

 Chapter 9 Composing Models and Specs

Combining modeling elements packages and structuring them
Outline

Why composition rules are
important

When building models and specifications, it is very important to be able to com-
pose them with a clearly defined and intuitive meaning. This makes re-use and
learning easier, since the whole can understood by understanding the parts, and
then re-combined in a predictable way. All descriptions in Catalysis can be com-
posed, from attributes and actions on a type, to entire packages.

A package is always built upon others that it imports; they provide the definitions
of more basic concepts that it uses — all the way down to utter primitives like
numbers and booleans.

A package augments and extends the material it imports. It may import several
packages, so that their different definitions are combined. In many cases, the dif-
ferent sources of material will deal with some of the same things.

There must therefore be clear rules whereby the definitions that can be found
within a package are ‘joined’ with others.

This chapter deals primarily with how to use packages in the building of others,
and how to interpret the resulting compositions; and discusses some nuances of
specifying and composing specifications of operations in the presence of excep-
tions.
© Desmond D’Souza & Alan Cameron Wills 1998/May/11 11:29 9-367 of 388

9.1 Sticking pieces together

Every method of development must be good at building its artefacts — models,
designs, plans, or whatever — from smaller pieces. This is because (a) we can only get
our heads around a small chunk at a time, andcan only build big things by sticking
small ones together; (b) parts are more likely to be reuseable if they can be stuck
together in different ways.

Much of the rest of this book is about building from parts. We’ll discuss building mod-
els from frameworks, and building software from components. The software has its
own intricate ‘plugging’ mechanisms; this chapter is about the much simpler matter
of combining models, as used in type specifications and collaborations. What we are
putting together here is specifications and high-level designs — so this is a design
activity, rather than a systems integration one.

There are three specific situations for composing models:

• The documentation chapter (Chapter 6, p.237) says that we can present a large
model as a series of smaller diagrams. That’s great for a guided tour through the
model; but an implementor needs to see everything relevant to each action or
type. So we need some exact rules by which the diagrams recombine to make the
big picture.

• The packages chapter (Chapter 8, p.331) talks about one package importing oth-
ers. We need some rules governing how to combine the definitions from the dif-
ferent sources. (The frameworks chapter (Chapter 10, p.389) takes this idea even
further and combines generic models.)

• Our components (Chapter 11, p.437) can have multiple interfaces: that is, they
must satisfy the expectations of several different clients, who might or might not
know about each other. Each interface is defined by a type; therefore we need a
way of working out what it means to satisfy two or more types at the same time.

This chapter deals with the basic mechanisms of combining the pieces, used in differ-
ent ways by all of these.
9-368 Sticking pieces together

9.2 Joining and subtyping

In Catalysis, we use two different ways of composing specifications:

Joining combines two views of one type; each view may impose its own
restrictions on what the designer of the type is expected to
achieve.

Joining happens when two views of the same type are presented
in different diagrams — they might be in the same package or
imported from different ones.

Joining is about building the text and drawings of a specification
from various partial descriptions.

Type intersection combines two specifications, each of which must be observed by
an object that belongs to the type.

Subtyping happens when a component or object must satisfy
different clients. Each specification must be satisfied indepen-
dently of the other.

A subclass should generally conform to any type(s) its super-
classes claim to implement (except C++ ‘private’ subclasses).

A type specification defines a set of instances — the objects that
satisfy that spec. Subtyping is about forming the intersection of
two sets: those objects that happen to satisfy both specifications.

We know that the behavior of anything from a very simple object to a large distrib-
uted system can be specified with a type definition: which has actions specified in
terms of a model.

The rules for Joining and Subtyping can be summarised as operations that you per-
form on the model:

Join 1. Collect the attributes and associations from both views into
one picture.

2. AND invariants from the two views.

3. Collect the action specs from both views into one list.
For any action that has specs from both views:

4. AND any preconditions

5. AND the postconditions

Type intersection1. In each type specification, AND its invariants with each pre-
condition in each action-spec; and also with each postcondition.

2. Form a model with the attributes from both specs, and with
actions from both specs.

3. For any action that is defined in both specs, rewrite its spec as
pre pre1 or pre2 post (pre1=>post1) and (pre2=>post2)
(using the versions after ANDing with invariants).

This chapter focuses mostly on the Joining operation.
Joining and subtyping 9-369

9.3 Type intersection — combining views

Type intersection means conforming to the expectations of more than one client, each
of whom has a self-contained type specification that they are expecting you to con-
form to. Any system that has more than one class of user has this problem — each of
them has their own view.

In software, the pluggable components that we want to build need the same ability.

From User A’s point of view, no matter what else Our Component does, it must
always conform to the expectations set by Type specification A; and similarly for B.

Supposing we want to design such a component, how do we go about it? In the most
basic form of OO design, we use our type specifications as the basis for the models.
But here there are two; and two sets of actions.

