
           
 Chapter 7 Abstraction, Refinement, and 
Testing
Outline

Abstract diagrams are good for the whiteboard. You don’t want to bore your col-
leagues with your code (we hope): rather, you want to exhibit the main ideas of 
how it works. Or maybe you just want to say what it does, not how; or maybe, 
what it requires of other components that can plug into it. And whether it’s a sin-
gle procedure or an entire planet-wide distributed system, you want to fit it all on 
that board and convey useful things about it.

The same goes for documentation. A document that makes clear the essential 
vision of your design will help future maintainers understand it quickly: their 
short-order updates will be more likely to cohere with the rest of the design, so 
giving your brilliant ideas a longer life. And for users of the component (whether 
end-users or other programmers), you want to show not how the thing works 
inside, but just what it can do.

We’ve seen how to draw and write these abstract descriptions; but how can you 
be sure they accurately represent the code you’ve written? The concepts of 
abstraction and refinement capture the essential relationship between these 
descriptions. This chapter is about different forms of abstraction and refinement, 
and the rules for checking that a more detailed design or spec refines (or imple-
ments, or conforms to) a more abstract one.

One result of the approach to abstraction and refinement is that testing falls out as 
a natural by-product. This chapter also discusses how to test different kinds of 
refinement relations, including the one between the implementation of an opera-
tion and its specification.
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7.1 Zooming in and out

7.1.1 Objectives

Abstraction is the most 
valuable design tool

A major theme of Catalysis is the ability to look at a design or a model in a variable 
degree of detail. You can describe your code to your colleagues in documents or in 
presentations, or just sketching over coffee, without getting into superfluous detail.

Abstraction horizontal 
and vertical

One of the properties of the abstract views is that they can isolate different concerns: 
the behavior of a component can be presented from the point of view of a particular 
user, or another component, leaving out the details seen by another user, or through 
another interface. You can restrict yourself to the externally-visible behavior, or you 
can go inside and describe the overall scheme of the design. You can describe just one 
component, or how the components fit together; or you can describe particular archi-
tectural conventions observed by all the components.

Refinement and con-
formance provide traca-
bility

The more ‘zoomed out’ abstract views and the more ‘zoomed in’ detailed views can 
be related to one another. For example, you can tell whether the code for a component 
conforms to the interface expected by those it is coupled to. You can tell whether a sys-
tem, if designed to behave as specified, would really contribute to the business needs. 
You can link individual requirements to specific features of a design. And you have a 
much better start on change-management.

Just-enough rigor for 
verification

The degree of rigor of this traceability is itself variable. In a very critical context, you 
can do these checks in mathematical detail. In more ordinary circumstances, you just 
outline the main points of correspondence in the documentation, to guide reviewers 
and maintainers.

...and testing Testing of object and component designs can be even more difficult than more tradi-
tional systems, exacerbated by polymorphism, inheritance, and arbitrary overriding 
of behaviors. The essential idea of testing is to verify that an implementation meets its 
specification — the very same goal as that of refinement; except that testing tackles the 
problem by monitoring behaviors under a (hopefully) systematically derived set of 
test cases. This chapter also outlines such a systematic approach, based on refinement.

7.1.2 Terms

We will use these terms:

Abstraction of (1) A description that leaves out some detail. A specification or
high-level design.

(2) The act of creating an abstraction.

Refinement of (1) A more detailed description that conforms to another.

(2) The act of creating a refinement.

Conforms to One behavioral description conforms to another iff any object
that behaves as described by one is also behaving as described
by the other.
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Implementation Program code that conforms to some abstraction: requiring no
further refinement.

7.1.3 Abstract specifications and abstract designs

Describe one object’s 
behavior, or a group col-
laboration

Catalysis is a about being able to make precise statements at different chosen levels of 
detail about either the behavior expected of objects (large and small), or the designs 
for object collaborations; and about being able to relate the different levels of detail 
together.

7.1.3.1 Behavior

A type specifies behav-
ior: model + operations

We describe an object’s behavior using types. A type has two parts: the operation 
specifications (usually pre/postconditions) defining what it does; and the model, pro-
viding the vocabulary of terms for the operation specs.

The external spec and 
internal design may dif-
fer

An abstract behavioral spec is a bit like operating instructions for a machine: it tells 
you what to expect as a user. But if we lift the top off the machine, we see the rather 
different picture that explains how it works. That is what happens when we look at 
the class code that meets a type spec.

This gives 2 kinds of 
behavior abstraction

If the type model and the class look rather different, we need ways of determining 
whether the class conforms to the type. We can treat the two main parts of a the 
descriptions separately: giving us “operation abstraction” and “model abstraction”.

7.1.3.2 Collaborations

Collaboration describe 
design of interactions

We describe designs for objects using collaborations — collections of actions. An 
action defines a goal achieved collaboratively between the participant objects, using 
postconditions whose vocabulary is the models of each of the participants. Typical 
collaborations include everything from business interactions (“banks trade stocks”) 
through hardware (“fax sender sends document to receiver”) to software components 
(“scrollbar displays file position”). 

