriate subclasses:

class ResourceFactory {
IResource newResource () {

return new CResource;
}

}

That way you can make a local change to the factory and have entirely new kinds
of resources be created and used polymorphically.
Basic Plug Technology 12-513

Pattern-8 Role delegation

Summary Adopt a uniform implementation architecture based on composition of separate ‘role’
objects, to allow plugging together of code components.

Intent To compose separately implemented objects for different roles.

Objects play several roles, each of which may have several variants. We don’t want a
separate class to implement every combination of all the variants e.g. a Person can be
a Full-time or a Part-time Employee; a Natural, Foster, or Step-Parent; and so on. The
set of roles (and the choice of variant) may change at run time. We need to change the
type without losing the object’s identity.

Combining two specifications is easy: you just AND them together (that is, you tell
the designer to observe both sets of requirements). You can’t do that with code, so we
look for a standard mechanism for cooking up an object by systematically combining
roles from several collaborations. This will enable us to stick with the big idea that
design units are often collaborations (not objects), but still have the convenience of
plugging implemented pieces together like dominoes.

Srategy The technique is to delegate each of the role-specific pieces of behaviour to a separate
object. One conceptual object is then implemented by several: one for each role, and
(usually) a ‘principal’ to hold them all together. The principal object keeps those parts
of the state to which access is shared between the roles. Each role conducts all dia-
logue with the other participants in the collaboration from which it arises. Generally,
the roles are designed as observers of various pieces of the principal’s state.

Make the group behave to the outside world as a single object, which was the original
intent, by always keeping them in sync and being careful with ‘identity’ checks.

You will need to design an interface for all plugins to the same principal, so new plug-
ins can be added for new roles. Never use a language-defined ‘identity-check’ (== in
Java); instead, have a ‘sameAs(x)’ query — plug-ins pretend they’re all same object if
they share the same principal. Calls to ‘self’ within plugins usually go to principal.

For example, the basic trading principal has a stock of products and cash assets. Into
this can be plugged a role for retailing, that knows about a Distributor and monitors
the stock level, generating orders when necessary. Or we could make it a Distributor,
plugging in the appropriate role — perhaps a Dealer would be something with both
the Retailer and Distributor roles.

role specific

shared state

Figure 263: Building objects by connecting "role" objects
12-514 Basic Plug Technology

Pattern-9 Pluggable roles

SummaryMake role objects share state via observation of a shared object.

IntentWe need to supply complete implementations of frameworks, but frameworks are
often about collaborations between roles, rather than complete object behaviors.

Strategy• Implement components as collaborations between role plug-ins

• Each role implements the responsibilities of its framework spec

• Each role is an Observer of the shared state

• Ensure a common interface for plug-ins

• Designers couple principals to collaborations, to build new collaborations

Roles observe shared state. So that a fully-coded component can mimic the structure
of the corresponding specification frameworks, each role should incorporate the code
necessary for implementing placeholder actions. Most placeholder triggers boil down
to monitoring changes of state. Each role can therefore be built as an observer of the
parts of the common state that it is interested in.

The principal provides a standard pluggable interface allowing each role to register its
interests, and makes each sharable attribute a potential subject.

Collab components mirror framework specs. After building a specification by com-
posing framework models, you can implement it by plugging together the corre-
sponding fully-implemented collaborations (if they are available).

This scheme could pay some performance penalty compared to purpose-built sys-
tems. There is overhead in the wiring of the observers wherever components are
plugged together; although more efficient versions of Observation, such as the Java-
Beans event model, may adequately address this. In exchange for performance, you
get rapid development; and you always have the option of designing an optimised
version, working from the composed framework specifications.

Observation

CustVendCode
RetailDist Code

RetailShop Code
Basic Plug Technology 12-515

12-516 Basic Plug Technology

	Chapter 12 Reuse and Pluggable Design — Frameworks in Code
	12.1 Reuse and the Development Process
	12.1.1 What is Reuse?
	12.1.1.1 Import beats Cut & Paste
	12.1.1.2 The Open-Closed Principle and Reuse Economics

	12.1.2 What are the reusable artefacts?
	12.1.3 A Reuse Culture
	12.1.4 Distinct Development Cycles

	12.2 Generic Components and Plug-Points
	12.2.1 Plugs — the interfaces
	12.2.1.1 Infrastructure Services: a special kind of "lower" interface

	12.3 The “Framework” approach to code reuse
	12.3.1 OOP frameworks
	12.3.2 Non-OOP Frameworks

	12.4 Frameworks — Specs to Code
	12.4.1 Generalize/Specialize: models and code
	12.4.1.1 Combining Model Frameworks
	12.4.1.2 Combining Code Frameworks

	12.5 Basic Plug Technology
	12.5.1 Templates
	12.5.2 Inheritance and the Template Method
	12.5.2.1 Inheritance is just one narrow form of reuse
	12.5.2.2 Inheritance does not� scale for multiple�variants

	12.5.3 Polymorphism and Delegation
	12.5.4 Good uses for inheritance
	12.5.5 A Good Combination
	Pattern-8 Role delegation
	Pattern-9 Pluggable roles