Here are the basic steps for combining small types whose models are a few attributes
each:

1. Combine the two lists of attributes.

• If any attributes from the two types have the same name, determine whether it’s
accidental, or because the name is inherited from a common supertype. If the
former, rename one of them — it won’t make any difference to the meaning of the
type; but if inherited, then they really do mean the same thing.

2. Merge the two lists of operations. If the actions are all of different names, that’s
easy.

For any operation that has specifications from both types:

• Take the precondition from each type and AND it with the invariant from the
same type;

• Take the postcondition from each type and AND it with the invariant from the
same type;

• Write the new operation specification as:

pre pre1 or pre2
post (pre1=>post1) and (pre2=>post2)

Contract
Type A

action - - -
action - - -

Contract
Type B

action - - -
action - - -

User B
Software or
Liveware or
Hardware ...Our Component

User A
Software or
Liveware or
Hardware ...

Figure 175: Component must satisfy multiple views
9-370 Type intersection — combining views

Why do the invariants have to be absorbed into the action specs? Because it’s the pre/
postconditions that are the real behavioral spec: an invariant is just a way of factoring
out common assumptions made by all those within its own context. Outside that con-
text, the same common assumptions might not apply, so we have to make them spe-
cific in any pre/posts we want to move out of the context. Once all the actions have
been combined, it will probably be possible to factor out a common invariant that
occurs in all the combined operation specs.

Combining larger types. If we are talking about two three-hundred-page documents,
this may take a little longer. This is covered properly in the components chapter
(Chapter 11, p.437), but the essence is the same on a larger scale:

• Build a new model sufficient to include the state information from both types;
verify that this is so (and assist the testing team), by writing two sets of abstrac-
tion functions (§7.4, p.290) that will retrieve any piece of information from your
component back into the language of each type.

• Then build your component with façades, each of which is dedicated to dealing
with just one of these clients (§7.7, p.315), and supplies the actions it expects,
translated from your component’s internal model.
Type intersection — combining views 9-371

9.4 Combining packages and their definitions

Combining importees
and importer

So far, we’ve rather glibly talked about the way definitions are augmented and com-
bined when packages are imported. This section looks in more detail at how the mate-
rials from imported packages are combined with each other, and with the additional
material already in the importer.

9.4.1 Definitions and joins

Multiple appearances... What exactly does a type box in a diagram mean? What does it mean if boxes claiming
to represent the same type appear in different diagrams in a package? Or are imported
from different packages into one?

... within the same and
imported packages...

Within one package, boxes headed with the same type name may appear in different
parts of the same diagram, and in different diagrams in the package, and in textual
statements in the Dictionary or the documentary narrative. Some of the diagrams in
the (unfolded) package may have been imported from other packages, but that makes
no difference. Whatever the source of the multiple appearances, it is always possible
to take them all and join them into a single type definition.

... observe same join
rules

The rules are the same for all kinds of multiple appearance, whether multiple dia-
grams in one package, or definitions from multiple packages. The operation of com-
bining them is called ‘joining’. Frequently, the individual splinters don’t denote any
type, taken on their own: it’s only when you put them together that they define a set
of objects characterised by a particular behavior.

Different kinds of definition that you can find in a package each have their own join-
ing rules. This section describes the rules for each kind.

9.4.2 Joining packages

Join packages by joining
all their contents

The join of two packages is formed by forming a bag of all the statements and defini-
tions from both packages, and then joining those definitions with the same names
(after any renaming, as discussed in Section 9.6, “Name mapping on import,” on
page 380). This is applied to any nested packages, along with everything else.

A package’s full unfolded meaning is got by joining its imports to its own contents.
There are specific rules for joining different kinds of definitions.

Type specifications are joined by joining their static models and their action specs.

9.4.3 Joining static models

Join a type To join multiple appearances of a type into a single type definition:

and invariants • and all invariants. The type has an effective invariant which is the conjunction of
all the separate ones.
9-372 Combining packages and their definitions

• Take all the attribute names from the appearances and put them into a set; the
completed definition should have the same set of attribute names. Include associ-
ation names and parameterised attributes in the same way.

Combine attribute defini-
tions

• For each attribute (or association) name in an appearance, consider any type con-
straint to be an invariant. So “count:Integer” just means “for any object x of this
type, x.count always belongs to the type Integer”. The completed type should
contain an invariant that ands these together. So:

count : Integer and count : Number => count : Integer
-- all Integers are Numbers anyway

thing : Boolean and thing : Elephant
— contradiction – can’t join these definitions, unsatisfiable spec

connection : Trasmitter and connection : Receiver
=> connection:Transceiver — which is a subtype of both of these types

Include parameterized
attributes

• If the attribute has parameters (similarly, if the association has qualifiers), you can
just write the attributes as overloaded functions, provided the parameter types
don’t overlap. So price (CandyBar):¢ and price(FuelGrade):$ can remain as two
attributes, since there is no CandyBar that is also a FuelGrade (yet).