Each action can be 
refined to collaboration

A very abstract action-spec just states the goal achieved, and the participants it affects. 
But we can put more detail into the design, by working out in more detail the protocol 
of more detailed interactions between the participants. Typical refinements might be 
into collaborations such as: banks make deal, confirm, settle; fax connects, sends page, 
confirms, repeats; file notifies scrollbar on change of position.

Each participant can be 
pried apart

And we may also discover that each of the participants is made up of distinct parts. 
The banks’ traders make the deal, but their back offices settle.

This gives 2 kinds of col-
laboration abstraction

Again, the two aspects of the collaboration can be treated separately, giving “action 
abstraction” and “object abstraction”.

7.1.3.3 Four basic kinds of abstraction

Total of 4 basic abstrac-
tion kinds

Most abstractions can be understood as combinations of the four basic varieties we’ve 
just identified:
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• Operational — Specifying what an operation achieves in terms of its effect on the 
object executing it, rather than how it works.

• Model — Presenting the state of an object (or component) as a smaller and sim-
pler set of attributes than the actual variables or fields used in the design; or sim-
pler than a model that presents a more detailed view.

• Action — Presenting a complex protocol of interaction between objects as a single 
entity, again characterised by what effect it has on the participants.

• Object — treating an entire group of objects (such as a component or subsystem or 
corporation) as if it were one, and characterizing its behavior with a type.

We’ll now take a brief look at each of these abstractions. Later sections will treat them 
in much more detail.

7.1.4 Operation abstraction

Operation spec captures 
net external effect

One of the most basic forms of abstraction is the operation specification: the idea that I 
can tell you some of the things that are achieved by an operation, omitting the detail 
of how it works; and omitting things it achieves that I don’t know or don’t care about, 
such as sequences of algorithmic steps, intermediate states, variables used, etc. The 
operation specs we usually encounter are pre/postconditions; though they may also 
include rely/guarantee conditions. (Rely: a condition the designer assumes will 
remain undisturbed by anyone else while the operation is executing; guarantee: a con-
dition the designer undertakes to maintain true during execution.)

They enable testing of 
operations

Operation specs can be used as the basis of a test harness: they can be incorporated 
into the code in such a way that an exception is raised if any of them ever evaluates to 
false. (Eiffel supports pre and postconditions directly; the standard C++ library 
includes an assert macro.) 

float square_root (float y); // specification
// pre: y > 0
// post: abs(return*return – y) < y/1e6 -- almost equal

float square_root (float y) // implementation
{

assert (y > 0); // precondition
float x= y;
while (abs(x*x–y)>=y/1e6) { x= (x+y/x)/2; } // miracle
assert (abs (x*x – y) < y/1e6); // post: x*x == y (almost)
return x; 

}

Op specs can be checked 
explicitly e.g. in debug 
mode

Quality Assurance departments like them, because apart from helping to document 
the code, they act as a very definite test harness. In a component-based environment, 
you frequently plug components together that were not originally designed together: 
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integration testing becomes a much more frequent activity. Every component (which 
might mean individual objects or huge subsystems) therefore has to come with its 
own test kit, to monitor its behavior when employed in some new configuration. 

Op specs influence Java 
interfaces and C++ 
abstract classes

In Catalysis, we characterize behavior with type definitions, attaching postconditions 
to the operations. In Java, the corresponding construct is the interface: classes that 
implement an interface must provide the listed operations. Wise interface-writers 
append comments specifying what clients will expect each operation to do, and 
classes that claim to implement the interface should conform to those specifications, 
even though each will do so in its own way. In C++, the pure abstract class plays the 
role of the Java interface in design.

Refinement decides how 
to meet the spec

Operational refinement, then, just means writing code that conforms to an effects 
spec; which can be tested by writing the spec in executable form.

(Operational is the form of abstraction with the longest history, dating back to Turing. 
Those that crave mathematical certainty that their code conforms to the spec are 
referred to [Morgan] or [Hoare].)

7.1.5 Model abstraction

Op specs need attributes 
to abstract state

The postconditions of the operations on an object usually need to refer to attributes 
that help describe the object’s state. It’s very difficult to describe any but the most 
primitive types without using them. We have also seen how we use associations as 
pictorially-presented attributes.

These can be different 
from stored variables

And of course, any implementation will also use internal stored variables, operated 
on by the code of the operations. But they need not be the same as the model 
attributes used by the postconditions. Model attributes are just hypothetical means of 
describing the object’s state, that help explain its behavior.

Example: queueFor example, you might use the concept of its length to help describe operations on a 
queue (of tasks, orders, etc.).

message1
Black Box

message2

pre ...
post ...

