

 Chapter 10 Model Frameworks and
Template Packages

Building specifications and designs from generic
reusable parts.
Outline

It isn’t just chunks of code that can be made into reusable assets. Designs and
specifications too can be separated into parts, which can be kept in a library and
subsequently combined in many different configurations. We call these model
frameworks.

The basic tool for representing and combining frameworks is a generic form of
package, called a template (or template package).

Of course, while program-code components just need to be plugged together to
produce executable code, pieces of design combine to produce only designs, that
still need to be implemented. But if you’ve read the book this far, you’ll agree that
a design represents much of the major decision-making that goes into finished
code: so that being able to put a design together rapidly from prefabricated parts
is a very valuable facility.

This chapter deals with model frameworks, and how to build and compose them
using template packages.
© Desmond D’Souza & Alan Cameron Wills 1998/May/11 11:38 10-389 of 434

10.1 Model framework overview

Recurring pattern =
model framework

Once you’ve been modeling and designing object systems for a while, you start notic-
ing certain patterns recurring. We can see the same set of relationships, constraints, or
design transformation in different designs. This set of relationships, we call a ‘model
framework’. Many design patterns boil down to a model framework, combined with
surrounding how-to, when-to, and whether-to advice.

Can build models by
applying patterns

A suitable tool should be able to support building models and designs by application
of model frameworks. Suppose, for instance, we have already some type ‘Stock’ in our
business model, with a numeric attribute ‘level’; and choosing a package of user inter-
face pieces, we find another type ‘Meter’ for displaying numeric ‘readings’.

e.g. Observation frame-
work

Now we want to specify that Meters can be used to display Stock levels, using the
well-known Observation1 pattern. As usual, we can focus on different aspects of a
model in different diagrams, and so we don’t have to repeat all the stuff that has
already been said about the two types. All we need do is define the extra attributes
and operations needed to connect them.

“Application” is easy This is where model frameworks are useful. Let’s assume that because Observation is
such a common pattern, we have defined a model framework for it; using this gives
an abbreviated way of defining what we need:

‘Framework’ is template
package; ‘apply’ is
import with substitution

The vehicle for a framework is a generic or ‘template’ form of package. Inside the tem-
plate, some types and their features are defined using placeholder names. Looking at
its definition in the library, we find that the Observation template has two type place-
holders ‘Subject’ and ‘Observer’; we have imported that package, substituting Stock
and Meter. The sustituted definition becomes part of the model. In other words, what-
ever attributes and operations are defined for Subject within the template’s definition,
are now defined for Stock. Other names can be substituted too. The template uses an
attribute called ‘value’ for the aspect of the Subject that we want observed; so we sub-
stitute it with the Stock’s ‘level’.

It is very effective for
roles in collaborations

Collaborations. Notice that what the Observation framework does is to represent a
cluster of design decisions about how two types of object should collaborate to pro-
vide the required effect; it does not discuss any other roles and collaborations of those
objects, and decouples this design work from any specific domain. This is one of the
most effective uses of model frameworks.

1. State in one object tracks state changes in another; see Figure 190.

Stock

Observation

Meter

Subject
[value \ level]

Observer
[view_value \ reading]

Figure 180: Example of applying a model framework
10-390 Model framework overview

.. many patternsPatterns. A pattern is a set of ideas that can be applied to many situations. A frame-
work is at the heart of many patterns; but a pattern usually also includes less formal
material about alternative strategies, advice on when to use it, and so on. When you
keep a framework in a library, it should be packaged with this documentation.

..generic classesClass Templates. Some programming languages have ‘class templates’ or ‘generic
classes’; UML has these too. The notation is slightly different, but a class template is a
model framework with just one class in it. We’ll discuss them in more detail later.

..code frameworksClass frameworks. A variety of techniques can be used to build executable frame-
works, from which programs can be quickly generated by subclassing, by ‘plugging
in’ new components, and by interpreting purpose-built languages. We will look at
these kinds of frameworks in Chapter 12, Reuse and Pluggable Design — Frameworks in
Code (p.493); this chapter is about frameworks of abstract models.

Tool supportTool support. Tools that support model frameworks and templates should allow you
to ‘unfold’ each application of a model framework, so as to see the full resulting
model, with all the substitutions made.

Incremental synchroni-
zation, and user-defined
frameworks

Ideally, the tool should keep the definitions of the framework and the original defini-
tions of the types to which it is applied, and each diagram in which the framework is
applied. If the user changes any of these, the resulting unfolded model should change
in step. Furthermore, the tool should allow you to define your own frameworks, in
the same notation as the models themselves.

Not the same as a Basic
script

Among current tools, there is some support for templates in a restricted way. Typi-
cally, the template works more like a script, a series of operations which is applied
once to a model, adding the necessary attributes and operations. This has the disad-
vantage that the simpler original definitions are lost, and changes are less easy to
make. It is also less easy to see what the template is about, since it is written in a
scripting language.

Summary. Templates provide a powerful way to capture reusable model frameworks
— whether at a very abstract specification level, or down in the detailed design. In
particular, they are good for capturing collaborations. Even without tools, the tem-
plate notation is a very useful form of abbreviation — even where the template is not
very rigorously defined. It’s an easy way to say on a diagram ‘this, this, and this type
have such-and-such a relationship.’

The rest of this chapter begins by looking at how frameworks work to help build static
models with just attributes and associations; then we will go on to deal with actions.
Subsequent sections add further ideas, and there is a summary of concepts at the end.
Model framework overview 10-391

10.2 Model frameworks of types and attributes

A simple plumbing ser-
vice model

Suppose a plumbing company asks us to do an analysis of their business, preparatory
to getting some computerised support. After day or two with them, we arrive at this
central model:

Key types and invariants Each Plumber is at any one time scheduled to do a list of Jobs, each of which takes
place on some date and is for a particular Customer. There is only a certain number of
kinds of Job, and each is described by a Job Description. Among other things, this says
what Skills are required for the job (electrical wiring, excavation, denial of responsibil-
ity, etc). Each Plumber is qualified with a list of Skills; and a key invariant is that no
Plumber should be assigned to a Job for which he or she has not the appropriate skills
— or, as we’ve written it in the invariant, every Job’s description’s requirements must
be a subset of the qualifications of the assigned Plumber.

A seminar services
model looks similar

There’s more to the model than this, of course, and work continues. Meanwhile, our
consultancy gets involved in another modeling contract, with a commercial teaching
organisation. We soon realise that we can make some savings here: Course Offerings,
which happen on particular dates, are occurrences of Courses — just like Jobs and
JobDescriptions; and Courses call for certain Instructor Skills (arm-waving, bluster-
ing, hypnosis, and the like).

Job Description

Job

Fixing heating,
installing a washing machine,
 etc

date

0..*

1

Skill

Plumber

name

0..*

0..*

0..*

requirements0..*

qualifications

0..*
1schedule

Job :: description.requirements->subsetOf(plumber.qualifications)

plumber
Customer

1

Figure 181: Model of allocating plumbers to jobs
10-392 Model frameworks of types and attributes

Extract a frameworkSo we generalise our model into a framework by creating a template package, like
this. (We will later drop the «framework» stereotype):

We’ve taken the opportunity to add more details, particularly about Resources not
being double-booked. (TimeInterval will have to be defined somewhere; we’ve
assumed it has a boolean function noOverlap, that compares two TimeIntervals.)

Generate the original
model by application

Now our plumbing model can easily be generated from a ‘framework application’:

〈JobCategory〉 〈Facility〉reqs

〈Job〉 allocated 〈Resource〉
schedule

when: TimeInterval

job provides

Resource Allocation «framework»

inv JobOccurrence::
allocated <> NIL
allocated.provides->subsetOf(job.reqs)

inv Resource:: jo1, jo2: Job,
({ jo1, jo2}->subsetOf(schedule) and jo1 <> jo2

=> jo1.when.noOverlap(jo2.when)

=>

0..*

0..*

0..*

0..*

0..*

0..*
1

-- any allocated Resource must have the required Facilities

-- no double-booking of Resources

Figure 182: Model of resource allocation framework

JobDescription

Job

Skill

Plumber

Resource Allocation

JobCategory Facility

ResourceJob

Customer

1

Figure 183: Application of resource allocation to plumbing
Model frameworks of types and attributes 10-393

<Placeholders> are sub-
stituted in application

Notice that several of the names inside the framework definition are written with

〈

angle brackets

〉

 : these are ‘placeholders’ which should be identified with actual type
names when the framework is applied. This is the effect of the labelled arrows when
the framework is applied.

Models are composed,
with substitution

In the resulting model, each type has all the features given to it explicitly (like the
Job’s Customer); and also all the features defined by the framework, as name-substi-
tuted by the application. Working out the complete model is called ‘unfolding’. A
good tool will be able to show an unfolded version on demand.

Applied to seminars...

Turning again to the teaching organisation, we produce this model:

In this case, same frame-
work applied twice

This happens to apply the same framework twice. Both Rooms and Instructors are
constrained to provide the right stuff: Instructors have skills, Rooms have various
facilities (OHP, whiteboards); and neither must be overbooked. We have also added
an extra idea, that Instructors’ skills, determined by dated certifications, define the
‘provides’ association from the framework: we have modeled this explicitly and tied it
into the provides association with an invariant.