The general rule is that you first convert the attribute types into invariants of the
form:

(param1 : ParamType1 and param2 : ParamType2) => attribute : ResultType

Anding expressions like this together gives a result that says “if you start with
parameters like these, you get this kind of result; if you start with parameters like
those, you get that kind”. If an argument ever belongs to both parameter types,
then the result should belong to both result types.

(All of which conforms to the usual contravariant rules.)

9.4.4 Joining action specifications

Join actions specs by sep-
arating anding pre/post

Action specifications are joined according to a covariant rule, that permits any appear-
ance of a type to reinforce preconditions and invariants. The rules apply both to oper-
ations or actions localized to particular types, and joint actions.

Treat actions with different signatures (names and parameter lists) separately.

For each action signature, take the individual pre and postconditions, and:

• and the preconditions;

• and the postconditions;

• and the rely conditions;

• and the guarantee conditions.

Each spec imposes a
restrictive precondition

ANDing preconditions means that, in different packages or diagrams (or in different
parts of your narrative) you can use preconditions to deal with different restrictions,
confident that these restrictions will apply regardless of what is analyses in other
packages. Under Fault Management, we can say that a call can be made only if the
Combining packages and their definitions 9-373

line is not under maintenance; under Billing, we can say that a call can be made only if
the Account associated with the Line is not in default. Each package has no compre-
hension of the other’s constraints.

...and a guaranteed con-
sequence

ANDing postconditions means that, in different packages, you can use postconditions
to deal with different consequences of an action: under Billing, you can say that a
charge is added to the associated Account; under Fault Management, we can say that
the count of successful calls is incremented.

Similarly concurrency:
rely and guarantee

ANDing rely conditions means that in different packages, you can define different
invariants the designer should be able to rely on while the action is in progress; AND-
ing guarantee conditions allows you do separate invariants your action will preserve.

Example Thus, the two separate specs could be:

action Agent::sell_life_insurance () action Agent::sell_life_insurance ()
pre: c.isAcceptableRisk pre: self.territory->includes (c.home)
post: c.isInsured post: territory statistics updated

The combined spec as the result of joining the two would be:

action Agent::sell_life_insurance (c: Customer)
pre: c.isAcceptableRisk and self.territory->includes(c.home)
post: c.isInsured and territory statistics updated

Advanced Topic 4.4.1 Two styles of writing and composing action specs

Rationale for the join rule The reason for using these join rules for actions is that each action specification could
have been written without knowledge of the other specification, or of its attributes.
When I write my preconditions I do not know what other preconditions you may
want to impose on that action; we both should be confident that, when our separate
specifications are joined together, each can rely on its restrictions still being in force.
Similarly for postconditions.

Sometimes you want
conditional guarantee,
not restriction

Sometimes, however, you want to write a specification that makes guarantees for cer-
tain cases, where those cases may overlap with others. In this case you can use an
alternate style for writing the spec: do not use an explicit precondition, but describe
the case within the postcondition itself. Using the same composition rules:

Omit the explicit precon-
dition

action Stack::push (in x, out error: Boolean)
post: self.notFull@pre => self.top = x and error = false

-- provided I was not full beforehand, x will now be my top element

This spec tells us what happens in the preferable case, and might on its own, be all we
need. But perhaps, in another part of your spec, you want to write down what would
happen in the other case:

action Stack::push (in x, out error: Boolean)
post: self.full@pre => error = true

-- provided I was full beforehand, you will get an error flag.
-- I’m not telling you what might happen to my contents!
9-374 Combining packages and their definitions

The effect of the join is
now different

The joined spec would make one guarantee for one case, and another guarantee for
the second case (the two cases happen to be disjoint in this example).

action Stack::push (in x, out error: Boolean)
post: (self.notFull@pre => self.top = x and error = false)

and (self.full@pre => error = true)

It is possible to compute a resultant precondition from this specification:

action Stack::push (in x, out error: Boolean)
pre: self.notFull or self.full
post: self.notFull@pre => self.top = x and error = false

and self.full@pre => error = true

Hence, these two different styles of writing specs can be used to accomplish these two
different goals of composing separate specifications. Some more details on dealing
with exception conditions in specifications appears in Section 9.7, “Action Exceptions
and Composing Specs,” on page 382.

Advanced Topic9.4.5 Joining type specifications is not subtyping

Types are sets of objects
denoted by a spec

A type specification denotes a set of objects — all objects that meet that specification
are members of that type. Some ways of combining type specifications correspond
directly to operating on the corresponding sets of objects; ’join’ does not.

