

 Chapter 11 Components and Connectors
Outline

Many software managers, harried by budgets and delays, envy hardware design-
ers. To design a steam engine they did not start designing screws from scratch.
Electronic systems are built by plugging together chips, boards, or boxes that are
widely interoperable. A well-chosen set of components can have many possible
configurations; many end-products that can be made quickly and reliably.

Over the past few years, the same has begun to happen in software. Wordproces-
sors can talk to spreadsheets, and graphs to databases. Standards like COM and
CORBA allow you to plug together components in different languages and plat-
forms. Java’s Beans, or any similar protocol, allows separately designed objects to
find out more about each others’ capabilities before negotiating a collaboration.
Visual building tools help you plug components together pictorially.

Large-grained server components are becoming a practical part of an enterprise
component strategy, thanks to technologies such as JavaBeans. These interact with
each other much like their smaller cousins, and need to be analysed and designed
so they interoperate as expected.

This chapter is about meeting requirements with component-based designs, and
designing components that work well together. Section 11.1 introduces compo-
nent concepts, pluggable parts, and how components they have evolved over the
years. Section 11.2 shows how kits of components, designed to be used together,
can be configured in very rich and varied ways.

Section 11.3 introduces the ‘connector’ model of component architectures, fol-
lowed by a typical example of such an architecture in Section 11.4. Section 11.5
and Section 11.5 show how to specify and design with components in this archi-
tecture. Lastly, Section 11.7 shows how even ad-hoc and heterogenous component
systems are amenable to systematic development.
© Desmond D’Souza & Alan Cameron Wills 1998/May/11 11:44 11-437 of 492

11.1 Components — an Overview

OOP is not a silver bullet Object-oriented programming alone is not enough to get stupendous improvements
in software delivery times, development costs, and quality. Some people wonder why,
having bought a C++ compiler, they’re not seeing all the glorious benefits they’ve
heard of.1

Proper usage is essential But it doesn’t work like that. Those benefits depend on good management of the soft-
ware development process. The bag of techniques, languages, methods and tools
lumped under the “object oriented” heading are an enabling technology: they make it
easier to achieve fast cheap robust development; but only if you use them properly.

One shift is towards re-
using components

To achieve significant improvements in software productivity, some fundamental
shifts in the management of software development have to take place. One of the most
important is to stop writing applications from scratch every time you embark on a
new project. Instead, you should build using software components that already exist.
The building blocks that you use for software development should not be just those
offered to you by the programming language, but larger-grained encapsulated units.

This is becoming wide-
spread today

Over the past five years or so, we have seen this happening already. Many applica-
tions are now built upon bought-in frameworks, or by gluing together existing appli-
cations. Many programmers have come across Microsoft’s OLE/COM (and before it,
DLLs), which provides a way of bolting together applications. The OMG’s CORBA
provides similar facilities (and is more carefully defined, though slower off the mark).

Wire together large
grained applications

For example, an application that reads stock figures from a newsfeed can be ‘wired
up’ to a spreadsheet; this does some calculations and passes the results to a database,
from which a web server extracts information on demand. Each of these components
may be standalone applications with their own user interface, but are provided with a
way to interact with other software.

The key is to identify
separable parts

It is still the case that many development teams only think of gluing together large
bought-in components that can also work as standalones. But the spreadsheet in that
example doesn’t need a user interface: it is just used as a calculating engine within a
larger chain. The example could be built more efficiently with a calculating mecha-
nism, designed to be used as a component in a larger design, that comes without all
the GUI overhead (and perhaps with a suitable GUI as an optional add-on). And the
persistence mechanism need not be a part of the spreadsheet itself; it can utilize
another separate data-access component for that; again, it could include a default one.

...and build domain-spe-
cific building blocks

Most development teams could benefit from thinking more in terms of building their
own components, appropriate for their own application area. For this is the key to
fast, reliable development: to do it the way hardware designers have been doing it for
two centuries: to build components that can be assembled together in many combina-
tions. Most end products — and indeed most components — should be assemblies of
smaller components, built either elsewhere or in-house.

1. And some of them then go around saying “It doesn’t work”!
11-438 Components — an Overview

Investing in assets needs
shift in attitudes

The aim has to be to invest in the development of a component library; and, like any
investment, this requires money to be spent for a while, before any payback is seen. A
conventional software development organisation requires a considerable shift of atti-
tudes and strategy to adopt a component-based approach. Like all big shifts, it has to
be introduced in easy stages, planning carefully the risks, fallbacks, and evaluation of
each phase.

This chapter looks at the nature of components: how they are built and assembled,
how they differ from objects, and what comprises a component architectures.

11.1.1 What is a Component?

There are many definitions; we will start with a broad one, then narrow our focus.

Component A coherent package of software that can be independently devel-
oped and delivered as a unit, and that offers interfaces by which
it can be connected, unchanged, with other components to
compose a larger system.

A component can pack-
age several things

This definition is a bit more general than most. A component can include anything
that a package can, including executable code, source code, designs, specifications,
tests, and documentation. In Chapter 15, Frameworks, we showed how the idea com-
posing software based on interfaces also applies to designs and specifications, leading
to a more general idea of component-based modeling and specification — all work is
done by adapting and composing existing pieces.

A component imple-
ments, and uses, inter-
faces

For a component to be ‘independently developed’ it must be self-contained i.e. the
packaging must specify the interfaces that it implements, as well as any interfaces that
it requires from other components in order to work properly.

Figure 230: Component Development and Distribution

Application 1 ApplicatiApplication 2

generalise
& validate

develop

... ...

specialise
& plug together

architect
Components — an Overview 11-439

Implement against other
interfaces

Components are connected to other components only via their interfaces. Each com-
ponent implements one or more interfaces, which are the published ways another
component may be connected to it. Each implementations is done entirely in terms of
other interfaces.

A component package will typically include:

• A list of imports — other components this one depends on.

• The external Specification — a description of what it provides for users, and what
they need to provide to make it work. (In some cases, part of the specification may
be available from the executing objects themselves. See Section 5.10.1, “Reflec-
tion,” on page 556.)

• The Executable code — which, if built according to a suitable and consistent archi-
tecture, can be coupled to the code of other components.

• Validation code — to help decide whether a proposed connection is OK.

• The Design — all the documents and source code associated with the work of sat-
isfying the specification. These may be witheld from customers.

Components can also contain modifications and extensions of existing classes. This
occurs often in Smalltalk, where existing classes and methods can be dynamically
modified and extended, and is generally also useful for any system that cannot be
halted to install software upgrades. The interesting thing in terms of modeling is to
provide mechanisms and rules for ensuring that the components do not interfere
improperly with each other, once installed in a system.

We will focus on execut-
able components

Many popular uses of the term ‘component’ in today’s literature refer to executable
pieces of code, conforming to one or another component technology. Hence, in this
chapter we shall focus largely on executable units. We will use the term component to
loosely include the self-contained package, the executable itself, its specification, or
even an instantiation of the executable e.g. as a ‘component-server’.

11.1.2 The Evolution of Components

Components thinking
has evolved a lot

The idea of components goes back almost as far as the idea of software. What has
changed significantly over the years is the granularity of the components, the corre-
sponding unit of ‘pluggability’, the ease of connecting components to each other to
compose larger systems, the ability to do more such connecting dynamically, and
more standardized infrastructure for component interoperation.

Mainframe systems were
components...

The earliest mainframe-based systems were written as monolithic applications
manipulating data shared across all procedures in that application. Internal proce-
dures could rarely be considered encapsulated; they typically operated on shared
data, making composition at that level difficult and error-prone. The only visible
interface was to an external dumb-terminal, and the nature of the interface was sim-
ple: paint to the terminal screen, and read characters commands from the keyboard.

...but not very good ones These early host-based applications were components — although composing them
with others was quite painful. Since the only interface offered to the outside was to a
dumb-terminal, the only way to connect two such ‘components’ to each other was to
write pieces of code called ‘screen-scrapers’ and ‘terminal emulators’, that acted like
11-440 Components — an Overview

dumb terminals to the host, but interpreted the screen painting commands and gener-
ated character commands. The granularity of components was very large, the connec-
tions were quite static, and the technology to connect parts was primitive1.

Appications were single
executables, re-use was
of source code

At the time, it was only possible to deliver complete applications in the form of an
executable. Moreover, this executable had to be pre-built in a very static manner, and
could only be replaced or upgraded as a single unit. Software libraries contained
source code, which you used by including the text and compiling it with your own.

This led to inter-applica-
tion communication

But software vendors aren’t keen on letting people see their source code; they’d rather
just give you the executable and (if you insist) the spec. This meant providing ways in
which applications could communicate. In the early days, this meant that they passed
files to one another: which was slow, and required every output and input from a pro-
gram to be converted to the form of external records. It lent itself to pipeline process-
ing rather than dialogue between programs.

...and to API’s, and
dynamic linking

This led to the development of the Application Program Interface, which could be
seen as a way in which a program could pretend to be an application’s user using
facilities standardized at the level of the operating system; and Dynamic Linking,
which enabled executables to be linked at run time, without further processing. Two
distinct forms of large-grained components evolved from this.

Client-server...The first led to client-server styled systems, with the client combining user-interface
and application logic, and communicating via SQL requests with a database server
that dealt with persistence, transactions, security, etc. All communication involved
database processing requests in SQL, and clients did not communicate with each
other (except indirectly through shared data on the server).

...and interacting appli-
cations followed

Finer-grained ‘application’ components also started to interact, using operating sys-
tem support. In the world of Windows, generic applications were built with APIs that
enabled them to be interconnected and interact via the O.S., exchanging information
through standardized data representation schemes. Thus, a spreadsheet application
could communicate with a word-processor and a stock feeder to produce a formatted
financial report. In Unix, we saw the emergence of the elegant, but limited, pipe-and-
filter architecture.

Internal objects were
next exposed

The first APIs were sets of functions that an external component could invoke. If there
was any notion of an object receiving the function calls, it was the entire running exe-
cutable itself. But the most recent developments in this field have put the executable
program into the background. The objects are the spreadsheet cells, the paragraphs in
the document, the points on the graph; the application software is just the context in
which those objects execute. The component architecture determines what kinds of
object interactions are allowed.

These were finer-
grained and more
dynamic configurations

Clearly the granularity of components became much finer with object technology. No
longer was it just the spreadsheet interacting with the database; now it was the sheets
and cells that were connected to the columns and rows in the database, generating
paragraphs and tables in the word-processor. These relatively dynamic objects con-
nect to other objects, regardless of the applications within which they exist.

1. This is changing substantially, with mainframe applications re-born as ‘server-side compo-
nents’ using technologies such as Enterprise JavaBeans
Components — an Overview 11-441

The virtual enterprise is
built on this idea

And, of course, the virtual enterprise of tomorrow is built with components and
objects locating each other, connecting, and interacting on a standardized infrastruc-
ture. This happens for components of all granularity, from large server applications, to
fine-grained objects, across boundaries of language, processor, and even enterprise,
and with binding times from completely static to very dynamic.

11.1.3 Components and Pluggable Reuse

Components are meant
to plug together

Reuse comes in a wide variety of flavors, ranging from cut-and-paste, through com-
plete application frameworks that can be customized for use. The component
approach to re-use mandates that a component should not be modified when it is con-
nected to others i.e. components should simply “plug” together, via defined interfaces
for their services, to build larger components or systems. This makes it easier to
replace or upgrade parts; if they support the same (or compatible) interface, one can
be replaced by another.

Figure 231: Old vs. New Styles of Component Interactions

Word-
processor

Spread-
sheet
application

Newsfeed
software

Old-style APIs

(:Wordprocessor)

:Doc

:Para

:SSheet

:Cell

(:SpreadSheet Applicn)

:Stock table

:Quotation

:Heading

New-style object
linking

(:Newsfeed s’war

interfaces for primary services

A
B

p

C

“plug-in”s
to specialize behavior

Figure 232: Primary and customization interfaces
11-442 Components — an Overview

Different kinds of con-
nections

The precise meaning of a connection between components will vary, depending upon
the needs of the application and the underlying component technology. It could range
from explicit invocation of functions via the connection, to higher-level modes such as
transfer of workflow objects, events being propagated implicitly, etc. Section 11.3,
“Component Architecture,” on page 452 will examine this in detail.