(debug phase)
test harnesspre ...

post ...
Component

straight-through
(installed mode)

Figure 113: Operation specs: in testing vs. in production

<<type>>
Queue

length : int

op put (x:Thing)
post length == @pre.length + 1 and ... etc

op get ( ) –> x: Thing
post length = @pre.length – 1 and ... etc

... <<class>>
LinkedList Queue

<<class>>
Array Queue

Figure 114: Different implementation of the same type model
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Implementation may not 
directly have ‘length’

We can think of several implementations of a Queue. But, not all of them will have a 
length instance variable or method. Nevertheless, it is undeniable that every Queue 
does have a length. That is what an attribute is about: it is a piece of information about 
the object; and not necessarily a feature of any implementation. 

...as long as length can be 
‘retrieved’

An attribute can always be ‘retrieved’ from an implementation. Suppose I publish the 
above type on the Web, and invite tenders for implementation. A hopeful program-
mer sends me an array implementation:

class ArrayQueue implements Queue
{ private Object array [ ] ; // the list of items

private int insertionIndex; // where items are put to
private int extractionIndex; // where items are got from
public void put (Object x)
{ array[insertionIndex]= x;

insertionIndex= (insertionIndex+1) % array.length; 
} ...

Retrieval = Abstraction 
function

As a quality assurance exercise, I want to check whether the code of put (say) con-
forms to my spec. But my spec and this code talk in different vocabularies: it has no 
length. I need to translate from one model to the other — map to the abstraction — 
before I can begin. So I write back to the programmer and say, “Where’s your length?” 
The answer comes back:

private int length ( ) 
{ return (insertionIndex – extractionIndex) % array.length; }

With the ‘retrieval’, the 
op spec on attributes can 
execute against the 
implementation

In other words, I have been provided with a function that ‘retrieves’ or abstracts from 
the implementation’s terms to the spec’s. (And of course, it is read-only: it would be 
confusing if it changed anything.) Now I can see that the put code does indeed increase 
the length, as I required. And, if working that out just by looking at the code feels a lit-
tle too much after a heavy lunch, I can ask that the designer please to include my pre 
and postconditions as assertions in the code, so that we can test it properly.

Which is great for testing Again, quality assurance chiefs love this stuff. They will demand that every imple-
mentation be supplied complete with a set of retrieval functions: that is, a read-only 
‘abstraction function’ for computing the value of every attribute in the abstract spec. 
This applies to associations as well, of course, which we have previously observed are 
just pictorial presentations of attributes.

Another implementation of a Queue is based on a Linked List. There is not necessarily 
any variable that corresponds directly to the model’s length: but you can retrieve it by 
counting the nodes.

The ‘retrieval’ can be 
inefficient — thats OK

It doesn’t matter if retrieval functions are very slow and inefficient: they are only 
required for verification, either by testing or by reasoning. The exercise of writing 
them often exposes mistakes in an implementation, when the designer realizes that 
some vital piece of information is missing.
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Not all attributes need be 
publicly accessible

Notice that in Catalysis, we do not expect that attributes/associations will always be 
publicly supplied for use by clients. There are, of course, many attributes which it is 
useful for clients to have ‘get’ and sometimes ‘set’ access to; but modelers often use 
attributes to express intermediate information they don’t expect to be available 
directly to clients.

Attributes and their 
types reflect the domain 
model; implementation 
may differ

On a larger scale, more complex models can be used to represent the types of whole 
systems or components, and are usually shown pictorially. In an abstract model, the 
attributes and their types are chosen to help specify the operations on the component 
as a whole, and according to good object-oriented analysis practice, are based on a 
model of the domain. But anyone who has been involved in practical OOD is aware 
that the design phase introduces all sorts of extra classes, as patterns are applied to 
help generalize the design or make it more efficient; and to distribute the design, pro-
vide persistence, a GUI, and so on. But we can still retrieve the abstract model from 
any true implementation, in the same way as the simpler models.

Model refinement relates 
concrete to abstract state

Model refinement, then, means establishing the relationship between the more 
abstract model used to define postconditions, and the more complex practical imple-
mentation. Retrieve functions translate from the refined model attributes to the 
abstract ones.

(Model refinement has the second longest history, dating back to VDM and Z in the 
1970’s. See [Jones86] or [Spivey].)

7.1.6 Action abstraction

7.1.6.1 Messages and actions

‘Message’ is a good pro-
gramming construct

At the programming level, ‘messages’ are the interactions between objects, in most 
OO programming languages. Some have variants on the basic theme, such as syn-
chronous vs. asynchronous (waiting for the invoked operation to complete, or not). 
Complex sequences of messages can be difficult to envisage, so we draw sequence 
diagrams:

Nested sequence dia-
grams may encourage 
dependence on internal 
mechanisms

Sequence diagrams have the disadvantages of being bad for encapsulation, particu-
larly when multiple levels of calls are shown on one diagram. They allow you to see in 
one diagram the response to various messages of several objects at once: and so 
encourage you to base the design of one object on the internal mechanisms of the oth-
ers. They also show only one sequence of events, and so make it easy to forget other 
cases, and that each object may receive the same messages in other configurations. 
However, they do make it easy to get an initial grip on a design, so we use them with 
caution. It is often good practice to limit the diagram to just one level of nesting, and 
to use postconditions to understand what those achieve.