A join combines two
type specs, not two types

When you join type specifications, you are combining the descriptions themselves,
not directly the types (sets of objects) they specify. In the usual case two type specifica-
tions are joined when a package, P1, imports two other packages, P2, P3, which both
provide separate specifications (Ts1 and Ts2) for the same type, T. Within package P1,
the resulting specification of type T is the specification that results from a join:

Ts1 join Ts2

Subtype is set intersec-
tion of objects

In contrast, when you define a subtype, you are defining a subset of objects; when you
combine multiple supertypes, you are intersecting the corresponding sets. The rule
for intersecting action specs is quite different than the rules for ’join’. You can write a
different expression,

T1 * T2

which represents the type of objects that
conform both to T1 and also to T2 — that
is, the intersection of the two sets. Type
intersection or subtyping is a “no sur-
prises” combination. Anything you’re
guaranteed by one spec can’t possibly be
taken away by the other. It is what hap-

pens when you have multiple supertypes which both provide specs for the same
action; or when you combine a supertype action spec with a corresponding spec in the
subtype. If we had the following explicitly declared specs:

T1::m pre: A post: X
T2::m pre: B post: Y
T3::m pre: C post: Z

T1 T2

T3 This type is
T1 intersect T2 intersect (its own properties)
Combining packages and their definitions 9-375

Each complete action
spec is ANDed with the
others

Then the resulting equivalent spec, after combining with the supertype specs, on the
type T3 is obtained by ANDing all three pre/post pairs1:

T3::m (pre: A post: X) and (pre: B post: Y) and (pre: C post: Z)

Which is equivalent to:

T3::m pre: (A or B or C) post: (A => X and B => Y and C => Z)

Subtype means ’no sur-
prises’

An implementation of the resulting operation spec is guaranteed to meet the expecta-
tion of anyone who expected either T1 or T2. An invocation of ’m’ is valid anytime A
is true (since that would make (A or B or C) true), and is guaranteed to result in X (and
perhaps also Y, Z; depending on whether B or C were also true).

While ’join’ can impose
restrictions

When you join two type definitions, you are not usually intersecting the types,
depending on how the action specs were written. For example, if I ask you for an
object that conforms to Billing’s idea of a Line, I would expect to be able to make calls
whenever the Account is in order. If you give me some thing that conformed to Bill-
ing::Line join Fault_Management::Line, then I will find to my dismay that sometimes
my Account is OK, but I still can’t make calls.

In fact, many partial specifications that you find in models don’t constitute a complete
type specification at all — they have attributes but no actions. Strictly speaking, any
object would satisfy such a type spec, because it states no behavioral requirements.
Types that are only attributes (and associations) are only meaningful as part of the
models of larger types.

9.4.6 Joining action implementations

How to ’join’ imple-
mented methods?

An action’s specification can be implemented by designing a refinement into a smaller
set of actions — ultimately, in software, messages. Program code is the most detailed
kind of action implementation.

Tricky: AND of two
sequential procedures?

Implementations cannot be joined in the same way as specifications. Firstly, it isn’t
clear what ANDing two programs together would mean; the machine has to follow
one list of instructions or the other. Therefore your support tool should complain if
you try to provide code for two operations with the same name in the same class; or
two refinements of the same action into different sets of smaller steps.

Just select one imple-
mentation?

A second complication is that any implementation of the Call action provided by, say,
the Billing package, isn’t likely to satisfy the requirements specified by Fault Manage-
ment — since neither world understands the concepts of the other. So we cannot
always accept an imported implementation, even if there is no competing implemen-
tation from the other packages.

1. In a join, you separately AND the precondition; then the postcondition;
9-376 Combining packages and their definitions

Only if it’s spec = the
combined spec

The only circumstance under which an implementation can be imported is when
there is no difference between the pre/post specification in the importee and the cor-
responding specification in the unfolded importer — that is, when there is no extra
material about this action from the other imports, and no extra material specified here.
In that case, we know that the designer was working to the same spec. 1

Hence, designer must
explicitly invoke to com-
bine them

Does this mean we cannot bring together code written in different packages? Of
course we can, but they have to be routines that can be separately referred to; and as
designer of the importing package, you have to design the implementation that
invokes each of them in the right way. Some languages allow you to invoke
super.method(); others permit Super1::method() and Super2::method().

For partial views, code
methods as partial, auxil-
iary routines

Each of the packages for the telecoms network is a view of the whole system, con-
structed from the point of view of one department or business function. Knowing this,
the package designers should not presume to provide their own implementations of
overall actions. Instead, they should provide auxiliary routines that help implement
their concerns. So Faults could provide successfulCallLog and Finance could provide
callCharge. The designers of Telecoms Network Implementation can then choose to
invoke these where appropriate in their own implementation of Call.

1. The rules here are derived from [Wills 92], in which it was allowed to inherit an implemen-
tation if you could also document a proof that the existing implementation would meet the
combined spec.

pre ... post ...account...

code account...

Account

Finance

spec is only partial

implementation
parochial

pre ... post ...counter...

code counter++...