1

Additional attribute sub-
stitution

This example also shows name substitution in the form

 [framework-name \ applied-
name]

. We have used it to rename some of the associations, to avoid Courses having
different attributes with the same name. This text form and the arrows are equivalent:
it is sometimes convenient to write instead of drawing pictures:

ResourceAllocation [JobCategory \ Course
[reqs \ roomreqs],

Resource \ Instructor ...]

Course

Course Offering

when: TimeInterval

Instructor

Room

Resource Allocation

JobCategoryFacility

Resource Job

Resource Allocation

JobCategory Facility

ResourceJob

Certification

date

1

1

0..*

0..*

[where\allocated] [who\allocated]

[reqs\skills][reqs\roomreqs]

Instructor :: provides = certs.for

for

certs

RoomFacilities

InstructorSkill

Figure 184: Double application of resource allocation to seminar scheduling

1. The UML symbol for a pattern is a dashed “use-case”, though pattern semantics have noth-
ing to do with UML “use-cases”, and the arrow direction has nothing to do with UML
dependencies. We would have preferred the dashed package below. UML 1.1 does not have
any semantics for patterns, just a notation; perhaps our semantics will be used.
10-394 Model frameworks of types and attributes

An “unfolded” view

When unfolder, statements from each framework application, after making the neces-
sary substitutions, are composed with each other, and with any ‘local’ definitions that
are applicable. The unfolding looks like this:

A clearer view

Using frameworks clearly reduces complexity and duplication. It also provides a
higher-level view of the model, making it clear that each loop of four associations
forms part of a single relationship, the one we’ve called Resource Allocation. So
frameworks are a useful kind of abstraction.

10.2.1 Framework applications are not Subtypes

Could we have used subtyping to express the similarity between Courses and plumb-
ers’ JobDescriptions?

Course

Course Offering

when: TimeInterval

Instructor

RoomFacilities

Room

Certification

date

1

1

0..*

0..*

Instructor :: provides = certs.for

for

certs

0..*

0..*

0..*

0..*

0..*

0..* 0..*

0..*0..*provides provides

schedule

schedule

0..*
who

where

0..*

job 1

Course:: who <> NIL => who.provides->subsetOf(job.skills)

Instructor:: jo1, jo2: Job, ({ jo1, jo2}->subsetOf(schedule)) & jo1 <> jo2 => jo1.when.noOverlap(jo2.when)

 -- any allocated Instructor must have the required Skills

-- no double-booking of Instructors

skills

roomreqs

Course:: where <> NIL => where.provides->subsetOf(job.roomreqs)

-- any allocated Room must have the required RoomFacilities

Room:: jo1, jo2: Job, ({ jo1, jo2}->subsetOf(schedule)) & jo1 <> jo2 => jo1.when.noOverlap(jo2.when)

-- no double-booking of Rooms

InstructorSkill

Figure 185: ‘Unfolded’ view after applying frameworks

JobCategory

JobDescription

Course

Facility

Skill

InstructorSkill

RoomFacility

Figure 186: Why subtyping does not correctly reflect frameworks
Model frameworks of types and attributes 10-395

Specialize groups of
types, not individual
ones

Not really. This would imply that plumbing Jobs might require (or could be used
with) overhead projectors, and other mix-ups. It isn’t the individual types that are
specialised, but the entire group of them, along with their relationships and interac-
tions.

Animals eat food

Another example is the faulty old syllogism “

Animals

 eat

Food

;

Cows

 are

Animals

;

Beefburgers

 are

Food

; hence

Cows

 eat

Beefburgers

.” The mistake is that the first
statement should not be taken to mean that every object conforming to the type

Ani-
mal

 can eat every instance of the type

Food

. A more explicit statement would be “For
every subtype A of

Animal

, there is a subtype F of

Food

 such that all members of A
can eat any member of F”. Using frameworks, this can be written:

Now we can explicitly apply the framework to those pairs that are acceptable:

The association

eats

 might represent the assignment of food-items to specific animals
in an automatic feeding system. We thus ensure that instances of

Grass

 will be the
only members of

Food

 proffered as fodder to any

Cow

-instance.

1

A framework can use non-placeholder types, such as Animal and Food. So by apply-
ing the framework to Cat and to Cow, we are asserting that they are both subtypes of
Animal.

1. Would that it were so.

Animal Food

eats

Gastrology

 〈 Species 〉 〈 FoodType 〉 *

Figure 187: A gastrology framework

Gastrology

Cow Grass

Gastrology

Cat Meat
Species FoodType Species FoodType

Figure 188: Application of gastrology framework
10-396 Model frameworks of types and attributes

10.3

Collaboration frameworks

A ‘collaboration’ describes the interactions between a group of objects that are
designed to work together. They send each other messages intended to attain some
goal which they are designed to achieve jointly.

Much of OOD is about
collaboration design

Much of the skill of object-oriented design is about designing collaborations. The CRC
technique (Classes, Responsibilities, Collaborations [Beck et al]) is basic to OO design,
and is all about dividing the responsibilities for a task between collaborating objects.
These design decisions distinguish OO programming from merely structured design,
in which all the work is lumped into one program. In return for the extra decision-
making (if you do it well), you get a decoupled design, flexible and extensible. Doing
it badly leads to an unmanageable mess.

Good collaboration
designs should be reused

The careful design of collaborations is of such value that, when you have done it well,
it is worth recording the ideas and using them again. This is the motivation of many
patterns (for example in Gamma et al). Some tools explicitly provide a way to define
collaborations and then compose them into bigger designs (notably Taskon’s
OORAM).

We use frameworks

In Catalysis, frameworks are our reusable pieces of design; so let’s now use them for
reusable pieces of collaboration.

Collabs focus on just one
set of related roles

The interesting thing about a collaboration is that it defines the interactive relation-
ship between two or more objects; but when you define it by itself, you avoid saying
anything about the other relationships each role-player might have.

Parenting and working

As a real-world example, if you describe what it means to be a parent, you’re talking
largely about your interactions with your children, and the effects you have on each
other. When you describe what it means to be an employee, that’s a different role with
a different set of interactions with an object described in different terms. But although
the collaborations can be described separately, the fact is that every object usually
plays a role in several collaborations: perhaps you are both a parent and an employee.
Each object conforms to the spec of its roles in the various collaborations it takes part
in.

Collabs always affect
each other

Separate collaborations can have effects on the same object attributes. Parenthood
affects the bank balance; fortunately, that’s the same attribute that is improved by
employment. So when we combine roles in one object, we usually have to take into
consideration this interference between the different roles. Indeed if two roles didn’t
interfere in this way, it wouldn’t make any difference whether they were assigned to
the same object or not.
Collaboration frameworks 10-397

Subject-observer

The Subject-Observer collaboration [from Gamma et al] is a more technical example.
In this illustration, we try to show each object’s external interface as split into different
roles in different collaborations; while the internal attributes may be shared:

The collaboration governs two roles, Subject and Observer ; the Subject has some sort
of

value

, and the

Observer

 has another, let’s call it its

value_view

. There is an

update

action initiated by the Subject in order to keep the Observer up to date.

Just two roles of some
objects

Of course, any pair of classes that conform to this relationship in some chunk of pro-
gram code will probably not be called ‘Subject’ and ‘Observer’: they’ll have some big-
ger more interesting roles in their program, such as pieces of a GUI, or proxies in a
distributed system. But this is exactly what frameworks are about: we can define just
the aspects about which we have something to say, and then allow users to use other
names and extend the definitions when they apply our framework.

So, as we’ve shown in Figure 189, we really only know about part of each object we’re
describing: the rest depends on whoever chooses to use the framework. In this exam-
ple, we don’t know how or why the Subject’s value gets changed — only that it can
happen, and that when it does, the Observer will have to be updated.

10.3.1 Using Invariant Effects in Collaboration Frameworks

We now specify frame-
work actions

The big difference between this framework and the ones we have discussed so far, is
that it has actions. In fact, there are several:

• The

update

 action between the Subject and Observer

• All the other actions we don’t know about, which might change the Subject’s
value.

Specifying the first one is easy:

Observer ::
action update ()

post value_view = subject.value

- - I now correctly reflect my subject’s value

update

Subject Observer

roles played by this part of each object

the part of this object
involved in the

collaboration

the rest of this object

value_view

Subject-Observer

an internal variable

involved in both parts

‘Observation’ collaboration
some unknown
collaboration

another unknown
collaboration

value

involved in our collaboration
and the unknown one an internal variable

Figure 189: Collaborations are about parts of objects
10-398 Collaboration frameworks

(As always, an action might abstract a sequence of smaller messages; but we’ll leave it
to someone else to refine it.)