Figure 115: Sequences of messages realize abstract actions
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The same diagrams can be used to show the interactions between objects in the busi-
ness world; and interactions between large components.

But abstract actions have 
many possible message-
level protocols

But in any but the most detailed level of design, we usually deal in actions: dialogues 
with an outcome definable with a postcondition, but made up of messages we do not 
care about. For example, I might tell you “I bought some coffee”: rather than expect 
you to listen to a long tale about how I approached a vending machine, inserted sev-
eral coins, pressed one of the selector buttons, and so on. The former statement 
abstracts the latter detailed sequence, and includes any other means of achieving the 
same effects. In Catalysis, actions are characterised principally by their effects; to 
show how an action is achieved by some combination of smaller ones, you document 
a refinement.

An abstract action may 
also involve many partic-
ipants

A single action may involve several participants, since it may abstract several smaller 
actions which may have different participants. On a Catalysis sequence diagram, the 
small ellipses mark the participating objects (vertical lines) in each occurrence of an 
action (horizontal lines). We also mark the states or changes of states of participants:

OOP messages are a spe-
cial case of actions

OO messages in programming languages are just one subtype of actions, that always 
have a distinct sender and receiver (Section 5.4.1, “From Joint to Localized Actions,” 
on page 213).1 We can use action abstractions to represent interactions external to the 
software; and between users and software; and between objects within the software. 
Within the software, they are very useful to abstract the standard interactions that 
happen within certain frameworks and patterns, such as ‘observer’.

You can draw and spec-
ify an abstract action

Sequence diagrams illustrate sample occurrences of actions; but an action type can be 
drawn with the types of its participants, and a postcondition written in terms of the 
participants’ attributes (again, whether the types represent software or domain 
objects):

vendor customers

vend coffee
more money less money

machine

Figure 116: Occurrence of joint action

1. CLOS is an exception: its operations are not attached to any particular receiver. Like Java 
and C++, there may be several operations with the same name and different parameter 
lists; but the operation to be executed is chosen at run-time on the basis of the classes of all 
the parameters (not just the receiver, like the other languages). Catalysis works as well for 
CLOS as it does for Java, etc., because multi-receiver messages are a type of action.

Coffee Company

Coffee Addicts

vend coffee

customers

Coffee Machines

machine

$ post vendor.$ 
> vendor@pre.$vendor

Figure 117: Action type shown on a collaboration
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The abstract definition is 
precise, hence reliable

The ability to define the effects even at an abstract level is what makes it worth doing. 
Abstraction without precision is often just waffle; until some precision is used, it is 
typically not reliable.

7.1.6.2 Refining actions

Action refined sequen-
tially

We can ‘zoom into’ or refine the action, to see more detail. What was one action is now 
seen to be composed of several:

Recursive and fractal 
method

Each of these actions can be split again into smaller ones, into as much detail as you 
like. Some of the actions might be performed by software; some of them might be per-
formed by some mixture of software, hardware, and people; some of them might be 
the interactions between those things. At any level — deep inside the software or at 
the overall business level — we can treat them the same way. Catalysis is a ‘fractal’ 
method: it works the same at any scale.

Abstractions are correct 
descriptions of their 
refinements

Notice that the abstract action has not gone away: we have just filled in more detail. It 
is still the name we give to the accomplishment of a particular effect by a combination 
of smaller actions, and that effect is still there. 

Actions can be refined to 
concurrent actions too

These illustrations might suggest that an action is always made up of a sequence; but 
often, the composition is of several concurrent processes that interact in some way. 
Recall that ‘action’ is the Catalysis blanket word for process, activity, task, function, 
subroutine, message, operation, etc.

customers:vendor:

lease machine

supply gunk

call for supplies

collect cash

supply gunk
vend coffee

machine: 

buy coffee

less gunk,
more cash

less money

more gunk
more money

Coffee Company Coffee Machine Coffee Addicts

Figure 118: Refinement into further joint actions
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Abstract and refined 
actions can be connected 
by ‘aggregation’

We can summaries any kind of action abstraction on a type diagram, showing which 
collaboration (set of actions) can be abstracted into a single abstract action:

The diamond aggregation (“part of”) symbol is used to indicate the fact that the 
abstract action is an encompassing term for compositions of the smaller actions. It 
shows constituent parts of the abstraction, though we have to state separately how 
they are combined, whether in parallel or some sequence, whether some are optional, 
or repeated. Also, another diagram may show a different set of detailed actions 
abstracted to the same abstract action.