Components can be cus-
tomizable

The fact that a component should not be modified when reused does not mean it can-
not be customized externally. A component can be designed to provide, in addition to
the interfaces for its primary services, additional interfaces for “plug-ins” that cus-
tomize the behaviors of its primary servics. This style of pluggable design is discussed
in Chapter 12.

11.1.4 Components and Standardization

Components need stan-
dards

If we are to build systems by assembling components, we need a set of standards that
are agreed to by component developers. These are required both so that these compo-
nents can interoperate, and to reduce the development burden of common tasks; most
of these issues would still need to be addressed even without components, but the
need for standardization would be less.

There are three leading contenders in component-ware standards: Corba, COM, and
JavaBeans, and they address the need for standardization to different extents. Specific
domains and applications often should specialize these standards, or define their own
as appropriate.

There are three broad categories of standardization: horizontal, vertical, and connec-
tors.

‘Horizontal’ (infrastructure) standards

Common base servicesComponents need a common mechanism for certain basic services. These include:

• Request broker — maintains information about location of components, delivers
requests and responses in a standard way.

• Security — mechanisms for authentication of users, and authorization for per-
forming different tasks.

• Transactions — because each component potentially maintains its own persistent
state information, business transactions will now need to cross multiple compo-
nents. This needs a common mechanism for co-ordinating such distributed trans-
actions correctly.

“Horizontal” Standards: request/response, transaction, security, naming,...

“Vertical” Standards: what is a Patient? Prescription?

“Connector” Standards:
synchronous, async,
message queue,
shared data, ...

Figure 233: Horizontal, vertical, and connector standards across component
Components — an Overview 11-443

• Directory — many components will need access to directory services e.g. to locate
resources on a network; others will contribute to these services e.g. a printing
component. They need to be based on a common interface.

• Interface repository — component interfaces and their specifications must be
defined in a common way, so that they can be understood both by man, and by
other components.

• Naming — a uniform way to reference and access entities inside different compo-
nents, across different internal naming schemes.

‘Vertical’ standards

Common domain mod-
els

Besides the underlying mechanisms being shared, components also need to agree
upon the definition of problem domain terms — usually manifested as problem
domain objects — which they will jointly operate upon. Components in a medical
information system must share a common definition of what exactly a Patient is; and
what constitutes an Outpatient Treatment. They must share this definition at least in
terms of the interfaces of those objects.

As of 1997, the OMG is actively working towards such ‘vertical’ standards, in domain
s that include telecommunications, insurance, finance, and medical care. Every project
must invariably define these domain-specific standards as well.

‘Connector’ standards

Common interaction
schemes

Lastly, we need to use standard kinds of ‘connectors’ between components, support-
ing standard interaction mechanisms. These interactions can span a wide range of dif-
ferent semantics, suitable for different kinds of components and compositions. The
basic object-oriented ‘message-send’ is certainly not the only, or even the most suit-
able, way to describe all interactions.

• Connectors which support explict call/return: the call could be synchronous or
asynchronous, asynchronous messages could be queued until processed, etc.

• Connectors with impicit event propagation: certain state changes in one compo-
nent are implicitly propagated to all components that registered an interest in that
event.

• Connectors that directly support ‘streams’: producers insert values or objects into
the stream, where they remain until consumed by other components.

• Connectors that support ‘workflow’: objects are transferred between one compo-
nent and the next, where this transfer is itself a significant event.

• Connectors that support mobile code: rather than just receive and send data and
references to objects, you can actually transmit an object, complete with the code
that defines it behaviors.
11-444 Components — an Overview

11.1.5 Why the move to Components?

How much is hype?Components and “component based development” are rapidly becoming buzzwords;
like those before them, they bring a mixture of hype and real technical promise. The
main advantages of adopting a component-based approach to overall development
are:

Useful unit of reuse• Re-use of implementation and related interfaces at medium-granularity: compo-
nents span a range of granularity (as do objects). A single domain object may not
be a useful unit of reuse; a component, packaging together an implementation of
some services as it affects many domain objects, can be.

Parallel development• Component partitioning enables parallel development: identifying medium-grain
chunks, and focusing on early design of interfaces makes it easier to develop and
evolve parts in parallel.

Scalable• Interface-centric design gives scalable and extensible architectures: by letting each
component have multiple interfaces we reduce the dependency any one compo-
nent has on irrelevant features of another that it connects with. Also, adding new
services incrementally can be accomodated more easily: introduce new compo-
nents, and add the relevant interfaces to existing ones. Scalability is more easily
addressed; replication, faster hardware, etc. can be targeted at a finer grain.

Infrastructure standard-
ized

• Leverage standards: because component technology implies some base set of
standards for infrastructure services, a large application can leverage off these
standards and save considerable effort as a result.

Manageable units• Technically practical unit to configure, version, and package: being self-contained,
a packaged component must include definitions of the interfaces it implements,
as well as those it expects from others. This is a sensible unit to manage for config-
uration and versioning purposes, particularly for somowhat larger-grained com-
ponents, or ‘kits’ of components.

Higher-level capabilities• Can support capabilities that are impractical for “small” objects: within a compo-
nent technology it becomes practical to support capabilities that may not practical
at the level of programming-language specific objects, such as (i) language-inde-
pendend access of interfaces, so you can use components written in other lan-
guages; (ii) transparent interaction between distributed components.
Components — an Overview 11-445

11.2 Component Kit — Pluggable Components Library

A kit is a set of interoper-
able components

This section is about component kits — collections of components that are designed to
work with each other. The kit doesn’t have to be completely fixed — you can add to it,
and have different accessory kits, and sub-kits of pieces that work particularly closely
together. But there is a unifying set of principles, the kit’s component architecture, which
make the members of a kit more easy or more likely to be plugged successfully
together, than components built separately or chosen from different kits. Plugging
arbitrary components together usually requires some sort of “glue” to be built, and
we’ll deal with that in Section 11.7, “Heterogenous components,” on page 472.

We’ll begin with a small example to discuss the basic principles, and see how they
apply to larger-scale (and more business-oriented) components later on. These exam-
ples will use different kinds of ‘connectors’ between the components. We use arrows
and beads to represent connectors. . Section 11.4.1, “Defining the Archi-
tecture Type,” on page 458 will show how different kinds of connectors can be
defined.

11.2.1 Graphical user interface Kit of Components

GUI components are
quite familiar

GUIs form the most widely used kits of components. Windows, scrollbars, buttons,
text-fields, and so on can be put together in many combinations and coupled to your
database or your web server or some other application. And these days, you rarely
need to program the software that sets up and builds the forms: you just use a GUI
wizard to design them directly.

A typical design Using the connector notation above, a typical design might look like this configura-
tion of component instances:

Properties and events are
coupled together

The connectors represent couplings between properties (; some pair of values is
kept continually in sync) or events (; a published occurence from one component
triggers some method of another) of two components. There is some need for adapt-
ers: between for example, the ‘content’ of the Text Viewer and the ‘contact history’ of

Text Viewer

offset

percent

Scrollb

Text Field

Contact

contact content
history

content

current call

statehi-priority

Contact
Database

Record

Record
Selector

Text Fieldcontent

search
name

Button

hit
commit

Checkbox

Figure 234: GUI component kit
11-446 Component Kit — Pluggable Components Library

the Contact Record. There are both continuously updated properties, such as the
scrollbar’s connector to the Text Viewer; and events such as the Button’s hits. Some of
the connectors are bidirectional: the checkbox both sets the priority and will immedi-
ately show if anything alters that property.

11.2.2 Kit of Small Components

A domain-specific com-
ponent-wiring example

Suppose you are given a collection of pieces of hardware: let’s say, a motor of some
sort, a couple of push-button switches, a meter. Suppose the motor has a few wires
sticking out of it: one labeled ‘start’ another ‘stop’, and a third tagged ‘speed «out-
put»)’.The buttons and meter also have labelled connections. Now you can imagine
connecting the components up together, something like this:

And a more interesting
re-configuration

Of course, a push-button can be used for many other purposes: if you had a Lamp,
you might use it to switch that on and off, and your Meter might be used to display a
temperature. There might be other ways of controlling the motor and other ways of
using its speed to control other things. Let’s root around in the box of bits and do
some creative wiring:

Most parts are genericWhen the motor is running slowly, the meter doesn’t show the small speed very
clearly, so we’ve decided to multiply the speed by 10 or 100 before it gets to the meter.
From the box of components we’ve pulled a Multiplier and a Selector. A Selector is a
user-interface thing that provides a fixed choice of values, which in this case we’ve set
to the factors we want to allow.

We’re also worried that the Motor might run too fast sometimes (perhaps if its load is
removed), so we’ve pulled out a Threshold:1 this converts a continuously varying
value like the speed into a boolean off/on, switching on when its input goes over a

Motor

start

stop

speed
Button pressed

Button
pressed

Meter
value

Figure 235: Electronic hobbyist component kit

Motor

start

stop
speed

Button pressed

pressed

Multiplierip1

Selector
{1, 10, 100}

selected

Meter

value

ip2

product

value

Threshold inoverLimit

OR

Button

Figure 236: Electronics kit: a non-trivial configuration
Component Kit — Pluggable Components Library 11-447

certain limit. Then we’ve connected it and the stop button (through an OR-gate) to the
motor’s stop input: so the motor will be stopped either by the button being pushed, or
the motor running too fast.

Parts can be combined
very flexibly

Now, any model railroad enthusiast will recognise this as a neat kit of parts, with
which you could build a lot of different projects — many more potential products
than the number of components in the box. Note the ease of modifying the first ver-
sion to realize the second. It’s not too difficult to imagine such a kit in hardware; nor
in software. The Motor could be a software component controlling a hardware motor;
the Buttons, Meter, and Selector could be user interface widgets; and the other compo-
nents, just objects not directly visible to the user.

11.2.3 Large Components

Components can also be
large things

Components do not have to bit little things; they can be entire applications, or legacy
systems. The nature of the connectors between these will differ.

These components are the
support systems for some
of the departments in a
large manufacturing
company. The compo-
nents and their lines of
communication mirror
those of the business. The
diagram could represent
a business structure of
departments and flows of
work, or a software struc-
ture of components and
connectors. And just as
departments are com-
posed of teams and peo-

ple, so a closer look at any one of these components would reveal that it is built from
smaller ones.

The company places orders, which are mailed out and forwarded to payment control
for subsequent payment. When the shipping department receives goods coming in,
they forward a notification to payment control. Invoices received are also forwarded.
When an invoice is received for goods that were delivered, a payment is generated.

They communicate entire
objects via transfers,
splits

Where the smaller example sent primitive values across the connectors, these compo-
nents send larger objects such as orders and invoices and customer information to
each other. The connectors between these components serve to transfer objects, in one
case with a duplication or split to two or more destination components.

1. What hardware people call a Schmitt trigger.

Purchasing

Payment Control

Goods Inwards

Finance

orders goods

goods
Mail out

Mail in

received

 received made

invoices

payment
orders

payments

Figure 237: Large business components
11-448 Component Kit — Pluggable Components Library

Such a ‘federated’ system
has many benefits

The configuration is a modern one: rather than having a single central database with
clients all over the enterprise, there are separate components, each holding appropri-
ate data and performing appropriate operations, tailored to support the business
operations. There are several benefits of this “federated” scheme.

• Flexible. It is more extensible and flexible than centralised systems clustered
around one database. Business reorganisation is rapidly reflected in the support
systems.

• Scalable. It is also more scalable: to serve more people, buy more machinery. You
are not constrained by needing to have a single server that will only scale so far.

• Graceful degradation. Each business function is supported by its own machinery,
and so one malfunction doesn’t stop the whole enterprise.

• Upgradable. The system does not have to be all set up and subsequently updated
as a single entity. As the business grows and is reorganised, new software can be
added. Commercial off-the-shelf components can be plugged in, rather than hav-
ing to build every enhancement into a single program.

• Appropriate. Because it requires less central control, it is less prone to local politi-
cal and bureaucratic difficulties: there is no one authority that has to agree to
every change, or has to be persuaded to address the evolving requirements of
every department. Instead, the business users hold much more responsibility for
providing support appropriate for themselves.