And constrain ‘external’
role behaviors

But the crucial thing we have to say in this framework is that the update action occurs
as part of

any

 other action that changes the Subject’s value. To say this formally, we
use an ‘effect invariant’ (Section 4.8.5, “Effect Invariants,” on page 171) on the

external

section of the collaboration (Section 5.8.1, “External actions,” on page 229). It is a post-
condition without an action name or signature:

Invariant effect

Subject ::
inv effect

post value@pre <> value

⇒

 [[observers.update()]]

- - Any action that changes my value also ensures
- - that the observers correctly reflect the new value.

(Recall that [[

anAction

]] means that the postcondition of

anAction

 is achieved as part of
this action. If there are several observers, the same applies to all of them.)

The idea is that this postcondition applies to every other action performed by a Sub-
ject

, no matter where the rest of the spec of that action comes from. So when we use
this framework, we must

AND

 the effect to all the postconditions of each of the other
operations. When we finally come to program the Subject class (or rather, the class
playing the Subject role when we’ve applied the Observation framework) we’ll find
that wherever the spec tells us to change its value, we must also update the corre-
sponding Observer (or whatever the user has changed the names to.)

Add supporting
attributes

Completing this example. Our framework can be applied to any pair of types, and
will add to them the necessary specification to say that one of these types can be an
observer of the other. But there must be some way of telling which Subject-instances
are observed by which Observer-instances. We can define that as an association, and
add another action for making links that belong to it.

Resulting frameworkFigure 190 shows the collaboration framework as we would normally draw it. The
subject-observers association links particular instances of the two types, and the
update action only applies to Observers that have a current Subject.

Still defer details with
joint ‘register’ action

The register action links a particular Subject to a particular Observer. It is a ‘joint’
action: we have not specified here how it happens, or even to whom you send the
message to make it happen — just that there ought to be such an action, with respon-
sibility for executing it distributed somehow between Subject and Observer. When a
designer applies the framework to a particular pair of types, it tells him to provide
this facility.

Could defer further with
‘external’ invariant

More abstract models. Just to illustrate how Catalysis lets you choose how detailed or
abstract to be: we could have written the overall requirement without mentioning the
update action at all, with an even less detailed external effect invariant:

Subject::
inv effect

post value@pre <> value ⇒
observer.value_view = value

- - Any action that causes a change in value
Collaboration frameworks 10-399

- - must ensure that the observer’s latest ‘value_view’
- - is the same as our latest ‘value’

Or instead, we could have just written an invariant external to the collaboration,
defining the overall goal, saying nothing about how it is achieved:

inv Observer :: subject.value = value_view

Figure 190: Collaboration template

Observation

〈Subject〉

〈value〉

〈Observer〉

〈value_view〉
update

Subject ::

post value@pre <> value ⇒ [[observers.update()]]
-- Any action that changes my value also ensures
-- the effect of ‘update’ on all its observers

Observer ::
action update ()

post value_view = subject.value
- - I now correctly reflect my subject’s value

subject observers
0..*

pre subject ≠ null

0,1

action register ()

post o.subject = s
pre o.subject = null

register

(s: Subject, o: Observer) ::

inv effect

‘external’
section
10-400 Collaboration frameworks

10.3.2 Applying a collaboration framework

To apply, start with your
model

One of the authors’ clients designed a call management system for telephone sales
teams. One of the types in the model was a Call Queue — the list of calls waiting for a
particular group of operators. Let’s suppose we have that type defined in one pack-
age; while in another, we have a kit of GUI widgets, one of which is a Thermometer —
a useful display for numeric values. Here are parts of their models:

Then apply the frame-
work

Now we are designing the bridge between business logic and GUI, andwill make a
package into which we import (among other things) the CallQueue and Thermome-
ter. We’d like to make it possible for the ‘temperature’ of a Thermometer (the number
it displays) to be used to show the number of Calls on a particular CallQueue. So we
apply our Observation framework:

CallQueue

op addCall (c : Call)
post calls = calls@pre + c

op getCall () : Call
post return = calls@pre->head
& calls = calls@pre->tail

Callcalls
0..*
{seq}

Thermometer

temperature : int

other stuff
about
Thermometers

Figure 191: Target type model for using observation

Observation

CallQueue Thermometer

Subject Observer

reading

[value\calls->size] [value_view\reading]

Call

calls0..*

Figure 192: Framework application and substitutions
Collaboration frameworks 10-401

Unfold, but only if you
disbelieve

This has the effect of adding the necessary specifications. Now let’s suppose we have
a tool that can display the unfolded model if we wish; it shows that the result of
applying the framework and gives this spec:

Notice how the Observer and Subject names have been replaced. (We’ve actually
made a slight abbreviation here: the addCall and getCall operations will always
change the

calls

 size every time, so we can drop the “

value <> value@pre =>

” from
their postconditions.)

Still more design to do:
joint ‘register’ action

Designing from the resulting model.

So far, we have used frameworks for building
models: what we end up with is a specification, which still has to be implemented. In
this particular example, there is some work left to the framework’s user, because we
have not been told how to realise the register and update actions as specific opera-
tions on the objects. (Some other framework might choose to provide more.)

‘register’ design should
be reusable

The update action could be realised as a single

notify(newValue)

 message; or, in the
Smalltalk MVC style, could consist of an

update()

 message to the Thermometer,
which then has to come back to the CallQueue asking for details of the changes.

The register action would typically be initiated by some supervisiing object telling a
particular Thermometer to observe a particular CallQueue; then the Thermometer has
to introduce itself to the CallQueue, so that each knows about the other.

CallQueue

op addCall (c : Call)
post calls = calls@pre + c

op getCall () : Call
post return = calls@pre->head
& calls = calls@pre->tail

Callcalls
0..*
{seq}

& [[observers.update ()]]

& [[observers.update ()]]

Thermometer

0..*

observers

reading

update

register

other stuff
about
Thermometers

Thermometer ::
action update ()

post reading = subject.calls->size
- - I now correctly reflect my subject’s value

pre subject <> null

action register ()

post o.subject = s
pre o.subject = null

subject

0,1

(s: CallQueue, o: Thermometer) ::

Figure 193: Unfolded result of framework application
10-402 Collaboration frameworks

10.3.3 Using one Framework to build Another

Define ‘register’ frame-
work

The idea of registering and unregistering is common to any situation where each of
two objects needs to know about the other. So we could separate this scheme into its
own framework:

 External register/unreg-
ister/release; internal
link/unlink

 Any instance of A and B can be linked together; aa and bb are the links in each direc-
tion. (The arrows indicate we’ve definitely decided to make the link navigable in each
direction.) The operations intended for use from outside this collaboration are regis-
ter, sent to an A to link it to a particular B; unregister; and release, sent to a B to unlink
it from everything. The other operations on Bs, link and unlink, are intended only as
an internal part of the design of this collaboration. We’ve written the specifications so
that they are quite explicit about how the two-way links are maintained.

〈 A 〉

op register (b:B)
post bb = b

op unregister (xb:B)
post bb = null

& [[b.link(this)]]

& [[xb.unlink(this)]]

〈

 B

〉

op link (a:B)
post aa = aa + a

bb

op unlink (xa:B)
post aa = aa – xa

0,10..*

op release ()
post forall a : aa,

[[a.unregister(this)]]

link
unlink

Two-Way Link

register
unregister

release

aa

Figure 194: Low-level framework: Two-Way Link
Collaboration frameworks 10-403

Apply this framework to
complete the design

Now we see that we could have used this framework to help define the Observation
framework. (In fact, it can say more than before, because it now tells how the register
action works, rather than just calling for one.)

Again, simpler view

Once again, comparing with Figure 190, we can see how the use of a template imposes
a higher-level order on the appearance of the model, substituting a meaningful single
pattern on the diagram for a variety of links and operations.

Observation

〈

Subject

〉

〈

value

〉

〈

Observer

〉

〈

value_view

〉

update

inv effect Subject ::
post value@pre <> value

⇒

 [[observers.update()]]

-- Any action that changes my value also ensures
-- that the observer correctly reflects the new value.

 Observer ::
action update ()

post value_view = subject.value
- - I now correctly reflect my subject’s value

pre subject <> null

Two-Way Link
B A
[b \ subject] [a \ observers]

Figure 195: Observation framework using 2-way link framework
10-404 Collaboration frameworks

10.4

Refining frameworks

Frameworks are expres-
sive as-is

Frameworks are an expressive abstraction tool, and are used throughout Catalysis,
even in the definition of very basic modeling constructs. Still, as a template-like mech-
anism, they can only be used in situations where the problem at hand is suited to the
parameterization and the level of granularity of the framework.

An extra dimension —
refinement

Fortunately, our frameworks have an additional dimen-
sion of flexibility —

refinement

. There is no restriction that
a framework be defined at a fixed level of detail; frame-
works themselves are subject to refinement, abstraction,
and composition in exactly the same ways as normal mod-
els. Further, some of these refinements are themselves
defined as frameworks.