Counter

Faults

Call

Call

Telecoms Network Implementation

CallAccount
Counter

pre ... post ...counter...
and ... account ...

synthesised spec
comprehensive

But implementation has to be a new one

Figure 176: Importing and joining specs vs. code
Combining packages and their definitions 9-377

9.4.7 Joining classes

A class is an implemen-
tation template

A class defines an implementation or partial implementation of an object, with pro-
gram code for localized actions, and variables for storage of its state. A class can also
be documented with invariants over its variables, and pre/post specifications for each
operation signature. Some programming languages support these features — notably
Eiffel, which provides a testing facility that uses them.

Join of classes is The idea of joining class definitions isn’t something you find in a programming lan-
guage: by the time you get to compilation, it’s assumed you’ve chosen your program
code; no need to automatically compose it with any other code.

...but quite useful But some programming environments, such as Envy, do allow a class to be synthe-
sized from partial definitions imported from different packages (“applications” in
Envy). There are restrictions that help prevent ad hoc modification of the behavior of
the instances. Among other things, this permits a very useful form of structuring
development work: since an object typically plays multiple roles, and each role is
meaningful in the context of interactions with objects playing other roles, the class is
not the best unit of development work to assign to a person or team; instead, the col-
laboration between roles should be an implementation unit.

Other interesting work has been done in the area of subject-oriented programming,
which strives to compose implementation classes that define different views, or roles,
of some objects.

Catalysis rules: The rules in Catalysis are:

• The joined class has all the variables in the partial definitions. Types must be the
same. (If they were widened, the preconditions of some methods might fail, find-
ing values in the variables they couldn’t cope with; if they were narrowed, some
methods might find they cannot store the values they need to.)

• The joined class has all the methods from the partial definitions. Methods are
joined according to the rules for actions: only one method for each signature is
allowed (within this class), and not even that if there is a pre/post spec attached
to that signature in one of the other joinees.
Pre/post specs may be inherited from superclasses.

• Invariants over class variables, and pre/postconditions attached to message sig-
natures, are treated as for joining types: they are ANDed.

9.4.8 Joining narrative

Can this be usefully
defined?

How shall we combine the narrative documentation of a package with those of the
packages being imported? Perhaps the best that can be done automatically is to stick
them end to end.

Perhaps, with hypertext But decent support tools provide for a hypertext structure. Importing means that the
reference hooks in the imported text are available for linking from the importer’s text.
Also, the importer’s text can include references into the imported text.
9-378 Combining packages and their definitions

9.5 Types and packages

Type names are quali-
fied with package names

Does that make the type CustomerCare::LineCircuit different from Network::LineCir-
cuit? In a sense, yes. A type is just a list of facts you know about an object, and so the
CustomerCare version is more fully defined one. There are many implementations of
the Network version that would not satisfy the more stringent requirements of the
more developed one. So should we perhaps really give them different names? In
Catalysis the answer is that “PackageName::TypeName” is really the full name of a
type. But we use the same type name from one package to another, so that we can eas-
ily add on properties in each importing package, as we’ve done here.

(An alternative convention would be to disallow additional statements to be made
about a type by importers, allowing only that subtypes can be defined. This would be
needlessly restrictive, and make it very complex to define multiple views that can be
re-combined. Also, it is difficult to avoid seemingly innocent invariants on a new type
actually constraining an existing one: so the policy of using subtyping would be diffi-
cult to enforce in practice, since such constraints would break subtyping rules.)

Importing contradictionsWhat happens if you import two packages that impose contradictory constraints? For
example, one package asserts that some attribute x has to be > 0, and another says x<
0. The result is just that you’ve modeled something that can’t exist: something you can
talk about but won’t find any implementations of, like orange dollar notes, dry rain,
or honest politicians. If it’s a model of a requirement, you’ll find out when you try to
implement it. Moreover, you can construct empty models within a single package:
whether importing is involved is irrelevant.
Types and packages 9-379

9.6 Name mapping on import

Name conflicts But a complication arises where two packages are imported from different authors,
who just happen to have used the same name for different things. BluePhone might
find it useful to import a ready-made accountancy model; but what that package calls
an Account (of our company with the bank) might be different to what the Billing
department calls an Account (of one of our customers with us). In that case, we really
don’t want the two types to be confused.

Renaming On the other hand, sometimes we do want types with the same name to be identified:
maybe the accountancy package’s idea of a Customer is consistent with ours. Or
sometimes we want two differently named types to be identified: perhaps what we
call a Customer, an imported package calls a Client.

Tools flag conflicts The first defence against unwanted results is that your support tools should raise a
flag when you import a package that contains name conflicts. This is probably not
necessary where the first definition of the name can be traced back to a common
ancestor package (as with the LineCircuit example).

Renaming What do we do if we want the two definitions to be separate? In the importing pack-
age, one of them should be given a different name. We can show this on a diagram
like this:

[old name \ new name] The annotation “ [X \ Y] ” means “rename X to Y in the importing package (the tail
end of the arrow)”.1 It doesn’t mean there is any change in the original package from
which the definition comes.