7.1.6.3 Summary: action abstraction

Hence, dialog details are 
deferred

Action abstraction is the technique of treating a dialogue between several participants 
as a single interaction with a result definable by an effect.

Slightly different from 
operation abstraction

Action abstraction and operation abstraction are both about treating several ‘smaller’ 
actions as one. The differences are that:

• In operation abstraction, the initial invocation resulted in a sequence of smaller 
actions determined by the design; the abstraction still has the same initial invoca-
tion, and captures the net desired effect.

• In action abstraction, no invoker need be identified: any participant could initiate 
it. The exact sequence is determined by the designs of all participants (some of 
whom could be human); all we can say is what the smaller actions are, and con-
straints on how they might be combined. Also, the abstract action may never be 
directly ‘invoked’ at the detailed level.

Action abstraction comes from the idea of transaction, developed in the database 
world in the 1970s; though of course it is very natural in everyday conversation.

lease machine

supply gunk
buy coffee

call for supplies

collect cash

vend coffee

Coffee Machine

CoffeeAddicts

Coffee Company

Figure 119: Refined actions shown using "aggregation"
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7.1.7 Object abstraction

A group of objects may 
be treated as one

We can refine or ‘zoom into’ objects, splitting any of the vertical bars on the diagram 
into several. Thinking about it in more detail, we realize that the vendor Company has 
different departments that deal with different parts of the business. Also, the cus-
tomer organization will have both users, and a site manager who liaises with the ven-
dor:

The abstract objects are 
‘virtually’ present

Again, the more abstract objects have not gone away: the Company is still there; it is 
what we call a particular configuration of inter-related smaller objects. Once again, 
each object may be split further into smaller parts: servicing may turn out to be a 
department full of people with different smaller roles. 

There may be many valid 
object refinements

Just as what characterizes an action is its effect, so what characterizes an object is the 
set of actions it takes part in — its type. There may be many refinements that will sat-
isfy one abstract object type. (Indeed there may be refinements that successfully sat-
isfy several roles: some small companies have just a single object that plays the roles 
of accounts, sales, and servicing.)

This applies to software 
and domain objects

Some of the objects may be software components. For example, zooming in on the 
accounts department would probably reveal some combination of people and com-
puters, and more detail on the computers would reveal a configuration of software 
packages, and going into them would reveal lines of Cobol, or, if we’re lucky, objects 
in an OO language. The same would happen if we peered into the coffee vending 
machine. And we can continue using the same interaction sequence diagrams (and 
other tools), right down into the software.

site managersales

lease machine

supply gunk

call for supplies

collect cash

supply gunk

machine

buy coffee
less gunk,
more cash less 

more gunk

vendor 

servicingaccounts users

money

customers

schedule

more money

Figure 120: Abstracting objects
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Abstract objects ‘aggre-
gate’ their refined group

The relationship between an abstract object and its constituents can be shown on a 
type diagram:

The diamond again indicates the refinement relationship; and once again doesn’t by 
itself give us every detail about what constraints there are between the constituents of 
one abstraction.

7.1.7.1 Summary: object abstraction

Hence, object details are 
deferred

So object abstraction means treating a group of objects, whether in software or in a 
human organization, or a mechanical assembly, as one thing. 

The idea is as old as language, and was discussed by Plato, Michael Jackson [Jackson 
95, Individuals], and others — often beginning with “how many parts of a car do have 
to change before it’s a different car?” or “are you the same person as you were when 
you were born?” The examples serve to highlight that the identity of anything is, in 
the end, a model constructed for our convenience, rather than something inherent.

7.1.7.2 Abstracting objects and actions together

Actions and objects often 
refine together

It is usual to zoom in or out in both dimensions at the same time. As soon as you 
resolve each object into several, you have to introduce interactions specifically with, 
or between them. Conversely, when you put more detail into an action, you need 
more objects to represent the intermediate states between the actions.

When we looked inside the vendor Company, we assigned sales to receive supply 
requests from the customer, but they then schedule a visit by servicing. 

By contrast, we left the collection of cash as one action involving both servicing and 
accounts. That just means we’ve deferred until later some decision about how that 
action splits into smaller steps.

Zooming into an action often involves more objects. As an example, let’s go the other 
way, and abstract the original ‘vend coffee’ action. If the overall requirement is just to 
get money out of people by giving them coffee, then there are more ways of doing it 

Coffee Company

Accounts Dept.

Sales Dept.

Servicing Dept.

Coffee Addicts

Site Manager

User

1..*

11

1

1

Figure 121: Object refinement shown as "aggregation"
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than by installing a machine near them: you could run a café or street stall. So we 
could have started with:

and then refined that to:

— although the machine is only really required when we go to the more detailed sce-
nario of exactly how we’re going to sell it.