10.4.1 A requirement

Abstract trade require-
ment

This framework illustrates a relationship between a Trader, who makes Orders from a
Distributor. In the framework, we don’t care how the Trader gets rid of stock, nor how
the Distributor aquires it. We have shown this as a degenerate collaboration, as it will
next be refined as a unit.

f1 f2

with refinements

frameworks of frameworks

choose your fit

Trade_Supply_Requirement

〈Trader〉
stock(Product) : int
lowLimit (Product) : int

〈Distributor〉

〈Order〉
stock(Product) : int
lowLimit (Product) : intorders

to

from

outstanding

〈Product〉 Date
deliveredfor

inv Trader:: forall p:Product,
stock (p) < lowLimit(p)⇒ orders[for=p] <> 0
-- whenever stock of any particular Product line is low,
-- there will be an Order for it
-- (“the subset of orders for which the ‘for’ attribute is p
-- will not be the empty set”)

* *
0,1

*

*

Figure 196: A framework for trading: stock maintenance
Refining frameworks 10-405

(Notice how we’ve made all the types substitutable except Date. So we would likely
have Date defined as an actual type, somewhere in the package in which this frame-
work definition appears, or in the packages it imports.)

Can be used as-is

This tells us that a Trader must always have an Order pending for low stock: that way,
we can hope to avoid outages. Designers might find it convenient to use this frame-
work by itself, and then go on to define how Orders are made, within their own mod-
els. Or we could go on to define another framework that includes that information.

10.4.2 A collaboration refining the requirement

Can also have a refined
framework

According to the Trade Supply framework (Figure 197), when the stock of any Prod-
uct gets low, the Trader makes an Order with the Distributor using the

 make_order

action. Once an Order is established, the Distributor can deliver the goods, and the
Trader can pay.

It is completely generic,
yet more designed

There are different kinds of Traders in the world, that get rid of their stocks in differ-
ent ways. Some just sell them; others cook them up and serve them; others build
things from them. But no matter how stock depletion happens, the Trade Supply
framework still manages to tell us that make_order should happen when stocks get
low.

Good style of using
‘effect invariant’

In an earlier example, we just used one

effect

 clause. Here, we have split the cause

from the effect. First, we’ve invented an effect name

depletion (p)

 as a placeholder
name for any action (no matter where defined) that causes stocks of

p

 to be reduced:
an invariant effect clause tells which (unknown) actions are considered to have the

depletion

 effect. Secondly, we have defined a postcondition for depletion in the usual
way for an effect: this says that we require to perform the

make_order

 action.

Separating cause and effect in this way is useful when they have a many-many rela-
tionship, and are the essential reason for the effect construct.

10.4.2.1 Documenting the refinement

We want to claim that anyone who uses the

Trade_Supply

 framework, using the same
placeholder-substitutions, will achieve the goals set by

Trade_Supply_Requirement

.
More precisely, we need to document a reason for believing that if we combined the
two models, we’d end up saying no more than we’ve already said in Trade-Supply:
that all of its statements (pictorial or otherwise) already imply those in Trade Supply
Requirements.

The general rules are the same as those discussed in Chapter 7,

Abstraction, Refinement,
and Testing

(p.265). In this case, the static models are the same; the only thing we have
to worry about is that invariant in the Requirement.

We can write it as shown in Figure 198. (Actually, a more rigorous treatment of this
argument reveals a hole to do with when Orders get removed. You might like to
tighten the reasoning, and the spec of Trade Supply.)
10-406 Refining frameworks

Trade_Supply

〈

Trader

〉

stock(Product) : int
lowLimit (Product) : int

make_order

〈

Distributor

〉

deliver
pay

〈

Order

〉

stock(Product) : int
lowLimit (Product) : int

〈

Product

〉

Date

deliveredfor

action rtlr:Trader –> dist:Distributor :: make_order (prod:Product, q:int)

-- when a Trader sends make_order to a Distributor ...

post

-- the effect is to add a new Order to the lists

let n = Order.new [quantity=q, to=rtlr, from=dist, for=prod,paid = 0,
delivered=NIL, cost=dist.price(prod, q, rtlr)],

rtlr.orders += n & dist.outstanding += n

action dist:Distributor –> trd:Trader :: deliver(o:Order)

-- when a distributor sends ‘deliver’ to a Trader, ...

pre o.to = trd & o.from = dist

-- only sensible if Order is between them

post o.delivered <> NIL

-- the effect should be to mark the Order done

& (trd.stock(o.for) += o.quantity)

-

- and increase the stock

inv effect
post t:Trader, p:Product,

-- for any retailer and product

t.stock(p) < old(t.stock(p)) => t.depletion (p)

〉

-- any operation that decreases stock must have “depletion” effect

effect Trader:: depletion (p:Product)
-- any operation that is a depletion must also conform to this:

post stock(p) < lowLimit(p) =>
exists dist:Distributor, n: integer, n> 0 &

[[this –> d.make_order (p, n)]]
-- if the resulting stock is lower than the appropriate limit, we choose some Distributor
-- and make an order with them tor some number of that Product

= depletion (p:Product)

* *
0,1

〈depletion (p:Product)〉

orders

to

*
from

outstanding
*

Figure 197: Trade Supply Collaboration
Refining frameworks 10-407

Trade_Supply_Requirement

Trade_Supply

 Trade Supply says that any action must invoke
make_order if it depletes the stock of any Product of any
Trader. Relevant quotes:

• Trader :: stock(p) < stock@pre(p) => [[depletion(p)]]

• depletion(p)
post stock(p) <lowLimit(p) => [[makeOrer(p)]]

• makeOrder(p) post orders += new Order ...

Therefore there is always an Order for depleted stocks,
which is the requirement set by Trade Supply Require-
ment in its invariant.

Figure 198: Documenting a framework refinement
10-408 Refining frameworks

10.5 Composing frameworks

retail-customer rolesA commercial retailer will play many roles, participating in many collaborations. One
such collaboration will be its interactions with customers. The next collaboration
shows the relationship of Customers to Vendors. In the sell operation, cash and Prod-
ucts are transferred in opposite directions.

Compose with the earlier
trade-supply roles, tie
attributes together

A Shop is a type of object that plays the roles of both Trader and Vendor. So now we
compose the two frameworks into a single picture, with Customer, Shop, and Distrib-
utor as the key players. In Public_Vending, the Vendor’s stock was represented as a
set of Things, each of which is an example of a Product; so this model must be tied up,
using an invariant, with the Trader’s stock which had been modelled as an integer for
any Product.

〈Customer〉 〈Vendor〉

Public_Vending

till: Moneypocket: Money

Thing 〈Product〉makeOwner

subtype

bag

priceOf(Product): Money

action c:Customer –> v:Vendor ::sell (Product p)
post c.pocket –= v.pr iceOf(p) & c.bag+=p
& v.bag –= p & v .till += v.priceOf(p)

* *

sell

Figure 199: Another view of the vendor: retail sales

Retail_Vending

Trade_Supply

Vendor Trader

Shop

Public_Vending

inv p:Product,
stock(p) = bag [make=p] . size

 -- for any Product, the Shop’s stock of the product is the
-- number of elements in its bag which are of that make

〈Distributor〉〈Customer〉

Figure 200: Joining roles by applying two frameworks
Composing frameworks 10-409

This gives the detailed
design to be coded

The final step is to implement the types with classes. Supposing that Shop:sell is not
refined further, but implemented as a single message, the designer will have to
observe Trade_Supply::depletion whenever stocks get depleted – so a call to
make_Order will sometimes have to be part of executing sell. Because the design has
been so fully thought through, the class implementation will be simple.

10.5.1 Building systems from collaborations

Synthesize objects by
composing roles

Shop is a synthesis that plays two roles. Each role is about the interaction with another
type of object — or rather, a role of another object. The Shop functions by having
enough roles to make a coherent unit: in this case, ensuring the throughput of stock.

Independent collabora-
tions affect each other via
shared objects

Given a variety of different collaborations, it is possible to construct many different
role-playing objects. Collaborations are plugged together by making objects that play
roles in each (and sometimes more than one role in one collaboration, just as a person
may wear more than one hat in an organisation). For each object, it is necessary to
state how participation in one role affects the other by tying together their vocabulary
of state changes — as is done with the Shop’s ‘bag’ and ‘stock’ above.

The collabs represent the
key design units

But the main work of the design resides in the collaborations themselves, and plug-
ging them together is relatively straightforward. Collaborations are the best focus for
design, and objects are secondary. Following this principle results in more flexible
designs.
10-410 Composing frameworks

10.6 Templates as packages of properties

Unrelated properties of
objects can have much in
common

Suppose you frequently find yourself modelling bananas, with a keen interest in their
curvier-than relation; elsewhere, you trade commodities, with a pricier-than relation; in
a class library you model strings, with a dictionary-precedes. Some have several such
relations — physical objects can be compared separately for weight, size, price.

Many properties like ‘<‘All these objects have a comparison operation that works largely like ‘<’ on numbers,
in that they observe certain rules — a banana can’t be curvier than itself; it is either
less curvy or not than any other banana; and if mine is less bendy than yours and
yours is less so than your friend’s, then mine must be less bent than hers. These prop-
erties are quite important in some contexts, for example if they are to be sorted into a
unique linear order.