Re-configuration now
corresponds to visible
business process change

An inefficiency was diag-
nosed in the process;
goods were being deliv-
ered and paid for that
had never been ordered,
and reconciling purchase
orders with goods
received was becoming
very expensive. They re-
organised their depart-
mental roles, and the soft-
ware to match: Goods
Inwards now has records
of all orders that have
been made, and will turn
away spoof deliveries.1
Because the component structure reflected the business structure at the level of granu-
larity of the change required, the change could be accomodated fairly well. Of course,
finer-grained business changes — e.g. the introduction of a new pricing plan for exist-
ing products — requires corresponding finer grained component (or object) structure
to accomodate the change.

1. Thanks to Clive Mabey, Michael Mills, and Richard Veryard for this example.

Purchasing Support

Payment Control

Goods Inwards

Finance

orders made

orders expected

goods received

orders fulfilled

payment orders

After re-engineer

Figure 238: Reconfigured business components
Component Kit — Pluggable Components Library 11-449

11.2.4 Component building tools

Assembly tools work on
such component kits

Unfortunately, component technology is often associated with visual building tools.
Once a systematic method of connecting components has been established, tools can
be devised that let you to plug them together graphically. Digitalk’s Parts and IBM’s
Visual Age were early examples; Symantec’s Visual Café works in Java, like Sun’s
Java Workshop; there are also similar-sounding “visual programming” tools that are
actually restricted just to building user-interfaces, rather than composing general
components. There are tools (for example Forté) that specialise in distributed architec-
tures, in which the components may be executing on different machines. Others are
good at defining workflow systems, in which components of one kind, work-objects,
are passed for multiple stages of processing between components of another kind, the
work-performers.

11.2.5 Are components just objects?

Components may be
built from objects

Many components may be single objects, or built from several objects. But when you
build a design from components, you don’t need to know how components are repre-
sented as objects, or instances of a classes, or how the connectors work.1

Federated components
have much in common
with objects

The shift from central database to federated systems is similar to the move from lan-
guages like COBOL to Java and its kin. In both COBOL and a central database archi-
tecture, all data definitions are lumped together in one place, and all the procedures in
another. There is no restriction on the accessibility of each piece of data from each
piece of program, so the interdependencies grow like bindweed. In federated systems,
just as in OO programs, each component is a collection of software, chosen for the
support of the corresponding business function, and using local data representations
best suited to that software. And just as in OO programs, objects need to access the
information held by other objects, so in a component architecture, components inter-
communicate through well-defined interfaces, so as to preserve mutual encapsula-
tion.

Similarly for small com-
ponents

The much smaller-grain components in Section 11.2.1 and Section 11.2.2 are also very
similar to objects. In fact, they would be easiest to implement as objects in an object-
oriented programming language.

There are differences of
degree

This shows that the differences between component and object oriented design are
mainly to do with degree and scale, and are not intrinsic to either:

• Components often have persistent storage; although objects in an OO program-
ming language always have local state, they typically only work within main
memory.

1. Components can also be built without explicitly using object-oriented design techniques at
all; but OO makes it a lot easier; and if you tried to build a component architecture without
mentioning objects, much of the technology you’d use would amount to object-orientation
anyway. We’ve recently read a few reports proclaiming ‘Objects have failed to deliver!
Components are the answer!” The authors either have a poor understanding of how com-
ponentware is built, or, being journalists and paid pundits, they enjoy a disconcerting head-
line. The reality is that OOP, like structured programming before it, has just become part of
the body of ideas that constitute good software engineering. Having learnt how to do it, we
can now move on to putting it to work.
11-450 Component Kit — Pluggable Components Library

• Components have a richer range of intercommunication mechanisms, such as
events and work-flows — rather than just the basic OO message.

• Components will often be larger-grained than the traditional object, and may be
implemented as multiple objects of different classes.

• A component package, by definition, includes definitions of the interfaces it pro-
vides as well as the interfaces it requires; a traditional single class definition
focuses on the operations provided, but not the operations required. In fact, the
smallest object-oriented package that could qualify as a component package
would consist of a class, the interfaces it implements, and the interfaces it expects
of other objects.

• Objects tend to be very dynamic in nature — the number of customers, products,
and orders you have, and their interconnections, changes dynamically. In con-
trast, larger-grained components may be more static in nature — there will proba-
bly always be just one payment control and one finance component, and their
configuration will be quite static. Of course, there is no intrinsic reason why these
components should not be modeled as objects, or why they should be static.

Catalysis applies equally
to both

Components, like objects, do interact through polymorphic interfaces. All of our mod-
eling techniques will apply equally well in both cases, including the more general
connectors for components. In a good OO development method, there is indeed no
premature presumption about whether an object is in main memory, disk, tape, or
graven on tablets of stone; and we have seen that collaborations and actions abstract
over any kind of interaction, not just messages.

Components and objects
both distribute

In our larger example, the components might be executing on separate host machines;
or they might not. They might communicate through function calls, or through a net-
work. That is determined by the Component Architecture; but the principles are the
same as for large-grained distributed objects, irrespective of such issues.
Component Kit — Pluggable Components Library 11-451

11.3 Component Architecture

11.3.1 “Architecture”

Discussion sometimes arises about the difference between “architecture” and
“design”. We find the following distinction useful.1

Architecture is about
consistent rules and pat-
terns

Architecture is about recurring design structures, rules, or principles that are used (or
could be) across many designs; such as, “We shall all write in Java”, or “here’s how we
make one property observe another”, or “use these interfaces and protocols to imple-
ment a spell-checking feature”, or “use Fred’s class whenever you want to wongle
foobits”, or even “never use return codes to signal exceptions”. The architecture is
what lends the coherence and consistency to the design.

An architecture is broadly comprised of two parts (we defer a more detailed discus-
sion to Chapter 13, Architecture):

• the generic design elements or patterns that are used in that architecture, such as
subject-observer, or Fred’s class, or the event-property connectors, or the generic
design for spell-checking; and,

• the rules or guidelines that determine where and how those architectural ele-
ments are applied, such as: for any composite user-interface panel that may be re-
used, make all internal events available via the composite. In the extreme case,
these rules can even fully define a translation scheme.

Design is applying those
rules in specific ways to
meet a spec

Design is about relating several independent pieces together and claiming “this par-
ticular way of combining these pieces will make something that does so-and-so”. The
pieces might be the result of applying some architectural rules; or a sequence of state-
ments making up a subroutine; or a group of linked objects; or an assembly of hard-
ware components; or large software subsystems, intercommunicating in some way; or
a composition of several collaboration patterns on problem domain objects. But the
essence of design is that the composition of different pieces that were or can be sepa-
rately designed somehow meets a requirement.

That said, we will still sometimes refer to a high-level partitioning structure as archi-
tecture, either technical (having to do with underlying component technology) or
application (having to do with partitioning of application logic).

11.3.2 The Component - Port - Connector Model

We define component
architectures based on
ports and connectors

The rest of this chapter deals with how to model and specify components: executable
units that can be plugged together with different interaction schemes connecting
them. Our modeling approach will be based around these ideas:

• Components — pieces of software that can be ‘plugged into’ a wide variety of
others. They range in scale from small user-interface widgets to large transaction-
processing applications.

1. Thanks to John Daniels for this.
11-452 Component Architecture

• Ports — the exposed interfaces that define the ‘plugs’ and ‘sockets’ of the compo-
nents. A plug can be coupled with any socket of a compatible type using a suit-
able connector.

• Connectors — the connections between ports that build a collection of compo-
nents into a software product (or larger component).

This spans many levels
of standards and rules

A component architecture to us defines the schemes of how components may be
plugged together and interact. This may vary from one project or component library
to another, and includes schemes such as CORBA, DCOM, Java Beans, database inter-
face protocols such as ODBC, and lower-level protocols like TCP/IP; as well as sim-
pler sets of conventions and rules created for specific projects.

Component models
specify a component

Component models are specifications of what a component does, based on a particu-
lar component architecture, including the characteristics of its connectors; and
descriptions of connections between components to realize a larger design.

Component-based design — the mind-set, science, and art of building with compo-
nents and ensuring that the result of plugging components together has the expected
effect.

Plugging component
relies on underlying
architecture

Now of course, it’s impossible to allow a designer to stick components together just
any old how: an output that yields a stream of invoice objects can’t be coupled to an
input that accepts hotel reservation cancellation events. But we would like to be able,
at least within one kit of components, to couple any input with any type-compatible
output i.e. if their behaviors are compatible. To be able to do this confidently across
independently developed components means that certain things must be decided
across the whole kit:

Specification What you have to do to specify a particular component, with its
input and output ports.

Instantiation What you have to do to create an instance of a component, and
to couple components together.

Connectors: How connectors (connections between components) work — as
function calls, messages on wires, data shared between threads,
..... And if there are different kinds of connector, what are they,
and how do their implementations differ?

Common model:What types are understood by all the components? (Just inte-
gers? or Customers too?) How are objects represented as they are
passed from one component to another?

Common services:How does a component refer to an object stored within
another? How are distributed transactions coordinated?

The answers to these questions are common across all of any set of components that
can work together (see Section 11.1.4, “Components and Standardization,” on
page 443). Together they form a set of definitions and rules called a “component archi-
tecture”. MicroSoft’s DCOM, the Object Management Group’s CORBA, and Sun’s
Java Beans are examples. Projects often devise their own component architecture,
either independently or (more sensibly) as specialisations of these, because very gen-
eral architectures cannot provide a common model of what a Bank Customer is (for
example); but this would be a sensible extension within a bank.
Component Architecture 11-453

In this chapter, we will concern ourselves with architecture at the generic level of the
kinds of ports and connectors supported, although, more broadly, an architecture def-
inition could be much more.

11.3.2.1 Component connector

Notation We use arrows and beads to represent connectors, ,
based upon the UML notation for defining an interface and a depen-
dency on that interface.

Connectors are defined
by collaborations frame-
works

A type of connector is defined as a generic collaboration framework (Chapter 15). The
interactions between components can be quite complex: part of the complexity comes
from the techniques that permit them to be coupled to each other in many configura-
tions. The same patterns are repeated over and over, each time we want, for example,
work to flow from one component to another, or each time we want a component to
be kept up to date about the attributes of another.

Each connector type
encapsulates complex
interaction

Connectors hide complex collaborations. The stream of payment orders from Pay-
ment Control probably requires some buffer, and a signalling mechanism to tell the
receiving component to pick them up; the stream of invoices from Purchasing follows
the same pattern. The continous update of the Meter’s value from the Motor’s speed
requires a change-notification message; other values transmitted in that example need
the same.

Rather than describing these complex collaborations from scratch for each separate
interface, we invent a small catalog of connectors, which are patterns of collaboration
that can be invoked wherever components are to be plugged together. Then we can
concentrate on just the aspects that are specific for each connector — mainly the type
of information transmitted.

The design only depends
on the connector type

A design described using connectors doesn’t depend on a particular way of imple-
menting each category of connector. What’s important is that the designer knows
what each one achieves. We can distinguish the component architecture model (what
connectors there are) from the component architecture implementation (how they
work).

11.3.2.2 Example connectors

Each project or component library can define its own connectors to suit itself. In the
Motor example above, we can identify two principal kinds of component connector:

• Events — exchanges of information that happen when initiated by the sender to
signal some state change. (Shown with an open arrow: .)

• Properties — connectors in which an observer is continually updated about any
change in a named part of the state of the sender (shown with a solid arrow).

The approach we discuss here applies to other kinds of connectors as well, sich as:

• Workflow transfers — in which information moves away from a sender and into a
receiver.
11-454 Component Architecture

• Transactions — in which an object is read and translated into an editable or pro-
cessable form, is processed and then updates the original.

11.3.3 Taxonomy of Component Architecture Types

Architectures have typesThere can be many different implementations of a given architecture model; and the
same architecture model can be applied to many different applications. A given com-
ponent architecture will describe:

An architecture type — what categories of connector there are between compo-
nents, their rules, and what each of them achieves;

Architecture implementation(s) — how each category of connector works.