7.1.8 Zooming into the software

There are refinement 
‘zooms’ purely at the 
business level

In Catalysis, the standard pattern for developing a software system or component is 
to begin with the business context, and represent the business goals in terms of 
actions. Then we look at how these goals are met by a more refined view, that shows 
the various roles within the business, and their interactions with each other.

...and down through 
software interactions

Some of these interacting objects may be computer systems. We can treat them as sin-
gle objects, and describe their interactions with the world around them. Subsequently, 
we refine the system into a community of interacting software objects. (A standard 
OO design is based on a model of the external world, so that we now have two of 
everything: a real coffee cup, user, and coin, plus their representations inside the soft-
ware.)

vendor customer
sell coffee

more money

vendor machine
vend coffee

more money

customer

:ControlSoftware

:CupRelease

:User :GungeValve

:CupFactory

:Cup

:CupStack

:ValveControl

Figure 122: A continuum of refinement: real-world to code
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The same abstractions 
apply in software

When we look inside the software, we can continue to use the more general multiple-
participant actions, and objects that actually represent whole subsystems; but ulti-
mately, we get down to the level of individual message-sends between pairs of 
objects.1

Once again, the sequence diagrams help us illustrate particular cases, but we prefer to 
document the refinement using type diagrams. This gives us software component 
context diagrams:

and high-level design diagrams:

7.1.9 Reified and virtual abstractions

Some abstractions will 
also appear in a concrete 
form 

When designing objects inside the software, you have a choice about whether to reify 
abstract objects and actions: that is, represent them directly as software objects; or 
whether just to leave them as ideas in the design that help you understand the various 
configurations of objects and protocols of messages.

A ‘system’ object is com-
mon, but not all requests 
pass through it

Representing each entire system and each component as an object is usual, because it 
gives something to anchor the parts to. A more difficult decision is whether to make it 
the façade for the group of pieces it represents — that is, through which all communi-
cation with the outside world should go. Sometimes this works well: it helps ensure 
everything inside the component is consistent. Sometimes it is not efficient — any 
more than insisting that every communication with customers should go directly 
through the president of your company.

1. A significant difference between Catalysis notation and UML version 1.1 (current at the 
time of writing) is that UML does not have generalized actions in sequence diagrams; nor 
are the messages in a sequence diagram understood as instances of use-cases. However, at 
the message-passing level, our sequence diagrams are the same as UML.

Control Software

Gunge Valve

Cup Release

User

Figure 123: Context diagram (collaboration) for one software compon

Cup Factory Cup Cup Observer 

observesproduce

Valve Control

Cup Display 

Cup Stack

Figure 124: Collaboration between software components 
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7.1.10 Composition and Refinement

Compositional tech-
niques are elsewhere

Other forms of abstraction of abstraction and refinement, more related to the separa-
tion and subsequent joining of multiple views, are covered in Chapter 9, Composing 
Models and Specs (p.367).

7.1.11 Summary: kinds of abstraction

We need traceability 
through different 
abstractions

An abstraction presents material of interest to particular users, leaving out some 
detail, but without being inaccurate. Abstractions make it possible to understand 
complex systems; and to deal with the major issues before getting involved in the 
detail. In Catalysis, we can treat a multi-party interaction as one thing; or a group of 
objects as one; and at different layers of detail, we can choose to change the way we 
model the business and systems. But through all these transformations, we can still 
trace the relationships between business goals and program code, and therefore 
understand how changes in one will impact the other.

We’ve identified four particularly interesting varieties of abstraction:

• Operational — Pre/post (or rely/guarantee) specs.

• Model — Model attributes may be different from actual implementations.

• Action — A complex dialogue presented with a single overall pre/post or rely/
guarantee spec.

• Object — A group of objects presented as one object.
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7.2 Using refinement

Spec and implementa-
tion must match

When you write a requirements specification (in any style and language you like), you 
want it to be a true statement about the product that ends up being delivered. If QA 
shows that the product falls short of the spec, you fix the code; or, it turns out to be 
impractical to deliver what was first specified, you can change the specification. But 
one way or another, you can’t (or shouldn’t!) call the job complete until the delivered 
design matches the specified requirements.

Components should 
have up to date specifica-
tions

For valuable components (as opposed to throwaway assemblages of them), we 
believe in keeping the specification after you’ve written the code; and in keeping it up 
to date. Long term, the spec (and high-level design documents) helps to keep the 
design coherent, because people who do updates have a clearer idea of what the com-
ponent is about, and how it is supposed to work. Designs without good documents 
degenerate into fractal warts and patches, and pretty soon end up unmodifiable. 
Remember that over 70% of the effort on a typical piece of software is done after it 
was first delivered; and consider whether you want your vision of the design to be 
long-lived.