Subtype of ‘Magnitude’
would be incorrect

How do we avoid repeating these rules every time we need to state them? It is not a
solution to say those types (or their attributes) are all subtypes of, say, Magnitude,
which packages operator < (Magnitude) with all the rules. That would mean that any
Magnitude could be compared with any other, and a String’s dictionary-position
could be compared with a Banana’s curvature. (The same reason we didn’t use sub-
types for the Jobs and Skills in Section 10.2.1 on page 395.)

Use a frameworkTreating operators like functions (as in C++), we instead make a template package:

Describe precise mean-
ing of Ordering ‘trait’

TotalOrdering is being used as a convenient package for a set of assertions that we can
apply to different types. Since we’re going to use the template many times, we take
the trouble to set out the rules precisely. Groups of useful properties like TotalOrder-
ing are sometimes called ‘traits’. With a rich enough library of traits, you can make a
wide variety of type definitions by combining several traits in ‘mix and match’ style.

Not all operators have the ‘Total Ordering’ properties. For example, when you make a
project plan, the tasks only have a partial ordering in respect of the must-precede oper-
ator. Task A must be finished before B and C, which both have to be finished before
starting D; but it might not matter which order B and C are done in. Here are some
types whose properties can be partly defined with the help of this template:

〈Orderable〉

operator < (Orderable) : Boolean

TotalOrdering

a,b,c: <Orderable> -- for any 3 members of Orderable
a<>b & b<>c & c<>a => -- that are distinct

not (a < a) -- you can’t be < yourself
& a<b or b<a -- must have strict precedence
& a<b and b<c => a<c -- < is transitive

Figure 201: Framework for Total Ordering
Templates as packages of properties 10-411

10.6.1 Template can have Provisions

Sorted List can handle
any type with Total
Ordering properties

A Sorted List keeps its items in a uniquely determined linear order. You can make
sorted lists of just about any type of object, provided it has a comparison operator
with the Total Ordering properties. This template defines what a Sorted List means,
and includes the Total Ordering properties on its items:

Number

Commodity

Banana

Total Ordering
Orderable

Orderable
[< \ heavierThan]

[< \ pricierThan]
Orderable

[< \ curvierThan]

Orderable

Commodities
can be sorted into
order by their
weight...

... or by price

Bananas can be
sorted into order
by curvature.

The usual <
operator on
Numbers has the
properties we’ve
listed.

String
Orderable Strings can also

be sorted (but
separately from
Numbers, Bananas,
etc.)

Total Ordering

Total Ordering

Total Ordering

Total Ordering

Figure 202: Many different total-ordered items

〈Item〉

{sequence}items

inv SortedList:: (n, m) :int,

items[n] < items[m]
(0<= n < m < items->size) =>

-- In a sorted list , the n’th item is < each of those after it:

Orderable

〈SortedList〉

Sorted_List_Template

0..*

op get (n:int) pre 0<=n< items->size post return = items[n]
op add (x:Item) post items includes (x)

Total Ordering

Figure 203: Sorted list framework: what kinds of items are OK?
10-412 Templates as packages of properties

This template will impose
the ordering properties
on its item type

Now, a Sorted List Template can be applied to any type; when applied, the imported
Total Ordering template will impose its properties on the type substituted for <Item>.
These fragments define different types which represent sorted lists with different con-
tent-types:

We have explicitly identified a separate new type for sorted lists of each item-type
(you can’t put a Banana in a Sorted Integer List). The template imposes on the item
types the properties of the relevant operators. Notice that we also substitute “<”,
which the Sorted List Template has imported from Total Ordering. If you put a bunch
of Bananas into a BananaListSortedByCurvature, they may end up in different relative
positions than in a BananaListSortedByPrice.

But, instead of imposing
ordering properties,

What happens if you try to model a sorted list for something like project Tasks, that
should not really be totally ordered based on must-precede? The result would be that
the TotalOrdering properties would be imposed on Task — which (i) is probably not
what you intended, since it imposes a linear order on all tasks, and (ii) could be incon-
sistent with the definitions of the must-precede operator itself.

we want to require that
substitutions conform

What we really want to do it to state that, as a prerequisite, the type substituted for
<Item> should independently have the properties described by the Total Ordering
template; if not, it is not suited to the Sorted List template.

Define a provisionWe provide a way in which the designer of a template can say “this template should
only be applied to things which you already intend to have certain properties”, in a
distinguished section of the package. The idea, called a provision, is a bit like a pre-

Sorted_List_Template
Sorted List

Sorted Integer List

Sorted_List_Template Banana List Sorted By Curvature
Sorted List

Banana
Item

[< \ curvierThan]

intItem

Sorted_List_Template
Sorted List

Sorted Task List

TaskItem
[< \ must-precede]

Figure 204: Applying the sorted list framework with substitutions
Templates as packages of properties 10-413

condition, except it typically works at design time1. Here’s an improvement of Sorted
List Template. It says that, if you have some type to which the Total Ordering proper-
ties already apply, then it is OK to make Sorted Lists of it:

Document how provi-
sions are met

In the provisions section, you can put any model to which the substituted types must
already conform2; thus, you can require that one substituted type is a subtype of
another; or that they have some relationship (Section 10.2.1, “Framework applications
are not Subtypes,” on page 395); or satisfy some predicate. The designer who applies
the template must check, perhaps with help from a tool, that all the other parts of her
model imply the properties laid down as provisions, and this should be documented
much like a refinement.

...for each application of
that template

To see exactly what this means, we must recall that all models are defined within
some package, and that models are usually structured into packages. Whoever uses
our template will probably apply it in a separate package, into which they will have to
import both the package defining our template, and the packages in which their item-
types are defined. The imported packages must provide definitions that imply every-
thing given in the provisions clause; and a conformance justification should be
attached to the application of the template (Figure 198).

In general, when you build a framework, you will need to make certain assumptions
about the things that are substituted for your placeholders in order for that applica-
tion of the framework to work as intended. Use the provisions section to document
these requirements.

1. Using Reflection, you can write generic code that does similar checks at run-time

〈Item〉

{sequence}items

inv SortedList:: (n, m) :int,

items[n] < items[m]
(0<= n < m < items->size) =>

-- In a sorted list , the n’th item is < each of those after it:

〈SortedList〉

Sorted_List_Template

0..*

op get (n:int) pre 0<=n< items->size post return = items[n]
op add (x:Item) post items->includes (x)

〈Item〉 TotalOrdering
Orderable

provided

Figure 205: Explicit substitution provisions in Sorted List framework

2. This lets us correctly describe C++ template design and usage, including the STL
10-414 Templates as packages of properties

10.6.2 Template as generic types and classes

A short syntax for tem-
plate types

Many templates exist to define a single family of types, like the Sorted Lists. It is
inconvenient to explicitly invent a new type name every time we want to make a new
sorted list of something, and then explicitly substitute that for the placeholder in the
template. An abbreviated notation covers these cases.

Placeholder name =
package name

Within the definition of the template, you can use its name as the one of the place-
holder names — e.g. the name of a type. Using UML conventions, add a inset dashed
box at the corner of the type, and list the placeholders of the template.

Banana

length : int

Models everything
required for Banana

shorterThan (b2:Banana)
= length < b2.length

Fruity Definitions

imports

Sortability

Total Ordering
Sorted_List_Template

Definitions of --

Fruity Lists

imports

provided ...

Sorted_List_Template

Length-Sorted Banana ListSortedList

BananaItem [< \ shorterThan]

Banana is a Total Ordering with [< \ shorterThan], because

• b1.shorterThan(b2) = b1.length<b2.length (definition of Banana::shorterThan)

• length is an int

• and int :: < conforms to TotalOrdering, by the definition of int

etc

Figure 206: Applying templates that have provisions
Templates as packages of properties 10-415

Implicit import and sub-
stitution

To use the template, draw a type using the name of the template package (this is also
the name of the primary template type, which the type drawn implicitly substitutes),
with the template parameters in the UML inset dashed box, or shown as explicit tex-
tual substitutions1, in this form:

Either one is equivalent to drawing:

(In C++, the equivalent would be roughly SortedList < Banana, shorterThan>.)

Sorted_List

Sorted_List

etc.
etc.

provided

Item, <

Figure 207: Defining template with convennient syntax

1. The text version also works for non-graphical things like attributes; and inline declarations
like: x: List[T\int]; UML would treat this as an uninterpreted string.

Sorted_List

Banana, shorterThan

Sorted_List [Item\Banana, <\shorterThan]

Figure 208: Alternate convenient syntax for applying template

Sorted List of Banana_shorterThan
— or some made-up name

Sorted List
Sorted_List

[Item \ Banana,
< \ shorterThan]

Figure 209: Equivalent “full” syntax
10-416 Templates as packages of properties

Nesting packages helps
further

Nested packages are quite useful when they are generic: a standard package can con-
tain definitions of several generics. A user can import the container, making the
names of the nested packages visible, enabling him to apply the generics. Package
provisions also work well with package nesting.