This means that in the unfolded Finance package, there is an Account type that means
what it does in Billing (perhaps with some more information added in Finance); and a
CorporateAccount type that means what Accountancy::Account did (again, perhaps
Finance adds some more to it).

Tools and name conflicts A tool should attach to each import a record of these mappings, at least for each name
conflict (that does not arise from a common ancestor). In those cases where the
designer opts to confirm that two types with the same name should be identified, that
decision can be recorded with a mapping like [Customer\Customer]. An interactive
tool will also distinguish between a name, and the string representation of that name.

Billing Accountancy

Finance
[Account \ CorporateAccount]

Figure 177: Import with re-naming

1. Sorry about the orientation of the arrows. We’re following UML’s dependency convention:
the source of the arrow imports the target.
9-380 Name mapping on import

To deal with the case where different types should be considered the same, we can
either write within the importing package an extra invariant like Client=Customer; or
we can use renaming. The former ends up with two names for the same thing, which
could potentially lead to confusion; so the latter is preferred. A typical package dia-
gram with renaming might be:

Textual versionsImport schemes can also be written in text form:

package Finance imports Billing
and Taxation [Client \ Customer]
and Accountancy [Account \ CorporateAccount,

 Customer \ Customer];

Package expressionsIt’s possible to write package expressions:

Taxation [Client\Customer] represents a package that is exactly the same as Taxa-
tion, but with the names changed.

P1 and P2 represents a package that has all the statements of packages P1
and P2, and nothing further.

P1 imports P2 is a boolean expression stating that every statement of P1 can
also be found in P2. You can also write P1 => P2.

Types and packages are just two of the many kinds of elements that can be renamed.
Most other named elements are also subject to renaming. This facility is used to help
create template packages in Chapter 10, Model Frameworks.

9.6.1 Selective Hiding

Rename to emptyIt is sometimes useful to explicitly render a name syntactically invisible to its
importer. Rename to an empty substitute:

import SomePackage [someName \ , anotherName\]

Hiding a package hides all the names defined within it.

Billing
Accountancy

Finance
[Account \ CorporateAccount,

Taxation

Customer \ Customer]
[Client \ Customer]

Figure 178: Using re-naming to combine types
Name mapping on import 9-381

9.7 Action Exceptions and Composing Specs

Exceptions can add
much complexity

Exception handling adds complexity to any application. Even if the normal behavior
of some component would be easily understood, the presence of exceptions often dra-
matically complicates things. We want to be able to separate exception specification —
to keep the normal behavior specs simple; but we also want to address the specific
characteristics of exceptions.

9.7.1 Required Exceptions vs. Undefined Behavior

Distinguish normal,
exception, and undefined
behavior

The outcome of invoking an operation with some inputs and initial state will be either
defined: the operation is required to complete and the outcome must satisfy some spec-
ification; or undefined: the specification does not constrain the outcome for those cases.
Any defined behavior could, in turn, be considered as: (i) normal: the operation per-
formed the required task; or (ii) exception: the operation did not perform the required
task due to some anomaly, and signalled the failure as required.

Guaranteed exceptions
must be specified

It is important to distinguish the exception case, in which the operation has met its
specification with an exceptional outcome; from the undefined case: the operation has
no specified behavior. The figure shows that normal and exception outcomes are dis-
joint, because there should be unambiguous checks to distinguish required success
from required failures; the caller should not be guessing “hmm...wonder if that last call
succeeded”.

The figure also shows that different inputs can give rise to different exception outputs
(e1, e2); in some situations there may be more than one exception condition true.

9.7.2 Design by contract vs. Defensive Programming

Defensive programming
is paranoia in code

Over the years, there has evolved an approach to programming called “defensive pro-
gramming”. In essence, when you implement any operation you do the following:

• consider the normal invocation of your code; implement it.

• consider the countless abnormal invocations of your code; implement checks for
those conditions, and take some kind of “defensive” actions e.g. return a null,
raise an exception.

space of inputs + initial states

defined

undefined

normal in

exception in

space of outputs + result states

normal out

exception oute2

e2

undefined out

Figure 179: The spaces of normal and exception behavior
9-382 Action Exceptions and Composing Specs

...with interfaces unclear
about responsibilities

This approach to programming can be quite damaging. Each implementer provides
those defensive checks that she thinks of in the code, but none of the interfaces docu-
ment what is guaranteed to be checked and by who; or, what outcome is guaranteed
in the event of those errors. Responsibilities become very blurred, and the code
becomes littered with disorganized, redundant, and inadequate checking and han-
dling of exception cases.

Interfaces should spell
out guaranteed excep-
tion handling

Instead, be clear about the separation of responsibilities in the design itself. The speci-
fication of each operation should clearly state what assumptions the implementer
makes about the invocations — the caller must ensure those are met; and what corre-
sponding guarantees the implementer will provide. This includes a specification of
what failure conditions or paths the implementer guarantees to check, and the corre-
sponding outcomes. Then, implement to that contract; allow for the “defensive pro-
gramming” mode when debugging the code, and when running tests (Section 7.1.4,
“Operation abstraction,” on page 268).