Spec and coding usually 
proceed concurrently

This is not to argue that you should complete the high-level documentation before 
embarking on coding. There are plenty of times when it’s a tactical necessity to do 
things the other way around. Prototypes, and Rapidly Approaching Deadlines are the 
usual reasons. The most useful cycle alternates between coding (to obtain feedback 
from testing and users, and to get things done) and specifying (to get overall insights). 
Never go beyond getting either cycle 80% more complete than the other. All we need 
is that, by the appropriate milestone, the specs should correctly describe the code.
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7.2.1 Documenting the refinement relation

Refinement relates two 
descriptions

The relationship between an abstraction and a refinement is the ‘refinement relation’. 
It is an assertion that one description of a configuration of objects and actions is a 
more abstract view of another.

7.2.1.1 Refinement and subtype

NotationThe refinement symbol is a version of the subtype symbol1. It states that the more 
detailed model achieves everything expected from the more abstract one. But where a 
subtype symbol says to the reader “the subtype is defined a priori as an extension of 
the supertype, having all its properties and more”, the refinement symbol says “the 
refinement, a self-contained model even without the abstraction, is believed to specify 
everything defined for the abstraction, and more”.

7.2.1.2 Refinement and aggregation

The aggregation symbol 
has a common idiomatic 
usage

There is also a slight difference between the refinement symbol and the diamond 
“aggregation” symbol. The diamond makes the abstract and the refined types (or 
actions) part of the same model: in these models, it is explicit that a wheel is a part of 
some particular car, and that there is some way of knowing which buy action a partic-

Company Coffee Addictssell coffee

Sales Dept

Accounts

Servicing

Machine

Site Manager

User

call

buy

lease

supplycollect

order

<<refines>>

Figure 125: The refinement symbol: collaboration refinement

1. UML 1.1 makes mention of refinement, with a default notation that uses a stereotype on the 
generic ‘dependency’ arrow. In our presentation here, we have chosen to highlight refine-
ment with a distinguished arrow.
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ular pay is part of e.g. some portion of the ‘retrieval’ is defined by the aggregation 
itself. The aggregation symbol is commonly used when, in a design, you have a reified 
and distinguished ‘head’ object representing the abstraction itself.

But the refinement symbol is somewhat more general: it says that, even if we didn’t 
think of it that way when creating one model, the other is nevertheless a more abstract 
or refined view of it; and we can deal with either separately.

Refinement is central to 
the design process 

In some idealized sense, every design project can be thought of as generating a series 
of refinements, even if some of them arise as a result of re-factoring or bottom-up 
abstraction. You begin with a general idea of what is required, refine it to a solid 
requirements spec, refine it further to a high-level design, and so on to detailed design 
and code. For example, you might start with very abstract actions between users and 
system, and refine down to the actual sequences of GUI actions required for each 
action. If the project is critical enough to be fully documented, each of these refine-
ment-layers is kept separately written-up; and just as importantly, the refinement-
relationships themselves are documented and checked.

Documentation includes 
rationale and justifica-
tion

Documenting a refinement means writing down:

• the reasons for choosing this realization from the alternatives (so those that follow 
won’t fall down the same pits you fell into along the way); and

• a justification for believing you’ve done the refinement correctly — that is, that 
the abstraction really does describe the realization accurately. (Doing this is an 
invaluable sanity check and helps reviewers and maintainers.)

Refinement documenta-
tion is attached to the 
refinement relation

Since refinement is a many-many relation, the refinement documentation shouldn’t 
properly attach to either the abstraction or the refinement, but to the refinement rela-
tionship between them. (A component you found in a library may be a good realiza-
tion of your requirements; but it will presumably fit others’ as well.)

Be pragmatic about the 
documentation

Now of course, if you’re designing a nuclear power station or a jumbo jet, we’d hope 
you would take all the above writing and verification very seriously, with each layer 
individually written up and each refinement carefully established. But for most of us, 
it’s both acceptable and desirable to opt for the somewhat more practical solution of 
clarifying some essential issues at the requirements level, then working on the design 
and code while resolving other issues, and only then updating a few class diagrams.

...but keep interoperabil-
ity needs in mind

Well, maybe. In the new world of component-based development, the successful com-
ponents will be those that interoperate with many others. Each interface will be 
designed to couple with a range of other components, and must be specified in a way 
that admits any component with the right behavior, and excludes others. And a 
designer aiming to meet a spec should be confident that it works and be able to justify 
that belief.

Wheel Car
14 pay buy

1 1

Figure 126: Refinement using "aggregation"
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We should therefore have some idea of what it means to conform to a specification — 
what has to be checked, and how you would go about it. In other words, documenting 
the refinement relation.

7.2.2 Refinement trees

Big refinements consist 
of smaller ones

Big refinements are made up of smaller ones. A requirements spec and a completely 
programmed implementation of it may look quite different; but their relationship can 
be seen as a combination of several smaller refinement steps.

In theory this can be 
traced; tools can help

So we can, in theory at least, 
relate a most abstract specifi-
cation to the most detailed 
program code (or business 
model) through a succession 
of primitive refinements, each 
documented by a complete 
model. If you have a very 
great deal of time to spare, 
you might try it for a small 
design! This is what comput-
ers are for, of course, and 
appropriate tools can do a 
great deal to help. 