Other component architectures do the same — whether they are widespread stan-
dards, or just defined by the architect of a particular project. Whilst the big standards
are important for intercoupling of large widely-marketed components, we believe
that purpose-designed architectures will continue to be important within particular
corporations and projects; and also within particular application areas (such as CAD,
geographical systems, telecoms) where there are particular needs (e.g. for image
manipulation, timing, etc). Therefore it is necessary to understand what an architec-
ture defines, how to define your own architecture (Section 11.4, “Arch One — A Catal-
ysis Component Architecture,” on page 457), and how different architectures are
related.

Architectural types form
a taxonomy

Like everything else, architectures have types (requirements specifications) and
implementations. A type defines what is expected of the implementation, and there
may be many architecture-implementations of a single architecture-type. One archi-
tecture-implementation may be clever enough to implement more than one architec-
ture-type if they do not make conflicting demands. For example, most television
broadcasts now carry both pictures and pages of text — separate architectural require-
ments accommodated within a single design of signal; similarly, some architectural
implementations will allow two different architectures, such as CORBA and COM, to
interoperate.

...and can be extendedLike object types, architecture types can be extended: extra requirements can be added
(just as the transmission of colour pictures was added to the original monochrome). A
simple version of the architecture above just defines event- and property-connectors;
an extension may add transfers and transactions.

It’s important to remember that an architecture does not necessarily define any code.
The type lays down rules for what the connectors achieve, and the architecture imple-
mentation defines the collaborations that achieve that. The collaborations tell the
designers of the components, what messages they must send and in what sequence.

It provides common
interaction patterns

An architecture gives a component-writer a set of ground rules and facilities. It does
not necessarily limit the kinds of interactions you can have with another component:
it just provides some patterns for the most common kinds of interaction.
Component Architecture 11-455

Without an architecture
you have to spell out
many things

Suppose you are writing a component that accepts print jobs, queues them up, and
distributes them among printers. An empty architecture is one in which nothing is
predefined, and every component and interface must be defined from scratch. With-
out a laid-down architecture, the documentation of your component must define:

• what operating system clients must use;

• what programming language (or set of calling conventions) must be used;

• what calls the client must make to enquire whether you are able to accept a job, to
pass a job to you, and conifrm that you’ve got it.

A simple architecture
saves some basics

If you have a simple component architecture, it could minimally define operating sys-
tem and language, or clarify how to couple components working in different contexts.
If it defines no notion like our transfer-connector, you will have to define all the mes-
sages you expect to send and receive.

More sophisticated
archictecture gives
higher-level description

But if it is a more sophisticated architecture that defines transfers, then your job is
much simpler: you only have to say exactly what type of object you’re transferring.
The architecture defines what “transfer”means and what messages achieve that effect;
any place you need to, you simply use the transfer connector (e.g. using a framework
application, Chapter 15), and omit all the details.

So an architecture doesn’t limit the kinds of work that components can do together;
but it makes it easier to document certain categories of interaction, and thereby
encourages their use.
11-456 Component Architecture

11.4 ARCH ONE — A Catalysis Component Architecture

It is one concrete scheme
to discuss issues with

There are an infinite number of potentially interesting architectures, and the princi-
ples of component-based design we discuss apply regardless of specifics. With the
goal of being concrete, we outline here one specific basic scheme that will help us dis-
cuss the issues, including what it means to define your own architecture. We will call
it ARCH ONE — a basic Catalysis component architecture. It has some similarities with
JavaBeans and COM.

ARCH ONE is a component architecture in which:

Dynamic connections• Each connector between components links a labelled output port to one or more
labelled input ports. (Some architectures allow for restrictions on ‘fan-out’ — the
number of inputs supplied by each output.) Connections may be made and
unmade dynamically.

Many port categories,
two genders

• There are different categories of port, such as «Event», «Property», «Transfer»,
«Transaction», and others. Most categories have two ‘genders’, «input» and «out-
put». Each port can be coupled only with a port of a compatible category and gen-
der — which generally means the same category and opposite gender.

Simple compatibility is
based on subtyping

• The information carried by each port has a type. Each port may only be coupled
to another with compatible type. Compatibility is defined for each port category;
for Event and Property couples, the sender’s output type must be a subtype of the
receiver’s input.

‘Output’ port registers
other’s input ports

• A connection is implemented as the registration of the receiver’s input with the
sender’s output. When a connection is to be made, the sender must be informed
that the required output is to be sent to the required input of the required receiver.
This explains what an output port is: it represents an object’s ability to accept reg-
istration requests, and to maintain a list (a separate one for each of its output
ports) of the interested parties. An input port represents an object’s ability to
accept the messages sent by the corresponding output ports.

Messages may be
encoded as strings

• There are various ways of implementing the messages that occur in a connector.
One way is to use just one universal ‘event’ message, with parameters that iden-
tify the sender, the name of the output port (as a string), the name of the input
port, and the information to be conveyed. This is convenient in languages like
C++; in Smalltalk it is easier to use a different message name for each input port,
corresponding to the port’s label. (Only in reflexive languages can the sender be
told at registration what message to send.)

...or translated by
adapter objects

• A connection can be implemented by an ‘adapter’ object, whose job is to receive
an output message and translate it into the appropriate input, translating the
parameters if necessary at the same time.

Events announce hap-
penings to registrands

• Events are the most general category of port: an event is a message conveying
information about some occurrence. The only difference between an Event an
ordinary object-oriented message is that the receiver is registered to receive it.
Arch One — A Catalysis Component Architecture 11-457

More generally, an Event may be implemented as a dialogue of messages initiated
by the sender; in Catalysis we know how to characterise that with a single action.

Properties track value
changes

• Properties convey the value of some attribute of the source component. A prop-
erty output sends a message (or initiates a dialogue) each time the attribute
changes. (The attribute may be the identity of a simple object like a number, or a
complex object like an airplane.) A variation on this theme calls for updates at
regular intervals, rather than immediate notification of every change. A further
variant provides for the source to ask the permission of the receivers each time a
change is about to happen. This obviously calls for more messages at the imple-
mentation level; but in a component design, we consider all that to be part of one
port.

A transfer ‘moves’ an
object

• A Transfer port passes objects from the source to the sink. Once accepted by the
sink, a sent object is no longer in the sender. Strings of components with Transfer
ports can be used to make pipelines and workflows. In an implementation, the
source will ask the sink to accept an object; if and when accepted, the source
removes it from its own space.

Transaction ports co-
ordinate comit/aborts

• Each Transaction Server Port provides access to a map from keys to values. Key-
Value pairs can be created and deleted; the value associated with any key can be
read and updated. Many Transaction Client Ports can be coupled to one Server;
and each may seize a particular key, so that others may not update it. On release,
the client may choose to confirm or abort all the updates since seizing.

11.4.1 Defining the Architecture Type

Architecture is defined in
a package, then imported

An architecture is a set of definitions that can be taken for granted, once you know
you’re working within that context. Defining an architecture is therefore about writ-
ing down the things that are common to every component and its connectors. In other
words, it’s about defining a design package that can then be imported wherever that
architecture is used, to give a meaning to the shorthand port and connector symbols.

It provides connector
specs, designs, and code

An architecture package will generally specify a number of connectors. In addition, it
may define collaborations that implement the connectors; and thirdly, it may define
generic program code that a designer may use to encode one end of each connector.
11-458 Arch One — A Catalysis Component Architecture

11.4.2 Connectors: general

11.4.2.1 Connector Specification

Basic port-connector
model

Each component can have several named Ports. Each Port may take part in a connec-
tion with several others.

The connect action between two Ports links them together with a Connector. One of
the Ports must be unlinked; if the other is already linked, the existing connector is
used. Other connectability criteria, not yet defined, must be satisfied as a precondi-
tion.

action connect (a : Port, b : Port)
pre: (a.connector = null or b.connector=null)

and connectable(a,b) -- to be defined for each category
post: a.connector = b.connector and

a.connector.ports =
a.connector@pre.ports + b.connector@pre.ports + a + b

action disconnect (a : Port)
pre: a.connector <> null
post: a.connector = null

A Port may have a Gender. At most one Source Port may be coupled to the same Con-
nector.

Component Port

*
name

connect

Connector

0,12+

1
owner

Component::

ports.name->size = ports.size
-- unique port names

Figure 239: Basic port and connector model
Arch One — A Catalysis Component Architecture 11-459

11.4.2.2 Connector Design

One connector design
using registration proto-
col

This is a design (one amongst many possibles) of gendered Ports, in which a connec-
tion is established by registrationTo distinguish the types of this implementation from
the types they represent in the model, we have alter the names slightly.

The connect action is realised as a collaboration between the owners of the Ports1. The
owner of the sink Port is sent a registration message:

action Component1::couple(sink: SinkPort, source:SourcePort)
pre sink.source = null and connectable(sink, surce)
post: sink.source = source and

source.owner–>register(source, sink)

Registration both records the source and port to which this sink is connected, and
results in a message to the source-owner:

action Component1::register (source: SourcePort, sink: SinkPort)
pre sink.owner = self
post source.sinks += sink

which adds the sender to the registry of sinks for this source.

A simple retrieval Retrieval. The abstract model’s Connector is realised as the pair of links sinks and
source. A Connector exists for each non-empty set of sinks; its ports are the linked
SourcePort and SinkPorts.

11.4.2.3 Interpretation of connector diagrams

A component diagram is
“unfolded” based on this
architecture

Lastly, we must define how the notation we’ve been using for components should be
interpreted in terms of our component model. We will define each box on a compo-
nent diagram as a Component1-instance; each emerging arrow is a SourcePort; and

1. If the ‘connect’ takes place in a component assembly tool, the registration may be hidden
within initialization code generated by the tool.

Component1 Port1

*
name1

owner

SourcePort SinkPort

sinks
*

source
0,1

Connector

port

Figure 240: A design for connecting connectors
11-460 Arch One — A Catalysis Component Architecture

each ingoing arrow is a SinkPort. A connection between components is a Connector in
the sense of our abstract model, which we’ve realised as a complementary pair of
links between the ports.

So we can translate a typical fragment of componentry:

This shows that an Architecture gives a meaning to a component diagram by making
it an abbreviation for an object diagram.

11.4.3 Property connector

Having given a meaning to the basic idea of a connector, we can go on to define the
different categories we are interested in for ARCH ONE.

Value changes propagateA Property connector has a value in the source port that is maintained by its owner.
Whenever the value changes, all currently connected sink ports are updated.

:Engine

speed

stopstart

:Meter

value

:Engine

:SinkPort
name=’start’

:SinkPort
name=’stop’

:SourcePort
name=’speed’

:Meter

:SinkPort
name=’value’

source

sinks

Our Architecture

Figure 241: ‘Unfolding’ of a component diagram based on framework

PropertySourcePort update

PropertySourcePort :: -- any value change must update all sinks
inv effect value <> value@pre => sinks->forAll (sink | ^update(self, sink))

PropertySinkPort:: action update (source: Port, sink:Port)
post: sink.value.equals(source.value)

Connector

SourcePort SinkPort

PropertySinkPort

SourceType

value

SinkType

value

PropertyConnector

Figure 242: Template for a Property Connector
Arch One — A Catalysis Component Architecture 11-461

Property connections are
‘unfolded’ accordingly

Interpretation of Component diagrams. The PropertyConnector framework is
applied for each connector marked «property» (for which an abbreviation is the filled
arrow). The ports are labeled with the appropriate substitutions for SourceType and
SinkType; the type-names should also be used to generate separate types for the ports.

So if we want to see how our architecture interprets this example:

we can translate first to a framework-application:

Runway Control
current AirCraftDisplayshow
:Plane :Aircraft

clear : boolean ApproachControl
ready : boolean

Figure 243: Component diagram to interpret

Runway Control

AirCraftDisplay

Component1

Component1

PlaneSourcePort
PropertySourcePort

AirCraftSinkPort
PropertySinkPort

Plane

SourceType

Aircraft

SinkType

Component1 BooleanSourcePort

PropertySourcePort

BooleanSinkPort

Approach Control

Component1
booleanSourceType SinkType

PropertySinkPort

[port \ current]

[port \ clear]

[port \ ready]

[port \ show]

PropertyConnector

PropertyConnector

Figure 244: Equivalent template applications
11-462 Arch One — A Catalysis Component Architecture

and then unfold the framework definitions:

The relative complexity of this is persuasive of the utility of the component notation.
The same technique can be used to give a meaning to any additional layer of notation,
not just to components. All this could be defined in a syntax section of the architecture
package itself, with a suitable mechanism for defining a visual grammar (See Chapter
15, Frameworks).