10.6.3 Substitution for parameterisation

Substitute for variables
and constants

You can substitute any name when you do an import; not just types and attributes,
but variables, constants, and more. A substitution can be used to parameterise a spec.
For example, if an integer constant MAX_SIZE is used within SortedList, but not set to
any value, it can be substituted when SortedList is applied:

or even:

Useful Lists

SortedList
Other Lists

...stuff...
SL_IteratorSortedList

Figure 210: Templates and nested packages

Geest

SortedList [MAX_SIZE \ 25]

Banana

Element [< \ biggerThan]

import UsefulLists

boolean biggerThan (Banana)

Figure 211: Substituting “values”: textual version

Geest

SortedList

Banana

Element [< \ biggerThan]

import UsefulLists

boolean biggerThan (Banana)

MAX_SIZE

25 : int

Figure 212: Substituting “values”: graphical version
Templates as packages of properties 10-417

10.6.4 Explicit template parameters

In general, any element
can be substituted

In general, we do not constrain which types may be substituted, since we sometimes
substitution just to avoid name clashes between multiple imports. The “<..>” markers
simply suggests places for substitution; but unmarked types can be substituted, and
marked types left unsubstituted. Any substitutable type that isn’t substituted when
imported just remains as a substitutable type in the importer.

unless explicit parame-
ters declared

Packages can be given explicit parameters. These are substitutable elements that must
be explicitly substituted by the importer (even if only by one of its own parameters).
They can be given default arguments as well.

List 〈Elem〉

List

Elem
* elems

List 〈 int〉

List 〈Date〉

List_2 〈Elem\int〉

List

Elem
* elems List_2 〈〉

List_2 〈Date〉

Figure 213: Explicit templates parameters and parameter substitution
10-418 Templates as packages of properties

10.7 Templates for Equality and Copying

A common dilemmaWhat does it mean for two objects to be equal? For one to be a copy of the other?
These questions arise often in different forms, and have an answer which is domain
independent. This section defines what they mean, and provides standard template
packages to use. These can be used to define standard copy and equality, as well as
features such as replication and caching.

10.7.1 Type-defined equality

Are these two shapes equal?

No single definition of
‘equal’

Some might say Yes, because their lengths and angles are all the same; some might say
No, they are in different positions, hence different. It all depends on what exactly you
mean by ‘equal’; and sometimes there are different degrees and kinds of it (like ‘con-
gruent’ and ‘similar’).

Identity is predefinedSo, while object identity is treated as an intrinsic property, equality has to be defined
separately for each type: there’s no automatic meaning for it. There may be several
useful equality-like relations, or none, and it’s up to the inventor of a type to define
them.

Triangles vs. colored tri-
angles

Equality is relative to type. Supposing
you define that two Triangles are equal
if the lengths of their sides are equal.
Then someone produces two members
of the Triangle type that happen to be
colored. One is blue and the other red,
but their sides are the same. Are these
objects equal?

Someone who is aware of the type Tri-
angle but not ColoredTriangle would
say yes — for her purposes, they are:
she never asks about a Triangle’s color. The less you’re interested in, the more things
look the same; the more you know, the more you can discern differences.

Supertype equality gets
tricky with subtypes

Moreover, it would be wrong to contradict our definition of equality in a subtype. Tri-
angle is the set of all triangles, colored or not, and it should be the place where you
put statements that are true about them all. Equality on colored traiangles could fur-
ther discriminate on color. But the supertype has stated that that as long as the sides
are the same, two triangles are ‘equal’.

So the equality definition typically cannot simply be inherited, and we have to do one
or both of these:

• Have a differently-named equality-like relation for every type. This isn’t as bad as
it might first sound — it forces you to think out the differences.

Triangle

equal (Triangle):Boolean
s1, s2, s3: Length

inv ta.equal(tb) ⇔
Seq{t1.s2,ta.s2, ta.s3} =
Seq {tb.s1, tb.s2, tb.s3}

ColoredTriangle
Templates for Equality and Copying 10-419

• Have a single notion of ‘equal’, but be more careful about what we promise about
it. For example, we could say that for two triangles to be equal they must have
equal sides — but not necessarily the reverse:

ta . equal (tb) ⇒ Seq{ta.s1, ta.s2, ta.s3} = Seq{tb.s1, tb.s2, tb.s3}

A template for equality The same considerations apply to almost all comparison relations between members
of the same type. (≤ and ≥, for example.) An ‘equality-like relation’ is one to which
conforms to this template:

This can be applied to Triangles in a variety of ways:

Sometimes you can make an equality-like relation that seems reasonable for all sub-
types. For example, we could define equality for shapes of any form by assuming they
all have some boolean contains(p:Point), as follows:

Shape::equivalent (s: Shape) =
-- if there is some vector, offset (conceptually, the difference in their positions) for which
Vector->exists (offset |

-- any point is in “self” exactly when (point - offset) is in s
Point->exists (p | self.contains(p) = s.contains (p-offset)))

While this is more general, it may still fail to adequately address colored points.

Cannot just look at cur-
rent apparent attributes

A user of a graphical editor can make a Group of other
Shapes, which then behaves as one Shape, for the purposes
of moving it around etc. It’s also possible to ungroup a
Group, restoring the individual parts. That means that the
two examples shown here prior to ungrouping, though
equivalent by the above definition (i.e. looking the same), are
“significantly unequal” — that is, unequal in a sense that is
likely to be important to their users. Similarly, a rectangle
may happen to be temporarily shaped like a square; how-
ever, stretch it horizontally, and stretch a true square horizontally, and very different
things happen.

a.eq(a)
a.eq(b) ⇒ b.eq(a)
a.eq(b) ∧ b.eq(c) ⇒ a.eq(c)

–– reflexive
–– commutative
–– transitive

a, b, c : T, 〈T〉

EqualityRelation

〈eq〉

Figure 214: Template for equality relations

EqualityRelation Triangle
T

[eq\equal] [eq\congruent]
EqualityRelation

T

ColoredTriangleEqualityRelation
T

[eq\coloredEqual]

Figure 215: Defining different equality relations

ungroup
10-420 Templates for Equality and Copying

Equality should con-
sider dynamic behavior

Equality-like relations need to be considered on a per-type basis; they should take into
account dynamic and mutative behaviour.

10.7.2 Copy

Meaning of copy
depends on meaning of
equality

It’s often necessary in an action spec to require that a new copy of an object is made —
that is, one that is equal (by some definition) but not identical. Just as equality must be
defined separately per type, so must copying. To copy a Triangle means copying its
three sides; to copy a Grouped collection of Shapes means copying the constituents of
the Group.

Template for copy A copy operation can conveniently be defined provided your chosen comparison oper-
ator is a valid equality relation, by using this template:

e.g. 2 deep/shallow copy
of a group of shapes

This copy definition could be used on Groups with either of two different equality
operators: sharedShapesEq — two group objects are considered equal provided they
share the same shapes; and equivShapesEq — the shapes themselves need not be
shared, but have to be equivalent (for some definition of equivalent).

Unlike equality, the name of the operation doesn’t need to be changed across subtypes
for copy. If you only know you’ve been given a Shape, you know that getting a copy
will give you the same visible result; you have no expectations about anything more,
since you have no information on type-specific operations. However, a subtype of
shape would have to copy in accordance with its specialized definition of the equality
operator; so, colored shapes would have to copy the color as well.

CopyDefinition

〈T〉
〈eq〉

EqualityRelation

copy

Group
sharedShapesEq

CopyDefinition
eq\sharedShapesEq

E.g.:

T::copy () : T
post: return : T*new -- returned must be a new member of T

& return.eq (self) -- and must be “equal” to the original
& not return = self -- but cannot be the same object (redundant)

equivShapesEq

Figure 216: Template for “copy” with prerequisite of “equality”
Templates for Equality and Copying 10-421

10.8 Package semantics

Patterns from domain-
specific to modeling con-
structs themselves

Template packages define the meaning of recurring patterns of models and designs;
but the idea extends to the basic modeling constructs themselves. If two designers
draw a pair of type boxes, with a 1-1 line between them, they both have the same
meaning — except for the specific domain they work in; similarly for using subtype
arrows; or a state transition; or superstates. And, if they put the same stereotype on
two elements, they mean the same thing (presumably).

All can be done with
templates

Templates can be used to define fundamental modeling constructs, as well as any
extensions, in Catalyisis. This includes associations, associative classes, qualifiers, and
even types and subtypes. Of course, most of these will have convenient syntactical
forms, such as those the UML provides. This section describes how new notations and
semantic extensions can be defined precisely in Catalysis.

10.8.1 Interpreting package contents

Value precise visual rep-
resentations

We’ve already observed that the diagrams we draw in UML could as easily be written
in the form of textual statements. The advantage of the diagrams is that they are easier
to find your way around, and to grasp as a whole. Presumably they put your visual
processing capabilities to work on the problem, leaving your linguistic processor free
to mouth punchy-sounding businessspeak.

..but some things must
be in text, and all should
have text equivalents

But diagrams can’t express everything you want to say, and so for details such as
invariants and postconditions, we usually resort to text.1 The pictures themselves can
be converted to textual statements in a similar style. So the entirety of a model can be
thought of as a collection of assertions. A package is a chosen set of such statements;
while importing just means that you are including the statements from one package
within another.