By all means, employ “defensive specification” at appropriate interfaces in your sys-
tem; but make sure that the checking and exception handling is specified and docu-
mented as part of the interfaces, not just in the code.

Advanced Topic9.7.3 Specifying Exceptions

We want to separate normal and exception conditions, both within one spec, and
across multiple specs. However, we still want our descriptions to compose with pre-
dictable and intuitive results.

Multiple pre/post is a
start

In Catalysis, the approach of specifying using pre/postconditions simplifies matters,
since you can have multiple specifications for an action that compose following clear
rules. However, exceptions pose some unique requirements; our approach is influ-
enced by the work on ADL (http://www.sunlabs.com/research/adl).

Special names: normal,
exception

We introduce two special names, normal and exception. These names can be used in
two ways:

...define success and fail-
ure indicators

1. As boolean variables names that can be bound before the pre/post specification
section; define normal and exception in terms of the success and failure indicators
that operation will use. They are treated as special names, as opposed to names
introduced locally within a “let...”, because their binding must be shared across all
specifications of that action.
action Shop::order (c: Card, p: Product, a: Address, out success: Integer)

normal = (success=0) ... -- success indication to the caller
exception = (success < 0) ... -- failure indication to the caller

post: ...

...and are usable in post-
conditions

2. As boolean variables that can be used within a postcondition e.g.
action Shop::order (c: Card, p: Product, a: Address, out success: Integer)
post: c.isOk => normal -- success indication if card is OK

if (....) then (exception and) -- failure indication must be raised if
if (exception) then (.....) -- any failure must guarantee

We can now require the operation to never have an undefined outcome:
Action Exceptions and Composing Specs 9-383

post: (normal or exception) = true
-- must indicate success or failure; returning +2 would be an implementation bug

Or, to never raise any exception besides a particular set:

post: exception => (success = -1 or success = -2)

Can now specify success
effects

We can now write the successful outcome, assuming that the success indicator will be
defined someplace. Effects guaranteed with success indicator:

action Shop::order (....)
post: normal => (-- if success is returned, then caller is assured the following

Order*new≠0 and
c.charged (...) and
(p.noInventory => RestockOrder*new [...]≠0)

or, conditions under which success must be indicated:

action Shop::order (....)
post: c.OK => normal -- if the card is OK, definite success indicator

..and exceptions We can write the exception outcomes in the same manner.

action Shop::order (....)
post: not c.OK => (success = -1) -- specific indicator for bad card

action Shop::order (....)
post: not a.OK => (success = -2) -- specific indicator for bad address

action Shop::order (....)
post: exception => (Order*new–>isEmpty)

-- if failure signalled, guaranteed that no new order was created

With multiple excep-
tions, don’t comit to a
specific one

Typically, however, you want to deal with multiple possible exception outcomes in a
slightly flexibly manner. If you place an on-line order, given the preceding spec, what
should happen if credit card number and address are both invalid? Which exception
should be raised? It is best to leave the choice of which exception to signal to the imple-
menter, as long as failure indication is guaranteed. This helps with composition of
specifications, each with their own exception conditions; as is the case of failures in
distributed systems. Hence:

action Shop::order (....)
post: -- bad card means some failure indication

c.bad => exception
-- a failure indication, with code -1, will only happen if the card was bad
(exception and success = -1) => c.bad

Use “isException” for
flexibility

This is a very common form of specification for exceptions, so we introduce a conve-
nient query isException on the pre-defined type Boolean, and re-write it as:

post: (c.bad) . isException (exception, success = -1)

which is exactly equivalent to the longer form. Our definition of isException:

-- a given trigger condition is an exception means...
9-384 Action Exceptions and Composing Specs

Boolean::isException (generalFailure: Boolean, specificIndication: Boolean) =
-- if the trigger condition was true, then some failure has been signalled, and

((self = true) => generalFailure) and
-- the specific Indication will not be raised unless the trigger was true
(generalFailure & specificIndication => (self = true)))

One subtle pointOne final point: suppose you write a specification which simply says:

Success indicator = a; Failure indicator = b;

If a, then x is guaranteed to have happened;

If b, then y is guaranteed to have happened.

You would, strictly speaking, have to admit an implementation that simply failed
every time, as long as it met the failure indication. You should either be more strict
about the kinds of exceptions that can be raised, and when; or, assume a reasonable
convention where the implementor is obliged to try to meet the success goals, and
should only raise an exception if that turns out to be impossible.