A relative straightforward generalization uses a recursive definition of port and con-
nector, allowing us to connect either at the level of individual events and properties,
or at higher-level bundles of these.

Runway Control

PlaneSourcePort

current

Plane

value

AirCraftDisplay

AircraftSinkPort

Aircraft

show

value

sinks

source
*

BooleanSourcePort

boolean

clear

value

BooleanSinkPort

boolean

source

sinks
*

ApproachControl

ready

value

Figure 245: ‘Unfolded’ version of component diagram
Arch One — A Catalysis Component Architecture 11-463

11.5 Specifying ARCH ONE Components

Specs are higher-level,
thanks to the architecture
definitions

When we specify a component, we take for granted the underlying architecture —
mechanisms for registration to receive an output and the like — and focus on a
higher-level specification. Including outputs (marked «output property», «output
event», etc., or the equivalent solid arrow notation) in a specification implies that all
this is assumed. A component specification takes the form of a single type-descrip-
tion; but as always in Catalysis, it may be refined and implemented as a collection of
objects.

Let’s now look at the main categories of port in our ARCH ONE architecture one by
one, and see how to use specification techniques to define them.

11.5.1 Specifying input and output events

Input events are speci-
fied just like operations

We already know how to specify input events: this category corresponds to the
actions or operations that in previous chapters have been used to specify objects. The
only difference comes in the implementation and run-time effect: an object designed
as a component will accept events according to the protocol defined in a chosen com-
ponent archiecture (so that it can be coupled to other components’ outputs, including
any registration required for those output events; mechanics for mapping from the
output event to the corresponding input events, including string-based mapping,
reflective techniques, or an adaptor object, are defined by the implementation of the
architecture).

Output events can be
specified by state
changes

An output event occurs when some given change
of state occurs. We can specify the change that
stimulates the output, using the ‘old and new
state’ notation of postconditions within an effect
invariant (Section 4.8.5, “Effect Invariants,” on
page 171). Notice the caret mark, denoting “this
message is scheduled to be sent”. Here, we’ve
declared the output event superfluously both in
text and pictorially. (“<<output event>> pressed”
could have been omitted.)

Output events may have arguments, which deliver information to the receiving input
events. The usual type matching rules apply.

Certain details of an output event are not specified in this style. For example, how
soon after a qualifying transition takes place, must the output be made?1 Nor have we
said who will receive the output, since this will be different for each design in which
the component is used; the architecture guarantees all connected ports are notified.

1. We can easily add performance specifications, either informally or formally

Button

pressed

down : boolean

«output event» pressed
down and not down@pre

=> ^pressed
11-464 Specifying Arch One Components

Output events may be
further conditionalized

Output events aren’t always coupled purely to a state change: an output may happen
only when the change is caused by a given input action. For example, our Button is a
graphical user interface widget that responds to various mouse messages from the
windowing system: let’s assume mouseUp, mouseDown, mouseEnter, mouseLeave.
The latter two happen if the user drags the mouse in or out of the Button’s screen area;
and the Up and Down messages are only sent when the mouse is within that area.

Let’s suppose that we want that the operation stimulated by the button takes place
when the user has pressed and released the mouse. As the user presses, the Button
changes colour, and changes back to normal as the release occurs. But after pressing,
the user can make a last-moment decision not to do the action, by dragging the mouse
away from the Button before releasing the mouse key; in this case, the Button returns
to normal state, but does not send the output event.

A state-chart can make a
convenient spec

The required behaviour can be readily illus-
trated with a state-chart.

Alternatively, we can show the ^pressed
requirement as part of the postcondition of each
action that causes it:

action mouseUp
post: up and (down@pre => ^pressed)

Some useful abbreviations for events:

<<input event>> action (params)action(params)
<<output event>> operation(params)^
operation(params)

11.5.2 Specifying properties

11.5.2.1 Specifying output properties

Output properties are
visible

An output property is an attribute that the component architecture specifically allows
to be visible to other components. A chosen component architecture will provide a
pattern for implementing attributes tagged with the «output property» stereotype1.

A property can be used in and affected by postconditions of events, like any other
attribute.

mouseUp
mouseDown

mouseEnter
mouseLeave

Button

down

up
mouseDown

mouseLeave

mouseUp
^pressed

pressed

1. e.g. the get/set method pattern used in JavaBeans for component properties.
Specifying Arch One Components 11-465

Attributes are not neces-
sarily visible, while prop-
erties must be

In the component’s type definition, proper-
ties are shown textually below the line that
separates model from behavior: the imple-
mentor is obliged to make the property
externally visible. But as usual, the attribute
does not need to be implemented directly as
a stored variable, but may instead be com-
puted when required.

11.5.2.2Specifying input properties

Input properties can be
automatically controlled

An input property is an attribute exposed according to a component architecture so
that it can be controlled by the output of another component. It can be linked with
invariants to other attributes.

They should not be
explicitly changed

There is an implied invariant, that an input property will be equal to whatever output
(of some other component) it may be coupled to. Therefore, although an input prop-
erty can be used in a postcondition, it doesn’t make sense to imply that it is changed
by the action:

wrongOp (x : int) post:stepSize = stepSize@pre + x

It’s value tracks the sin-
gle output property it is
coupled to

An input property must always be coupled to exactly one output property, although it
may be coupled to different outputs at different times. (The next section deals with
creating and connecting components.)

And a visual notation Pictorially, input and output properties can
be shown with the solid arrows, distin-
guished from the open arrows of events.
(The shadowing emphasises that this is a
component — that is, something intended
to be implemented according to some com-
ponent architecture. But it’s just for dra-
matic effect, and can be omitted.)

A property value may be an object (and
may itself be a component). Updates
should be notified whenever a change in
this property would significantly change

the sending component. A ‘significant’ change is one that would alter the result of an
equals comparison between this component and another.

If the property changes to point to another object, that would normally be a ‘signifi-
cant’ change. If the object pointed at changes its state, then it depends on whether the
property object’s state is considered part of the state of the component. This is the
same issue as the definition of ‘equals’ in Section 10.7, “Templates for Equality and
Copying,” on page 419.

Counter

<<output property>> current: int

<<input property>> scale : int

post:count = count@pre + stepSize

<<input property>> stepSize : int

count : int

<<input event>> step ()

inv current = count * scale

Counter

stepSize : int step : int

current : int
scale : int

count : int

inv current = count * scale

post:count = count@pre + stepSize
<<input event>> step ()
11-466 Specifying Arch One Components

11.5.2.3 Require-condition

‘require’ is an invariant
obligation on the client

A require-condition is an invariant which it is the responsibility of the component’s
user to maintain. By contrast, a regular invariant is one that, given that the require-
condition is true, will be maintained by the component. A require-condition governs
the relationship between properties. A typical one might be:

require scale * stepSize < 1000

Like a precondition, it is a matter of design policy whether the implementor assumes
it will always be observed by a careful client, or whether the implementation per-
forms checks to see that it is true.

11.5.2.4 Constrained connectors

Inputs can be con-
strained

A constraint can be imposed on an input, written either against the port in a diagram,
or in the type description:

«input property» scale : int
constraint scale > 0

One approach: treat as
‘require’

Different component architectures can treat constraints differently. The simplest
approach is to treat the constraint as a form of require-condition: the user must ensure
that it is not violated.

Another: device a ‘veto’
protocol for changes

Alternately, the architecture may support constraints with a protocol whereby an out-
put requests permission before each change. One such architecture gives the imple-
mentation of every port a method with a signature like change_request_port_x
(new_value). By default, this will return true. Before altering an output, a component
should send a change-request to all the inputs currently registered with that output. If
any of them returns false, this change at this output must not happen, and the compo-
nent must think of something else to do.

A third: transaction/
abort upon violation

Alternately again, the architecture may support an exception / transaction abort
scheme. This could be described using the techniques for describing exceptions in
Chapter 14.

Using such a mechanism, constraints can also be applied to outputs, and more gener-
ally to combinations of inputs etc.

11.5.2.5 Bidirectional properties

An «in out property» can be altered from either end: changes propagate in both direc-
tions.

11.5.2.6 Port attributes

ports have accessible
attributes

The Catalysis metamodel gives every port several attributes:

port.component The component to which this port belongs.

inputPort.source The output port to which an input port is currently coupled.

scale : int
[scale>0]
Specifying Arch One Components 11-467

outputPort.sinks The input ports to which an output port is currently coupled.

propertyPort.valueThe object or primitive that is output or input by this property
port. Generally where there’s no ambiguity, it’s convenient to
use the name of the property port by itself, omitting the “.value”.

propertyPort.constraint(value)A boolean function returning, for an input property
port, whether the associated constraint is true for the given value
— that is, whether it is permissible to send this value to this port.
For an output port, true iff true for all the currently-coupled
inputs.

So a spec can constrain
port configurations

Port attributes can be used in specifications. For example, suppose we want to insist
that the Counter shall always be wired up in such a way that the component that sets
its scale shall be the same one that sets its stepSize:

requires
stepSize.source.component = scale.source.component

11.5.3 Specifying transfers

Transfers are also
defined in the architec-
ture

A transfer connector sends an object from the source component to the sink. Unlike
Events and Properties, each «output transfer» port may only be connected to one
«input transfer»; but the basic library of components includes a Duplicator component
that accepts one input and provides several outputs.

Like properties, transfers are characterised by the type of object transferred.

11.5.4 Specifying transactions

As are transactions A transaction connector provides for a property of the component to be locked against
alteration and/or reading by others; altered; and then either released in its new state
or rolled back to its original state.
11-468 Specifying Arch One Components

11.6 Connecting ARCH ONE Components

Big components are made by connecting smaller ones together. In this section we
explain how the connector types in our example architecture support composition.

11.6.1 Connector properties

Output properties drive
inputs.

An input property can be driven by an output property, and each output may gener-
ally drive any number of inputs.

A connection must match types: the output type must be the same as, or a subtype of,
the input type. The input and output may have different labels.

Simple transformations
of property values can be
made implicit

It is sometimes useful to make simple trans-
formations between the output and input:
for example, multiplying a value by a fixed
constant, or translating an object from one
type to another. In the implementation, such
things may be done either by an appropriate
small component, or by some flexibility in
the architecture permitting inputs to accom-
modate straightforward translations on the
fly. For example, in C++, it is easy to define a
translation from one type to another (with a constructor or user-defined cast), which
is automatically applied by the compiler where necessary.

In our notation, transformations can be shown either as an explicit annotation to the
connector; or, where the output and input types differ, can be left implicit, as the
default translation between those types.

11.6.2 Connecting events

Many-to-many event
connections

Unless a particular restriction is specified, an output event can be connected to any
number of inputs, and an input can be connected to any number of outputs.

Parameters may map
directly

An output event has a name and a set of arguments; an input event has a name and a
set of parameters. The simplest connector is when only the names differ: then the
occurrence of the output event causes the input to be invoked on all currently regis-
tered targets. The arguments must match the parameters in the usual way.

...or may need a transfor-
mation

If the parameter lists of the output event and the input to which it is coupled differ, a
mapping must be defined at the connector. If the transformation is too complex, an
intermediate component should be defined for the purpose.

Output events can
require a post-condition

An output event may transfer information in two directions, via parameters and the
return-value normally associated with function calls. For that reason, an output event
may have a postcondition at the sending end1.

speed: int display: int
inv display = speed / 10

voltage: float display: int

picture:List<Shape> image : Bitmap
Connecting Arch One Components 11-469

11.6.3 A Basic kit of components for ARCH ONE

Here is a small, flexible
component kit

A basic kit of components can be defined, to which more domain-oriented compo-
nents can be added. Here’s a selection that can be used in lots of ways, just intended to
give a general flavor of what can be achieved.

Some components
inspired by hardware

Standard boolean processing of boolean
properties: outputs are true when their
inputs have the relationship marked. (The
symbols come from the tradition of elec-
tronic logic.)

Property to event conversion: in general,
properties and events cannot be coupled.

Change Detect generates events upon tran-
sition of a boolean property.