Semantics means being
able to reducing nice
notations to basics

It’s possible to write down a precise set of rules (that is, a program) for converting
each diagram element into text. And given any complex piece of text like an action
specification, with its pre and postconditions and odd constructs like @pre etc, it is
possible to write a set of rules for converting it into a longer set of statements in terms
of a much more basic set of ideas. These sets of rules are called the semantics of the lan-
guage.

Users don’t need that
usually; tools do

Books like this one, that explain a notation and how to use it, are informal versions of
the semantics: informal in the sense that they aren’t written as an executable program,
and include ambiguities and inconsistencies. No-one has yet written a full formal
semantics for UML, Catalysis, or Objectory, though several projects are under way.
Still, there is a wide range in how precisely their various visual notations are under-
stood, and how much re-interpretation will be required by practitioners. The closest
things most people see in practice are the consistency-checking facilities of various
support tools. Unfortunately, the different tools have slightly different ideas about the
semantics, which is why it would be nice to get one agreed.

1. Though Stuart Kent has shown how to move these assertions into the pictorial domain.
10-422 Package semantics

What has been written is a description of the abstract syntax: that is, setting out what
constructs there are and some of the constraints on them. These are sometimes called
‘metamodels’. However, they are far from being a full semantics.

10.8.2 Stereotypes and dialects

Too many visual symbols
get confusing

Another disadvantage of a pictorial notation is that there aren’t enough symbols to
cover all the subtly different things we want to say. You can only invent so many vari-
ants of boxes and lines and round things; and if there are too many of them, newcom-
ers soon despair of remembering what they all mean.

Stereotype tag tells
meaning

We use UML stereotypes for this reason. A stereotype is a tag that you can attach to any
box, arrow, or other pictorial construct, that tells you exactly which meaning is
intended. In other words, it tells you which translation rule to use from the semantics
(assuming there is one).

You can stereotype indi-
vidual elements

Stereotypes can be used on an individual model element as an alternate syntax to
apply a framework (similar to Section 10.6.2, “Template as generic types and classes,”
on page 415). The shorthand rules are:

• If a type has the same name as its package, then using that name as a stereotype
on a target type means: import the package, substituting the target type.

• If an attribute has the same name as its package, then using that name as a stereo-
type on a target attribute means: import the package, substitute the target
attribute and its source type; similarly for other elements.

• Just as with other template shortcute, sterotype application can use additional
explicit substitutions: «name[x\a, y\b]», or provide parameters defined on the
template: «name〈a,b〉».

Better to to package
default meanings, or a
family of stereotypes

However, freely adding individual stereotypes leads to inconsistent models. Rather
than attach stereotypes to every construct in the picture, we establish a set of defaults:
a particular default meaning for each pictorial element without stereotypes, or a con-
sistent family of stereotypes. This mapping is a called a dialect. You can specify which
dialect a package should use, by quoting the dialect in the package tab. Naturally, con-

const

Dummy

ClientPackage

const

Person

ss# «const»
-- a “set-once” const
inv effect -- no action can change a non-null value
post: const@pre <> null =>

const = const@pre

-- same as:
import const

[Dummy\Person
[const\ss#]]

Figure 217: Defining meaning of stereotypes using templates
Package semantics 10-423

sistent dialects will simplify things; but, if the dialects have a common underlying
translation (see Section 10.8.3), then you can even use custom dialects best suited to
each portion of the problem:

Use this facility conser-
vatively

Stereotypes make the language extensible. This can be a disadvantage or an advan-
tage, depending on whether you make your money by using the notation, or by pon-
tificating about it. Every self-styled expert has their own pet variants on the basic
ideas; all of which are, of course, improvements. It is widely agreed, though, that
UML is by no means the last word on modeling languages, and that it would be not
possible nor appropriate to make it entirely fixed at the present time.

10.8.3 Examples of semantic rules for dialect

A dialect is a package Just as a final complication (or, perhaps, as you may have guessed by now): the dia-
lects and the semantic rules themselves are of course defined within packages —
though as we’ve said, we’ll have to consider them virtual until further notice. But here
is a short example, just to show the idea.

Network
«Catalysis»

Customer Care
«Rose UML»

Performance Monitoring
«Rose OMT»

Catalysis meaning of
state, attribute, assoc,...
and std extension stereotypes

Figure 218: “Dialects” of stereotypes and other notations in packages
10-424 Package semantics

Its semantic rules are
nested templates

Semantic rules are expressed as templates; a dialect contains nested packages for its
semantic rules. Each rule translates a slightly higher-level notation into its equivalent
lower-level one. Here, any line between two type boxes, with an explicit stereotype on
it, means the same as “inverse attributes”:

Unadorned notations are
also defined

So what should an association line mean if it has no stereotype tag? To define a
default, just identify the untagged feature with the appropriate tag1:

Catalysis

〈A〉 〈B〉
〈y〉

〈x〉
1

1

association --1-1

inv A :: self.y:B and self.y.x = self

«association»

-- Wherever you see two boxes joined by a line marked «association», ...

-- ... that means that for any member of type A called self,
self.y will be a member of type B, and self.y.x will take you back to self

Figure 219: Template for: what is an “associaton”

1. We will not generalize to visual grammars, ambiguities, etc.

Catalysis

〈A〉 〈B〉

association --default

-- Wherever you see two boxes joined by an unstereotyped line ...

-- ... that means the same as with this stereotype

〈A〉 〈B〉
«association»

— another definition within the Catalysis package

« »

Figure 220: Template defining meaning of default notation
Package semantics 10-425

Here, then, are some
equivalent ways to
define an association.
The first uses the high-
est level notation: a
line. Second, the pat-
tern notation for
applying a template.
Third, a straight tex-
tual form; and lastly,
the “expanded” result
of any of the previous
forms.

Seriously advanced topic 10.9 Down to Basics with Templates

10.9.1 Template packages to represent Inference Rules

Inference rules can be
packaged

Templates can be used to represent general facts that are
useful in understanding or reasoning about types. They
can be presented as diagrams or as boolean expressions.
For example, down at the very basic level, we can write
things like or-definition. It means that, if ever you happen
to find an expression involving ‘or’ and two Boolean
expressions on either side of it, you can match them to

<A> and , and rewrite the whole thing using not and and.

Car

engine: Engine

Engine

drives: Car

inv Car:: self.engine.drives = self
& self.engine: Engine

(a)Short Syntax Car Engineengine
drives

(b) Standard pattern syntax

Car

engine: Engine

Engine

drives: Car

(d) Expanded form

association
T1 [r2\drivenBy] T2 [r1\drives]

(c) Textual form
package MyCarDefs
type Car type Engine
import association [T1\Car [r2\engine],

T2\Engine[r1\drives]]

1
1

Figure 221: Interpreting association via template definition

A : Boolean

not (not A and not B)

B : Booolean
A or B

or-definition 〈A, B〉
10-426 Down to Basics with Templates

Here are a few others:

Even inductionIt is sometimes useful, with these kinds of rules, to use placeholders that themselves
take arguments (which may sound mind-bending at first; but this is as bad as it gets):

To show cricket is bor-
ing...

We’re now outside the realm of practical daily application, for most software develop-
ers. But just briefly, in case you’re interested: the induction rule can be used to verify
statements involving a progression. For example: to prove that all cricket scores are
boring:

• A score of zero is clearly boring, since nothing has happened:

A score of 0 is boring.

• Given any score, whether it is 42 or 103 or anything — call it x — then a score of
x+1 is bound to be more boring than x. This is because x+1 can be achieved only
after more cricket has occurred, which is clearly incrementally boring. So if x was
boring, then x+1 definitely will be boring too. We can write this as an inference of

A and B

B

and-elimination 〈 A, B〉

-- If you find a situation
where ‘A and B’ is true,
then you can write B
as a statement by itself

and-symmetric 〈A, B〉

A and B

B and A
-- If you find a situation
where ‘A and B’ is true,
then you can also write
‘B and A’

Boolean

Figure 222: Templates for typical inference rules

P [0]

P [n]

P [n + 1]

P [i]

Induction 〈P [n], i 〉
-- Given some expression P involving some subexpression,

-- If you know that P is true for 0, and

-- If you know that it has already been determined

then it will also be true for the next,

-- then you know that P is true for it

i : Integer and i >= 0

that if P is true for any given number,

n : Integer

-- and if you choose any positive number you like,

Figure 223: “Induction” template
Down to Basics with Templates 10-427

which we have satisfied ourselves; we don’t need to give it a name, since we
won’t be needing it long:

• Let’s choose a particular score, say 200. You will agree that:

200 : Integer and 200 >= 0

• Now at this stage, all the requirements of the Induction template have been met,
with these substitutions:

P [<x>] --> A score of <x> is boring.
i --> 200

• The Induction rule tells us that we can now safely conclude:

A score of 200 is boring.

 Note that negative cricket scores might yet prove interesting.