7.3.1 Exception Indication Mechanisms

Includes language spe-
cific mechanisms

Different languages have different mechanisms to indicate exceptions: return values,
exception objects thrown, signals raised, etc. For specification purposes you can work
with any one of these, including some language-neutral mechanisms (like return val-
ues; remember that the signature of an abstract action specification is itself always
subject to valid refinements, Chapter 12, Refinement).

action T::m (....., out success: Boolean)
post: not success => (...guarantees about every indicated failure...)

action T::n (...., throws (Object))
exception = thrown (Object) -- no using throw except to indicate failure

action T::n (.....)
post: (self.wrongState) . isException (thrown (WrongState.new))

Or, to make some guarantee on any exception thrown, not necessarily by self:

action T::n (....)
post: thrown (Object) => (...e.g. all state cleaned up ...)

The meaning of the language specific mechanisms, such as throw, is provided by
working in a context where the appropriate packages have been imported (Chapter
15, Frameworks).

7.3.2 Exceptions with general Actions

Abstract actions can also
specify exceptions

This approach extends to general actions. An exception in an abstract action can be
traced across action refinements: specific traces or sequences of detailed actions can be
specified as raising an exception on the abstract action (rather than having to invent a
new abstract action for it, or having to ignore it at the abstract level). It can be traced
through action refinements down to the level of exceptions in program code.
Action Exceptions and Composing Specs 9-385

..that are meaningful at
that level

Of course, when specifying an abstract action you should only describe those excep-
tions that have meaning at that leve l of abstraction, particular exceptions that arise in
the problem domain; not every form of software exception is meaningful there!

The refinement then
maps failure sequences
as well

Let us re-visit the example in Section 5.5.3, “Refin-
ing an Action or Use Case,” on page 218, on re-
stocking of a vending machine. Suppose the ware-
house inlet door for a product can jam when closed.
If this outcome is an interesting exception at the
abstract level, it could have been specified as such
on the joint action. In the refinement, the appropri-
ate sequence can be mapped to this abstract ‘excep-
tion’ action.

This provides a precise basis for exceptions in traditional use case approaches.

7.3.3 Exceptions and use case templates

Just as we introduced a narrative-styled template for defining use cases, it is useful to
incorporate exceptions into use cases narrative as well.

use case sale
participants retailer, wholesaler
parameters set of items
pre the items must be in stock, retailer must be registered,

retailer must have cash to pay
post (normal) retailer has received items and paid cash

wholesaler has received cash and given items
normal indicatorconfirmation to retailer
exception indicator no sale confirmation to retailer from wholesaler
on exception neither cash nor items transferred

Similarly, it is useful to document those sequences that might give rise to an excep-
tion, as part of the use case documentation. The mapping from the formal refinement
description (e.g. a state chart) to this narrative is straightforward:

use case telephone sale by distributor
refines use case sale
refinement 1. retailer calls wholesaler and is connected to rep

2. rep gets distributor memberhip information from retailer
3. rep collects order information from retailer, totalling the cost
4. rep confirms items, total, and shipping date with wholesales
5. both parties hang up
6. shipment arrives at retailer
7. wholesaler invoices retailer
8. retailer pays invoice

abstract result sale was effectively conducted
with amount of the order total, and items as ordered

exception retailer cancelled order before it was shipped (step 5, use case sale)
exception outcome confirmed cancellation

-- implicit: non sales confirmation; no cash or items transfer

open_door (p)

insert ()
/ n += 1

/ n = 0

close (“jam”)

^ re_stock (..”jam”)

WHA

WHB
9-386 Action Exceptions and Composing Specs

9.8 Summary

All elements should be
composable

All modeling elements should be composable, so that specifications and designs can
be factored into smaller parts; and re-combined in predictable and intuitive ways.

Packages build upon
others

Packages usually import other packages, those on which their definitions are based.
We have looked at the rules whereby imported definitions are combined with new
material, and material from other imports.

Packages extend defini-
tions from others

Each package has a notional ‘unfolded’ form, in which all the definitions from the
imports and their imports are visible. New facts and definitions in a package can con-
straining its own declared names, and those which are imported.

Exceptions need some
special techniques

Specifying exceptions so they can be composed, and so abstract actions with excep-
tions can still be refined, needs special care.
Summary 9-387

9-388 Summary

	Chapter 9 Composing Models and Specs
	9.1 Sticking pieces together
	9.2 Joining and subtyping
	9.3 Type intersection — combining views
	9.4 Combining packages and their definitions
	9.4.1 Definitions and joins
	9.4.2 Joining packages
	9.4.3 Joining static models
	9.4.4 Joining action specifications
	4.4.1 Two styles of writing and composing action specs

	9.4.5 Joining type specifications is not subtyping
	9.4.6 Joining action implementations
	9.4.7 Joining classes
	9.4.8 Joining narrative

	9.5 Types and packages
	9.6 Name mapping on import
	9.6.1 Selective Hiding

	9.7 Action Exceptions and Composing Specs
	9.7.1 Required Exceptions vs. Undefined Behavior
	9.7.2 Design by contract vs. Defensive Programming
	9.7.3 Specifying Exceptions
	7.3.1 Exception Indication Mechanisms
	7.3.2 Exceptions with general Actions
	7.3.3 Exceptions and use case templates

	9.8 Summary