The output of the ‘S’ gate can be turned on,
off, or inverted from its current value.

The Counter tracks inc, dec events.

The “D” gate freezes a copy of the variable
input, at the moment the clock event occurs.

Some ‘transfer’ compo-
nents.

Transfer components:

•Buffer: a FIFO list; it accepts, or emits, any
object (property) on request.

•Split: duplicates each input to all its out-
puts., where each output meets the ‘equal’
criteria on the input.

11.6.4 Dynamically creating and connecting components

11.6.4.1 Connecting components

You can refer to port con-
nections in a spec

The port attributes allow us to specify a connection in a postcondition. For example,

Desk :: login(String userName)
post:directory.userWithName(userName).gui.source = self

1. In contrast, in JavaBeans an output event cannot expect any post-conditions; this means
that it cannot be used to describe actual services expected from another component

and

:boolean

:boolean
:boolean

:boolean

or:boolean
:boolean

not:boolean
:boolean

clock
D frozenvarying

Change Detect
:boolean gone_true

gone_false
on

off

flip :boolean
S

Counter :intzero
dec

inc

Buffer
«transfer»

in out

«transfer»

Split
out1
out2

out3

«transfer»

«transfer»

in
11-470 Connecting Arch One Components

11.6.4.2 Creating components

...and create new compo-
nents and connections

Components are instantiated the same way as types are in a postcondition, using
ComponentType.new. Consider an operation that causes a component to invert the
value of a boolean output property.

action Comp::invert (out: Port)
post: -- a new Not is created

let (n = Not.new) in (
-- whose output connects to the original sink ports
n.sinks = out.sinks@pre
-- and it is attached to the port
out.sinks = n.input

)

A component architec-
ture may dynamically
track and intercept

A particular component architecture (e.g. COM+) might intercept the instantiation
and connection operations (remember, many of these need to be a part of the standard
infrastructure services; Section 11.1.4, “Components and Standardization,” on
page 443). That component infrastructure can monitor the known components and
their connections to provide richer extensions of behavior.

11.6.4.3 Visual Notations

All the standard notations for dynamic creation of objects, links between objects, and
cardinality constraints on the connections, extend to components as well.
Connecting Arch One Components 11-471

11.7 Heterogenous components

We more often need to
compose ad-hoc compo-
nents

A kit of components is designed to a common architecture, and can readily be
plugged together in many ways. But we more frequently find situations where we
have to use components that were not designed to work together, and may not really
have been designed to work with any other software.

This may be a bit more
difficult

An assembly of disparate components is prone to inconsistencies and gaps in its facil-
ities. And as components are rewritten or substituted, it is easy for its specification to
drift.

The work is more bot-
tom-up

When you’re building with a heterogenous collection of components, you think less
about making a beautiful architecture into which all the pieces fit. You don’t have the
opportunity of designing them. Instead, you worry about how you are going to nail
together the pieces you are given to achieve your goals.

Catalysis refinement and
retrieval can make this
systematic

These problems are considerably alleviated by building a requirements model, and
then relating the assembly of components back to the requirements using ‘retrievals’.
Used as a systematic approach (Section 14.2.1, “Multiple Routes through the
Method,” on page 526), this helps keep a consistent vision of the system’s objectives.
The work required to construct a requirements spec and models of the components is
repaid by the savings from greater coherence of the result, and the rapidity of assem-
bly which is inherent in component-based design.

11.7.1 A Requirements Spec

Lets try an example Let’s suppose we are starting a company that sells, say, office equipment. There will
be no showroom: just a catalog mailed to customers, and a warehouse, and telephone
sales organisation. We want to put together a system to assist its operations.
11-472 Heterogenous components

11.7.1.1 Requirements model

A straightforward
domain type model

Here’s a quick & rough model of what we’ll need to deal with. Most of the types and

attributes shown here have an obvious meaning. The primary use-cases in this busi-
ness include makeOrder, makeCustomer, recordContact, dispatchShipment; there are
others that are more like queries, looking up some information: findOrderDispatches.
Elaborating a bit on one sample:

use case dispatchShipment
participants dispatch clerk, shipping vendor
parameters list of <sales items, quantities>
pre sales items not yet fulfilled, all items for same customer
post a new Dispatch created, with dispatch items for each

sales orders that have no more pending items marked fulfilled

11.7.1.2 Business Rules

Some invariants and
effect invariants capture
business rules

When a sale is made, sales staff create an appropriate Customer object (unless there is
one already in existence), and a SalesOrder. The SalesOrder may have several Sales-
Items, each of which defines how many of a cataloged Product are required. Products
are chosen from a Catalog. To avoid confusion, there can’t be two SalesItems in a Sale-
sOrder for the same Product:

inv SalesOrder::
item1 : SalesItem, item2 : SalesItem, item1 <> item2

implies item1.product <> item2.product

An availability level is recorded for each Product: this is the number of items available
in stock which have not been earmarked for a SalesOrder. Any operation that adds a
new SalesItem also reduces the availability of the relevant Product:

Customer
name
address
phone

SalesOrder
made : Date

value : Money
note : String

*

SalesItem

ordered : int
price : Money

*

Product

*

price, identifier

note : String

stock : int
depletionRate : int

leadTime : int
Catalog *

Dispatch
*

date

DispatchItem
*

quantity : int

Account
balance:Money

AccountItem
date
amount : Money

*

0,1

Payment Sale

name, description

*

fulfilled : [Date]

1

sales

items

dispatched : int

available : int

*

1

Figure 246: Business model for sales company
Heterogenous components 11-473

inv effect Product:: newItem: SalesItem,
sales = sales@pre + newItem
implies availability = availability@pre – newItem.ordered

By contrast, the stock level is the number of items actually in the warehouse — which
may have been ordered, but not dispatched yet. Availability can go below zero (if
we’ve taken orders for products we haven’t got yet), but stock can’t be negative. It is
reduced by any operation that adds a new dispatch:

inv Product :: stock >= 0
inv effect Product :: newDispatch : DispatchItem,

dispatches = dispatches@pre + newDispatch
implies stock = stock@pre – newDispatch.quantity

(When availability gets low, we start purchasing more stock; but let’s not go into all
that in this example.)

When items are sent to a Customer, a Dispatch object is created. One Dispatch may
satisfy several SalesOrders (to the same Customer); and one SalesOrder may be dealt
with over several Dispatches, as stocks become available. The total number of items
dispatched must be no more than the number ordered:

inv SalesItem :: dispatched = dispatchItems.quantity->sum
and dispatched <= ordered

and we must send the right things to the right Customer:

inv DispatchItem ::
dispatch.customer = salesItem.salesOrder.customer

and product = salesItem.product

A fulfilled SalesOrder is one all of whose SalesItems have the same dispatched and
ordered counts. The fulfilled attribute is an optional Date:

inv SalesOrder :: (fulfilled <> null) =
(item : salesItems, item.dispatched = item.ordered)

Any operation that changes the order or dispatches must of course observe this
invariant and set fulfilled to something other than null, once the order is fully satisfied.
But we should also say that the ‘something’ ought to be the date on which this hap-
pened:

effect SalesOrder :: (fulfilled@pre = null and fulfilled <> null) =>
fulfilled = Date.today

Account – Order tie-up Every SalesOrder is recorded as an item in the Customer’s Account:

inv SalesOrder:: sale.amount = value
and value = items.price->sum
11-474 Heterogenous components

Also track contact infoA further feature is that sales staff keep a note of contacts with potential Customers, to
remember when and why to pester them next; and how much chance there is of get-
ting some business. Some do this with sticky notes; others use electronic organizers. A
Contact here is an occasion on which a Customer was spoken to or mailed; Customer
includes potential customers who have made no order yet:

11.7.1.3 Target Operations and System Context

The system contextThe new system should support sales, dispatching, and accounts staff.

Here’s a rough list of the actions we’d like the system to perform for the Sales staff:

(Sales, Support System)::

nextProspect Display a Customer due to be contacted today.

addContact Add details of call, date for next try.

makeCustomer Create details of a new Customer.

findCustomer Find a Customer from a name or order reference.

makeOrder Make a SalesOrder for the currently-displayed Customer.

findProduct Display a product from the catalog.

addOrderItem Add the currently displayed product to the currently displayed
SalesOrder

confirmOrder Enter payment details such as card payment or payment on
account; complete order creation.

The Accounts staff should be able to check on the state of a Customer’s account and
enter payments. The Dispatch staff should be able to see what orders there are, and
create Dispatches.

Customer Contact

prospect : 0..9
{seq} * date : Date

purpose : String
outcome : [String]

nextCall

history

Figure 247: Contact-tracking model in sales business

Customer

Sales

Accounts Dispatch

enq, order

pay

Support
System

Figure 248: Target context diagram
Heterogenous components 11-475

11.7.2 A component-based solution

We have no time to build
a custom solution

In ancient history (earlier than, say, five or six years ago), we might have set to and
launched a two-year project to write from scratch a mainframe-based system that inte-
grates all these facilities. But that seems very unlikely these days.

We identify some exist-
ing applications

Our chief designer immediately recognises the contact-tracking requirement as corre-
sponding closely to a single-user PC based application she has seen in use elsewhere.
This will suffice; customers are assigned to sales staff by region, so each sales person
can keep her own contact database. There are several mainframe-based general
accounts systems; and she knows of an ordering system that can be brought in and
adapted quite quickly.

And plan the solution
architecture

In the interests of rapidly approaching deadlines, therefore, separate systems are set
up to accommodate the above requirements.

Each Sales person works at a PC running four applications: their own contacts data-
base, tracking customers in their assigned regions; a products catalog browser (hastily
constructed as a local Web site); and a virtual terminal each to the Orders and
Accounts systems — to which the staff in the warehouse and accounts department
have their own user interfaces.

Does this design fit the bill? That depends on what each of the components we’ve cho-
sen actually does.

Contacts
Support

Orders
terminal

Accounts
Terminal

Contacts
Support

Orders
terminal

Accounts
Terminal

Sales PCs

Contacts
Support

Orders
terminal

Accounts
Terminal

Order
Support
System

Dispatch
& Stock
Terminals

Accounts
System

Accounts
Terminals

Contacts
DB Product

Catalog
Products
browser

Figure 249: Heterogenous component architecture
11-476 Heterogenous components

11.7.2.1 Model of the whole

Let us first build a model of the components in the complete solution, as envisioned.
We have annotated it with the types from the requirements model, with a first guess
of where these types will “primarily” be maintained. Life will not be so simple, of
course.

11.7.2.2 Models of constituent components

How to extract type
models?

Before we can plan any meaningful interaction between the existing components, or
start to develop ‘glue’ code, we need some model of what they do. Of course, none of
them comes with such a model handy!

So we do some reverse-
engineering

By a mixture of experiment and reading the manuals, we build a behavioural model
for each component (since their designers have all omitted to provide one for us). This
procedure is highly recommended when adopting a component made elsewhere; the
same applies when reviewing an aging component built locally. The exercise clarifies
your understanding of the component, reveals useful questions about its behaviour
that you can do further research on, and also tends to make it clear where its short-
comings lie.

Contacts componentThe Contacts system has
this type model. Each
known person has a his-
tory of past contacts,
and a scheduled next
contact. There is a set of
due contacts: those that
should be worked on.

The reference fields are
where you can put a
unique reference num-
ber that can be used
externally to identify
objects.

Like many simple data
storage applications, its
operations don’t seem

Company

ContactsDB

regions

Ordering Sys

Accounts Sys

Product Catalog

sale, sale order

customer
contact

account, payment

product

dispatch, dispatch item

*

Figure 250: Large grained components modeled

Company

phone
name

address
website
product
remarks

Person

phone
name

address
email
position
remarks

*

Contact

purpose
date

outcome
remarks

reference

*

reference

ContactsDB

past

next

0,1

due*known*

action createPerson (personal & company details)

action nextDue () post: current : due

action find (name) post: current.person.name = name

post: current.person = Person.new

action contact (current outcome, next purpose & date)
post:fills in current contact and makes next

priority: 0..9

current: Contact
Heterogenous components 11-477

very interesting: they are mostly just different ways of entering, searching and updat-
ing the attributes. There is a current Contact, and by implication a current Person and
Company: these are displayed on the screen. createPerson makes a new one; nextDue
selects a Person who is due for pestering again; and there are various find operations
that can select a person by name, reference, company, postal code, etc.