10.9.2 Template packages for Primitive Types

No real ‘primitive’; some
may be ‘pre-defined’

The primitive types that we use in every model and design — boolean, arithmetic,
sets, lists, and dictionaries — can be defined in basic packages, imported by all others.
These types are most easily defined in an axiomatic style — that is, by simply stating a

A score of x is boring.

A score of x+1 is boring.

Figure 224: Clearly, cricket is boring
10-428 Down to Basics with Templates

number of fundamental facts (‘axioms’, mathematicians call them) that are true about
them, from which other facts follow. For example, the package defining boolean oper-
ators contains:

Predicate logic defined in
terms of basic boolean
operators

We can create another package that imports this one, defining ‘Predicate Logic’, which
gives the meaning of the quantifiers “for all x, [som e expression about x]” and “there
is an x such that ...”. A package about Sets comes next, and together with Predicates is
imported to help define the rules of arithmetic. Other kinds of collection (lists and dic-
tionaries or maps) can also be defined with the help of sets and predicates.

Propositions

 inv true

OR-intro

〈

P, Q

〉

P

P or Q

-- in any context where expression P is true,
-- so is P

or

 any other expression

Cases (

〈

P, Q, R

〉

P or Q

p

R
Q

R

-- Suppose that where this is applied, we happen
to have two template packages, one of which says

 “if you can ascertain P is true,

-- and another that says that if
you know Q, you can believe R:

-- and suppose you’ve also got, just as an invariant,
something that says “either P or Q is true” (even if
we’re not sure which):

--then you can be sure that R is true:

R

-- These invariants are always true:

 inv false = not true

AND-elim

〈

P, Q

〉

P and Q

P
-- in any context wherean AND is true
-- so is just one of its subexpressions

P

not P

-- Suppose in some
context, you can
find a match for both
a boolean expression
and its opposite:

Q

-- Well, anyone who
would believe both
would believe
anything:

Contradiction

〈

P, Q

〉

All the parameters
in the nested templates
are to be matched with
expressions (rather than
types), so should be
marked

«

expression

»

.

And-defn

〈

P, Q

〉

P and Q

not (not P and not Q)

then you can believe R”

Figure 225: Propositions: a packaging of boolean operators
Down to Basics with Templates 10-429

10.9.3 Layered Semantics

Then objects, types

The ideas of objects and types can also be defined in this style. Membership of a type
is implied by observance of all the constraints (invariants, postconditions, etc)
imposed by the type definition.

Can support different
modeling languages,
domain-specific exten-
sion, ...

In this fashion, we can build up a hierarchy of basic types and operators; not just the
syntactic definitions, but their meanings too! And, since the basics can be different for
different modeling and programming languages — not all have exactly the same idea
of what the modulo operator means, for example — different packages can be sup-
plied for users of different dialects, and referenced as stereotypes.

Example of layered pack-
ages

In fact, the entire semantics of the modeling and programming languages that you use
can be defined in this way: choose your basic modeling package on which to build
your specification; choose the Java package to be able to check that your code matches
your spec. A typical hierarchy for modeling might be:

Most users should not
care

But for most users, it will not be necessary to know about the details of these basics,
any more than you bother with the formal semantics of your programming language.
But it is nice to know that this foundation can be made explicit, and that the details
can be made a matter of choice.

And of course, most of these packages — especially the complex semantics ones — are
virtual at present. But some research projects, notably Mural [Jones et al 1991] and
Larch [Leavens et al] have indeed built up the packages of primitives. (The example
given here comes from Mural.) [Wills 1992] contains work on the definitions of object
types in this way.

Propositions
Predicates

Value types
Set basics

Collections

Integers

Object types

Collaborations

Refinement

Components

(mutable)

Figure 226: No primitives: full layering via packages and templates
10-430 Down to Basics with Templates

A few will want the
reuse of specifications
and proofs

One interesting feature of these packages is that they define a lot of “if you already
know that this fact is true, then you can also assume that” rules. They are talking
about the fundamental properties of the expressions we can write: in the arithmetic
package for example, there will be something that tells us that x+y is the same as y+x,
a fact that it wouldn’t be unusual to use in programming. In the extreme case of safety
critical systems, designers can use these rules (and others like them dealing with pro-
gramming language statements) to check that their programs fulfill robustness crite-
ria, and indeed meet their specs; and build higher-level rules around them, checked
once and then institutionalized as templates.

Quite helpful for tools

For the writers of support tools, these basic packages are a way of discussing and
defining the exact details of the languages they support mean. This should have the
benefit of making them more interoperable, and should allow them to define more
sensible consistency checks. But for most of us, the importance of this level of detail is
secondary, arising from its relevance for tool designers.

10.9.4 Standard packages

 Modeling and program-
ming languages

 We have seen that nested packages can be used to define a related set of stereotypes
e.g. those needed for a particular method or language.

catalysis.spec.lang

There is a Standard Catalysis package that is imported automatically into all others. It
defines numbers, logic, and other basics. It is called catalysis.spec.lang. If you explic-
itly import any other *.spec.lang packages, catalysis.spec.lang is no longer automati-
cally imported.

Java Beans

Property
short forms, gets,

Event

...short forms for events,

language independent
models of component

specs pkg

define “conformance” of design to spec

design including c++ specifics

import the C++ package

import the component
specification package design pkg

registration, listeners...

sets, vetos, ...

Java

...interface, class
exception

C++

const
def. of “changed”

Pointer

...deref, address, etc.,

Catalysis

...stuff...

Figure 227: What can be achieved with standard packages
Down to Basics with Templates 10-431

catalysis.java.lang, catal-
ysis.javabeans.lang

There are standard packages for various programming languages, enabling you to
embed code in Catalysis designs. They are called catalysis.java.lang, cataly-
sis.cpp.lang, catalysis.eiffel.lang and catalysis.smalltalk.lang. These packages define
the valid syntax and semantics of programming constructs in these languages.
10-432 Down to Basics with Templates

10.10

Summary of model framework concepts

10.10.1 Model framework definition and application

A model framework is a generic package containing both normal and placeholder
definitions. A placeholder is a name which can be substituted when the framework is
used. Each use or ‘application’ of the framework provides its own substitutions of the
placeholders. Placeholder names are distinguished with

〈

angle brackets

〉

. The names
of attributes and associations of placeholder types are themselves placeholders. (This
is not automatically true of actions.)

A framework can be applied just by quoting it in a model:

In the substitution list, an attribute or action placeholder can be referred to by the
qualified form

TypeName :: attributeName.

For placeholder types and actions, substi-
tution can be shown pictorially with arrows:

If the framework has a provisions section, an application is only considered meaning-
ful if the requirements are already conformed to, prior to the applicaton, with the
same substitutions. A justification should be attached to each application, document-
ing how the requirement is met.

10.10.2 Composition of definitions

Recall that every model can be regarded as a list of individual statements: the pictures
can all be translated into formal text. A template package is a collection of statements;
when it is applied, the statements (subject to substitutions) are added to the model.

Each type and action in the model is defined by all the statements made about it in its
various appearances. Some, all, or none of these may come from template-applica-
tions. All these statements compose following the standard composition rules.

Framework_name [placeholder \ substitute, ...]

Figure 228: Textual framework application

Framework_name [placeholder \ substitute, ...]

TypePlaceHolder Type name

[substitutions for this type]

Figure 229: Graphical framework application
Summary of model framework concepts 10-433

10.10.3 Usefulness of Model Frameworks

Model frameworks can be used to express relationships that straddle type bound-
aries, and to encapsulate relationships made up of a collection of types, associations,
and actions. They are a powerful tool for abstraction, and a useful unit of reuse.
10-434 Summary of model framework concepts

	Chapter 10 Model Frameworks and Template Packages
	10.1 Model framework overview
	10.2 Model frameworks of types and attributes
	10.2.1 Framework applications are not Subtypes

	10.3 Collaboration frameworks
	10.3.1 Using Invariant Effects in Collaboration Frameworks
	10.3.2 Applying a collaboration framework
	10.3.3 Using one Framework to build Another

	10.4 Refining frameworks
	10.4.1 A requirement
	10.4.2 A collaboration refining the requirement
	10.4.2.1 Documenting the refinement

	10.5 Composing frameworks
	10.5.1 Building systems from collaborations

	10.6 Templates as packages of properties
	10.6.1 Template can have Provisions
	10.6.2 Template as generic types and classes
	10.6.3 Substitution for parameterisation
	10.6.4 Explicit template parameters

	10.7 Templates for Equality and Copying
	10.7.1 Type-defined equality
	10.7.2 Copy

	10.8 Package semantics
	10.8.1 Interpreting package contents
	10.8.2 Stereotypes and dialects
	10.8.3 Examples of semantic rules for dialect

	10.9 Down to Basics with Templates
	10.9.1 Template packages to represent Inference Rules
	10.9.2 Template packages for Primitive Types
	10.9.3 Layered Semantics
	10.9.4 Standard packages

	10.10 Summary of model framework concepts
	10.10.1 Model framework definition and application
	10.10.2 Composition of definitions
	10.10.3 Usefulness of Model Frameworks