When a contact is made (call, email exchange, etc) the outcome of the current contact
is filled in, and a new Contact attached to the same Person, with suggested date and
purpose of call. There is no way of deciding never to call this Person again, or leaving
it to them to call when they’re interested: sales staff insist that such a course of action
is unthinkable.

Ordering component The Ordering system
attaches Orders to Cus-
tomers, and provides
information about the
demand for Products,
though not the actual
stock.

There are operations for
creating new Customers,
Orders, and Items. On a
longer term basis, new
Products can be created.
When an Order is ful-
filled, it is removed from
the outstanding list and
linked to a new Order-
Fulfillment on the completed list.

Accounts component The Accounts system
keeps a record of pay-
ments against accounts.
The reference attribute of
an account enables it to
be cross referenced to
external records.

11.7.2.3 Retrievals

These models must map
to the domain model!

How can we reconcile this disparate collection of models with the requirements spec
we started with? First, we must do “retrieval”: the task of checking that all the infor-
mation required by the spec is there somewhere in the implementation. Looking at
each of the queries in the requirements type model, how is that information repre-
sented in our design?

Ordering System

Customer

name
address

reference

phone

Order

1..*

id
price

Product

catalog ref
name
demand

outstanding*

date made

catalog*

Item
quantity
price*

*

inv Product :: demand = items.quantity->sum

OrderFulfillment

date done 0,1

*
completed

Accounts System

Item

amount
reason Id
date

Account

reference

*

*

11-478 Heterogenous components

A ‘customer’ is imple-
mented in two places,
which must be kept in
sync

In the implementation, Customers’ names, addresses and phone are kept in two
places: the Contacts database and the Ordering system. Accounts are elsewhere; and
Sales. We will need some way of keeping them in step. We combine the requirement
and component models, and document retrievals and cross-component links (only
parts shown here). Stereotypes based upon template packages have been used freely.
Heterogenous components 11-479

Here are some of the main constraints and retrievals:

Customer:: -- for every customer i.e. in the requirements model
-- must have a matching entry in the contact DB for that region

Customer
info

SalesOrder
made : Date

value : Money
note : String

*

SalesItem

ordered : int
price : Money

*

note : String

Dispatch
*

date

DispatchItem
*

quantity : int

Account
balance:Money

AccountItem
date
amount : Money

*

0,1

Payment Sale

*

fulfilled : [Date]

1

items

dispatched : int
1

Person

info

Contact
ref

*
reference

ContactsDB

past

next

0,1

due*known*

Ordering System

Customer

info
ref

Order

1..*

id

outstanding*
OrderFulfillment

date done 0,1

*
completed

Contact *

Accounts System

Item

amount
reason Id
date

Account

reference

*

*

0,1«replicate〈 info〉»

cross-component links

«foreign_key〈ref,ref〉»

Shipping Label Folder

Label *

Figure 251: Map component models and new business proces to requirements

«printed〈 id, notes〉»

*

dispatch

dispatched : int

cdispatch

notes

Business Requirement

To-Be Business Design

refinement
11-480 Heterogenous components

person.contactDB.regions->includes(address.zip)

-- if there are sales orders, there must be a customer (and orders) in the Ordering system
salesOrders <> 0 implies person.customer <> null

and salesOrders.orders = person.customer.orders

SalesOrder:: -- for every (requirements) sales order
-- if fulfilled, there must be an OrdefFulfilment
fulfilled <> null implies order.orderFulfillment <> null

Some other spec types
are represented differ-
ently

The prospect scores are in the Contacts base: no problem, since they are only used by
the actions involving sales people. The link to sales orders is in the OrderingSystem:
the requirement’s SalesOrder is represented by the OrderingSystem’s Order.

And we can negotiate
system vs. actor respon-
sibilities

Dispatches, keeping track of stock and what has been sent, don’t seem to be there at
all. We could either decide to factor something into the implementation, or make the
dispatchers work with a paper system. We deal with this loose end manually: any
time a shipment is made, the agent will write in the ‘notes’ field on the shipping label
the reference id numbers of all orders (from the Ordering System) that had an item
included in that dispatch. We keep a folder of all shipping labels.

This is shown in the bottom right of Figure 251. Notice how correctly the ‘subjective’
interpretation of ‘containment’ works: not all labels have the link to orders; but all
those in the Shipping Label Folder are supposed to. Also note the line from Dispatch
(requirements) to Label (today’s business); it mandates that whenever a new Dispatch
takes place, the corresponding label must be updated.

11.7.2.4 Implementing cross-component links

Associations must now
cross component bound-
aries

The link from Customer to Account is not held in one component. The accounts sys-
tem doesn’t have a notion of Customer. But we can decide to use the reference fields
to cross-link them, as ‘foreign keys’.

In effect, reference numbers, identifiers, keys of all kinds are implementations of links
that cross system and subsystem boundaries:

Now it’s easier to see the spec’s Customer-Account link, as implemented here. But
(another note for the detailed design) it does depend on using the reference fields con-
sistently.

Acme Customer Card

432 234 567 135 :Ordering system

:Customer
reference=482 284 567 185
name = “Fred”
.

:actual Customer
:Accounts system

:Account

482 284 567 185
reference=

Figure 252: Cross-component links
Heterogenous components 11-481

11.7.2.5 Implementing actions and business rules

Only after the retrieval
can we meaningfully
plan operations

Now that we know how the requirement’s model is represented in the components
stuck together for the design, we can work out whether and how the required actions
are properly catered for. We will need to co-ordinate the business transactions across
our ad-hoc components. Let’s look at makeOrder, addOrderItem, and confirmOrder.

makeOrder The requirement for makeOrder is to “create a new Order for the currently displayed
Customer”. Now, in our hastily-contrived system, there can be two Customers dis-
played on a sales PC screen: one in the Contacts Database, and another in the Order-
ing system. Because the components are entirely separate, the system provides no
guarantee that they are consistent.

joint-actions in the spec
give us design flexibility

But makeOrder is an action: a specification of something that must be achievable with
the system, though not necessarily something it must take the entire responsibility for.
Remember that we have modeled it as a joint action (Section 5.4, “Abstract Joint Action
= Use Case,” on page 211), and the responsibility partition has not been decided. So
here’s our implementation of makeOrder:

Part of the action must be
done by the user in this
design

• The sales person gets the same
Customer displayed in the
Ordering system window as
in the Contacts Database. This
may involve creating a new
Customer in the Ordering sys-
tem, using the PC’s cut and
paste facilities to transfer
name, reference number, and
address from one window to the other.

• The sales person uses the Ordering system’s Order-creation operation.

addOrderItem The Ordering system provides this action directly; although you have to first look the
Product up in its list, which carries less information than the separate web-browsable
Product Catalog.

confirmOrder The spec says “enters payment details, such as a credit card or payment on account”.
And according to one of the business rules (page 312), the order must be entered as a
sale in an Account associated with this Customer.

The accounts system is entirely separate from the ordering system, so it is up to the
sales staff to copy the right numbers into the right accounts.

Again, we’re using the idea of action as specifying the outcome of a dialog between
actors (people and components in this case); and where people are involved, this gen-
erally means relying on them to do the right thing.

findOrderDispatches How would we describe the use case findOrderDispatches in our new business pro-
cess? Lets first look at the original requirements model; this use case is a query, and it
is best to make the specifications of queries trivial by adding convenience attributes to
the model. So we add an attribute on SalesOrder:

SalesOrder::dispatches

:Sales staff :Contacts DB :Ordering

select Customer

create Customer

create Order
11-482 Heterogenous components

-- it is all dispatches for any of my SalesItems
items.dispatchItems.dispatch

action Agent::findOrderDispatches (order, out dispatches)
post: result = order.dispatches

This requirements specification applies regardless of whether the underlying process
is manual or automated. The new version refines the required one:

action Agent::findOrderDispatcher (order#)
-- the dispatches with labels whose orders include the target order#

post: result = shippingLabelFolder.labels[order.id->includes(order#)].dispatch

Similarly, the abstract dispatch use case is refined to cdispatch, which now involves
the agent, the ordering system, and the shipping labels folder.

11.7.3 Glue components

The next release will
automate some more

Once the dust of setting up shop has settled a bit, we can make some improvements to
the first support environment. We will move some work into the machine from the
staff.

Exactly one component
is upgraded

Sales staff will now work through a Sales Client component. This is an evolutionary
change: the other components will stay exactly as they are. The Sales Client provides a
single user interface to all the components the sales staff use. It implements some of
the cross-component business rules such as the Account-Order tie-up, eliminating
that area of human error.

All interaction is through
a ‘glue’ client component

In this design, the Sales Client (which runs in each sales PC) integrates the bought-in
components; but notice that they still do not talk directly to each other — often there is
no facility for this in older components. In a similar way, a Dispatch Client (used by
the warehouse staff) can integrate the Ordering system with a Dispatch-tracking sys-
tem and Stock control.

The ‘glue’ bit takes over
more responsibility from
the user

Now that the Sales Client has become the sales operator’s sole interface with the sys-
tem, it should take complete responsibility for implementing the actions and business
rules associated with sales. Its spec is the sales part of the requirements. It should

Customer: Fred
512 666 7272
last call: 2/3/99
Lampshade free
Prospect: 8
Acc. balance: 35

Boring lampshade
Cat 0566348

Product

Order for Fred

Availability: 23

Lamp $23
Boring shade $5

Total $28

Sales screen

Sales
Client

Product
catalog

Ordering
system

Accounts
system

Contact
DB

make order

confirm

Payment:
card

Figure 253: First revision: adding glue components
Heterogenous components 11-483

therefore provide complete operations for making an order, adding the currently dis-
played product to the order, and creating and adding the proper amounts to the Cus-
tomer’s account.

11.7.3.1 Heterogenous component architecture

Glue and wrappers
should be kept simple

It is characteristic of bought-in components that there is little that is coherent about
their interfaces: they all talk in integers, floats, and characters, and that’s as far as it
goes. There are few standard protocols between components, and locally-built “glue”
like Sales Client tends to be written to couple to specific components. Nevertheless, if
the glue can be kept minimal, adaptations are not too difficult.

Glue components are not always user interface or client components. Components
can be “wrapped” in locally-built code, to work to a standard set of connectors, mak-
ing them look more like members of a coherent kit.

11.7.4 Federated architecture

A federated system is one in which the division between components more nearly
matches the division between business roles.

Federation example. Improving our system still further, we write our own components. We divide up the
functions of the Ordering system. One part runs on the sales people’s PCs, and the
other runs on the dispatching department’s machine.

Connectors Each Sales support component has a list of Products and Customers, and can generate
Orders. Orders are (either immediately or in batches) sent to Dispatch Support, and
corresponding debits are posted to the appropriate accounts. The lists of products and
customers are shared between all sales staff by intermittent replication to a Sales Mas-
ter component.

Sales support

Product

SCustomer Order

Dispatch support

Product

DCustomer Order
name
phone
address
next call Contact

*

name
address

*

Accounts support

ACustomer
name
address
phone Account*

Sales Static Master

Product

SCustomer
name
phone
address
next call Contact

*

orders

account additionscustomers, product updates
completion &
payment
confirmation«replication» «posting»

«posting»

*

Figure 254: Eventual version: federated architecture
11-484 Heterogenous components

Connector categories(The pattern of replication is the same for all objects, involving comparison of modifi-
cation dates followed by transmission one way or the other. This suggests «replica-
tion» as a connector category. Similarly «posting», which is about appending an item
to a list which may not otherwise be altered.)

Type ViewsEach Component has a version of the types that support its function. Taken together,
these retrieve to the requirements types.

Federation decouples.The benefits of federation include decoupling of outage: each staff member can carry
on working even if other machines are down; scalability: the number of sales and dis-
patching staff is not limited by the power of one machine; and geographical decou-
pling: a high-bandwidth connection is not necessary between a sales person and other
parts of the system, so they could work from home.

Federation requires repli-
cation.

On the downside, some replication is necessary, of Product catalog, and Customer
database. However, disk space isn’t so expensive these days, and the technology of
replication has been much developed in recent years, particularly since popularisa-
tion by Lotus. (Replication means ensuring consistency between datasets using inter-
mittent updates, such as when a user logs in occasionally.)

11.7.5 Summary: Heterogenous Components

A designer using a set of components not designed as a kit is faced with two prob-
lems:

• Matching their different and redundant views of similar concepts (like Customer).

• Making their different connectors work together.

Glue components can be built to translate the concepts and adapt the connectors; and
in the simplest case, the users may perform those functions.

We have seen how a clear high-level requirements specification, andthe retrieval rela-
tionship, helps clarify the relationship between the disparate designs of the compo-
nents, and what needs to be done to unify them.
Heterogenous components 11-485

Pattern-3 Extracting generic code components

Summary Re-use code by generalising from existing work to make pluggable components.

Intent Make an existing component re-usable in a broader context. Resources have been
assigned for work outside immediate project need (Pattern-4, Componentware manage-
ment (p.487)).

Considerations It is often better to make a generic framework model; this needs less investment in
‘plug technology’, needed to make code-components plug together. A framework
model just provides the specs for each class that fits into a framework, and is typically
specialized at design time. Better for performance; less run-time pluggability.

It takes hard work to find the most useful generalisation that fits many cases, and to
get it right. This is only worth it for components that will definitely be re-used at least
four or five times; and the investment doesn’t pay off for some while.

Strategy Components cross projects. It is unusual without much experience to design a good
generic component in advance; they become apparent only after you find yourself
repeating similar design decisions. It is also not much use to find components in isola-
tion: they work best as part of a coherent kit. Within a small project, there is not much
payoff: it’s easy to spend too much time honing beautifully engineered components
that aren’t used anywhere else. It’s therefore clearly a long-sighted architectural job to
decide what components are worth working on and integrating into the local kit.

Identify common frameworks. Pull out objects and collaborations that have common
features into separate framework packages, and re-import them to apply.

Don’t overgeneralise! If you simply dream up generalizations, they will not work.

Identify variable functionality and delegate to separate ‘plug’ objects. Any time
you can encapsulate such variability into a separate object, so do.

Specify plug interfaces. Define what you need of anything that plugs into you — and
what you provide to them. Provide the simplest model that makes sense. ‘Lower’
interfaces generally need to know less than ‘upper’ ones.

Package. Your component should be delivered with its:

• plug specifications;

• test harness for clients’ plugs — based on the plug spec. Either:

• stand-alone harness that drives the plug-in & pronounces judgement; or
• switchable monitor that checks pre and postconditions during operation.

• some selection of demo or default plug-ins.

The component may be part of a suite of components that can plug together in differ-
ent ways.
11-486 Heterogenous components

Pattern-4 Componentware management

SummaryDevote resources to build, maintain, and promote usage of a component library; there
is no free lunch.

IntentRe-use motivates uptake of OT. Surveys show that of the main three motivations
managers quote for taking up object technology, re-use is the leader.

But objects do not automatically promote re-use — it is an enabling technology that
will reduce costs if well applied. If badly applied, it increases costs. These costs
always increase in the short term: investment is required to move to a re-use culture.
The good news is, there are a growing number of success stories when done right.

ConsiderationsMaturity. You need a well-defined process already followed by your developers.

What is re-use? Cut & paste? — “Adopt, adapt, and improve”? Cheap and easy, but
limited benefits; enhancements to the original do not benefit the re-users at all.

• Programming by adaptation? — if it looks similar, inherit and override methods
as required. Takes more effort, gives limited benefits; Unless you adhere to strict
rules, superclass enhancements need review of overrides in subclasses.

• Building generic components and import them to re-use— devote substantial
resources to a library. Best benefits, and most investment required.

Reuse

Maintainability

Extensibility

Application 1 Application 2
copy

copy

Application 1 Application 2
subclass

subclass

Application 1 Application 2Generic Component Library
Heterogenous components 11-487

Caveats. Expect limited success initially. For example, payback should not be
expected until after a year or two; pilots will show some success in short term. It also
takes some time for management and technical staff to be consistently signed-up to
the idea long term, and the skills required more demanding: generic component
design, and interface specification.

Strategy • Apply the spiral model, with conscious activities for abstraction and re-refine-
ment.

• Develop a re-use team who know and develop the library. Use people with a per-
fectionist turn of mind, and the right skill set.

• Offer some re-use team people to development projects, to encourage re-use.

• Do not under-resource; it is your design capital.

• Apply to all stages of the process: models, patterns, frameworks, designs.
11-488 Heterogenous components

Pattern-5 Build models from frameworks

SummaryDo not build models from scratch, but by composing frameworks.

IntentGeneralisation of modelling work, to start focus on re-use and componentware as
early as possible (Pattern-4, Componentware management (p.487)).

ConsiderationsLarge models can be repetitive within similar business environments, just as program
designs are. And they also have variability which can be captured by different forms
of factoring and parameterisation.

A framework can be just a specification, or can come with a code implementation
(Chapter 18, Frameworks in Code). The latter requires more investment in its design,
and may run slower. Pure specification frameworks help you build a spec, and then
you have to implement the result; it does not have the same run-time overhead of
pluggability.

StrategyModel-only strategy. Building and using model frameworks.

• Look out for similar patterns within business models, type specifications, high-
level designs. Also make frameworks for common design and analysis patterns.

• Extract common models and use placeholders, effects, invariant effects, abstract
actions to allow you to separate parts.

• Compose framework with others. Where one type has definitions from more than
one framework, use join composition (Section 9.4.4, “Joining action specifica-
tions,” on page 373).

• Implement the composed framework. Each type in the composition will have a
spec, which can be implemented as for basic design.

• Use a tool that will help you compose model frameworks.
Heterogenous components 11-489

Pattern-6 Plug conformance

Summary Two components fit together if their ‘plug-points’ conform. Document them with
refinements.

Intent Ensure that two components you’ve aquired (or built) will work with each other.

There are two specifications at a plug-point: the ‘services offered’ advertisement of
one component; and the ‘required’ of the other. We need to ensure one matches the
other.

How hard this is depends on whether they use similar terms. If one is actually
designed specifically for the other, it’s easy. If not, but they are based on the same
business model, it’s not so bad. If the models are entirely different, there’s more work
to do (e.g. see Section 11.7, “Heterogenous components,” on page 472).

Every model will be based on imported others; with luck, components concerned
with the same business will import the same packages. Indeed, it is important to base
your specifications on imported models as much as possible, for this reason.

Strategy Document a refinement that shows how one meets the other. See Chapter 12, Abstrac-
tion and Refinement.
11-490 Heterogenous components

Pattern-7 Using legacy or bought-in components

SummaryMake a model of an existing component before using it. Create proxies to act as local
representatives of the objects accessed through the component.

IntentA uniform strategy across component boundaries, including legacy components.

Some of your software may be in the form of a bought-in or legacy component. It may
be an infrastructure that you use to serve your ‘middleware’; or part of the core of the
system that implements part of the main business model.

For example, a library management system deals with loans, reservations, stock con-
trol. A component is bought in to deal with membership. This is a conventionally-
written component (probably built atop a standard database) with an API that allows
members to be added, looked up, updated and deleted.

ConsiderationsModel translation. The component may (if you’re lucky!) come with a clearly-defined
model. If not, it may be useful to build your own type model. The model will show
the component’s view of the information it deals with, together with the operations at
the API. The model will not correspond precisely to your system model:

• It will not contain all the information. For example, the library manager knows
each member’s address, which books the member is currently holding, and what
fines are owed. Only part of this will be stored in the membership manager.

• The component may be capable of storing other things we aren’t interested in for
this application, such as credit history.

• If the component’s model was written by someone else, its attributes and associa-
tions may be radically different from those of your system model. For example, it
may be designed to associate ‘reference numbers’ with several ‘short strings’ —
which you intend to use for the member name and address.

Associations across component boundaries. Any kind of association crossing a com-
ponent boundary — for example between members and loaned books — must be
represented in some way — typically by some kind of handle that both map internally
to their own ends of the links. So there may be some reference number used to iden-
tify members at the API of the membership manager; this would be stored wherever
we need to associate our other objects with members.

Strategy• Use ‘proxies’ outside the component to represent objects stored more completely
within it. These need be created only when needed. For example, the library looks
up a member by name and gets back a reference handle from the membership
manager, which you wrap in a Member object created for the purpose. Further
operations on the Member are dealt with by that object, which sends changes of
address through the API; it can be garbage-collected when we go on to processing
another member.

• To check that the component as described does what you require, make a partial
retrieval between its model and the system’s. Check for conformance of the API
specs to your requirements.
Heterogenous components 11-491

11.8 Summary

The Catalysis approach to design is about standing back from the detail. This enables
you to think about and discuss the most important parts of your design without the
clutter of fine detail; and to prolong the life of your design by making your overall
vision clear to maintainers, enhancers, and extenders.

In earlier parts of this book, we saw how to use models to abstract away from the
details of data structures. Pre/post specifications abstracted what was required of an
object rather than how it achieved it. Joint actions represent as one thing, an interac-
tion that may be implemented by a series of messages.

This chapter has taken the abstraction one level higher. We have defined a notation in
which components — separately deliverable chunks of software — can be specified
and designed, and plugged together to make bigger components and complete sys-
tems. We have also defined a variety of ways in which components can be intercou-
pled, abstracting away from the details of the connectors; and set a framework for the
definition of more categories of connector.

We have applied the Catalysis ideas of modelling and behavioural abstraction to
enable us to specify components aside from their implementations; and shown how to
check that plugging a set of heterogenous components together meets a given set of
requirements.
11-492 Summary

	Chapter 11 Components and Connectors
	11.1 Components — an Overview
	11.1.1 What is a Component?
	11.1.2 The Evolution of Components
	11.1.3 Components and Pluggable Reuse
	11.1.4 Components and Standardization
	11.1.5 Why the move to Components?

	11.2 Component Kit — Pluggable Components Library
	11.2.1 Graphical user interface Kit of Components
	11.2.2 Kit of Small Components
	11.2.3 Large Components
	11.2.4 Component building tools
	11.2.5 Are components just objects?

	11.3 Component Architecture
	11.3.1 “Architecture”
	11.3.2 The Component - Port - Connector Model
	11.3.2.1 Component connector
	11.3.2.2 Example connectors

	11.3.3 Taxonomy of Component Architecture Types

	11.4 Arch One — A Catalysis Component Architecture
	11.4.1 Defining the Architecture Type
	11.4.2 Connectors: general
	11.4.2.1 Connector Specification
	11.4.2.2 Connector Design
	11.4.2.3 Interpretation of connector diagrams

	11.4.3 Property connector

	11.5 Specifying Arch One Components
	11.5.1 Specifying input and output events
	11.5.2 Specifying properties
	11.5.2.1 Specifying output properties
	11.5.2.2 Specifying input properties
	11.5.2.3 Require-condition
	11.5.2.4 Constrained connectors
	11.5.2.5 Bidirectional properties
	11.5.2.6 Port attributes

	11.5.3 Specifying transfers
	11.5.4 Specifying transactions

	11.6 Connecting Arch One Components
	11.6.1 Connector properties
	11.6.2 Connecting events
	11.6.3 A Basic kit of components for Arch One
	11.6.4 Dynamically creating and connecting components
	11.6.4.1 Connecting components
	11.6.4.2 Creating components
	11.6.4.3 Visual Notations

	11.7 Heterogenous components
	11.7.1 A Requirements Spec
	11.7.1.1 Requirements model
	11.7.1.2 Business Rules
	11.7.1.3 Target Operations and System Context

	11.7.2 A component-based solution
	11.7.2.1 Model of the whole
	11.7.2.2 Models of constituent components
	11.7.2.3 Retrievals
	11.7.2.4 Implementing cross-component links
	11.7.2.5 Implementing actions and business rules

	11.7.3 Glue components
	11.7.3.1 Heterogenous component architecture

	11.7.4 Federated architecture
	11.7.5 Summary: Heterogenous Components
	Pattern-3 Extracting generic code components
	Pattern-4 Componentware management
	Pattern-5 Build models from frameworks
	Pattern-6 Plug conformance
	Pattern-7 Using legacy or bought-in components

	11.8 Summary