In practice, we use the ideas 
more informally; and use 
design patterns as ready-
made refinement schemes.

7.2.3 Traceability and verification

Refinement enables 
traceability 

It is important to be able to understand how each business goal relates to each system 
requirement; and how each requirement relates to each facet of the design, and ulti-
mately each line of the code. Documenting the refinement relationships between these 
layers makes it easy to trace the impact of changes in the goals. 

It is naive to expect code, 
design, and business 
models to be the same

Traceability is a much-advertised claim of object-oriented design: because the classes 
in your program are the same as in your business analysis, so the story goes, you 
should easily be able to see the effects on your design of any changes in the business. 
But anyone who has done serious OO design knows that in practice, the designs can 
get pretty far from this simple ideal. Applying a variety of design patterns to general-
ize, improve decoupling, and optimize performance, you separate the simple analysis 
concepts into a plethora of delegations, policies, factories, and plug-in pieces.

Refinement re-links 
pieces

Documenting the refinement relation puts back the traceability, showing how each 
piece of the analysis relates to the design.

Figure 127: Refinements continue recursively
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Safety-critical projects 
may prove consistency

In safety critical systems, it is possible to document refinements precisely enough to 
perform automatic consistency checks on them. However, achieving this level of pre-
cision is rarely cost-effective, and we do not deal with that topic in this book.

For the majority of projects, it is sufficient to use pre/postconditions as the basis of 
test harnesses; and document just enough of a refinement that other developers and 
maintainers clearly see the design intent. We’ll see how to do this later in this chapter.
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7.3 A refinement example 

The sections that follow look in more detail at the four main kinds of refinement we 
mentioned above. This section introduces an example that runs through those sec-
tions.

7.3.1 A specification for a spreadsheet

Let’s look first at what can be done with a good abstract model. It’s a model of a self-
contained program; but it could equally well be a component in a larger system.

Spreadsheet modelFigure 128 shows a model of a spreadsheet, together with a Dictionary interpreting 
the meaning of the pieces in the model. A spreadsheet is a matrix of named cells, into 
each of which the user can type either a number or a formula. In this simplified exam-
ple, a formula can be only the sum of two other chosen cells (themselves either sum or 
number cells).

...with invariantsThe model shows exactly what is expected of a spreadsheet: that it maintains the 
arithmetic relationships between the cells, no matter how they are altered: in particu-
lar, the invariant “Sum::...” says that the value of every Sum-cell is always the addi-
tion of its two operands.

...in user’s vocabularyNotice that this is very much a diagram not of the code, but of what the user may 
expect. The boxes and lines illustrate the vocabulary of terms used to define the 
requirement. 

It does not commit to 
how things are inside

The box marked Cell, for example, represents the idea that a spreadsheet has a num-
ber of addressable units that can be displayed. It doesn’t say how they get displayed, 
and it doesn’t say that if you look inside the program code you’ll necessarily find a 
class called Cell. If the designer is keen on performance, some other internal structure 
might be thought more efficient. On the other hand, if the designer is interested in 
maintainability, using a structure that follows this model would be helpful to whoever 
will have to do the updates.

Like most, it is an incom-
plete model

The model doesn’t even say everything that you could think of to say about the 
requirements. For example, are the Cells arranged in any given order on the screen? 
How does the user refer to a Cell when making a Sum? If all the Cells won’t fit on the 
screen at a time, is there a scrolling mechanism? 

It’s part of the utility of abstract modeling that you can say or not say as many of these 
things as you like. And you can be as precise or ambiguous as you like — we could 
have put the “{Sum::...” invariant as a sentence in English. This facility for abstraction 
allows us to use modeling notation to focus just on the matters of most interest.

7.3.1.1 Using snapshots to animate the spec

The abstract model is still 
precise e.g. snapshots

Although (or perhaps because) the model omits a lot of the details you’d see in the 
code, you can do useful things with it. For example, we can draw ‘snapshots’ — 
instance diagrams that illustrate quite clearly what effect each operation has.
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Figure 128: Model for a Spreadsheet

1

Spreadsheet

Cell* Content

Sum Number
* *

left right

Sum :: 
value = left.content.value

+ right.content.value 

value

Blank
inv Blank:: value = 0 

1
shows content

1 1

setNumber(n)
setSum(Cell, Cell)

User

Spreadsheet Each instance is a collection of interrelated Cells. 

shows Every Spreadsheet contains a collection of Cells. (Often 
displayed in a 2-dimensional matrix, but other 
arrangements are possible. We say nothing here about 
what the user does to see the Cells.) 

Cell Each instanct is a displayable element that can be 
referred to, by the user (e.g. by name or pointing).

Content The information displayed in a Cell, which can be set 
by the user (by some means not defined here).

Number Each instance represents a number entered into a Cell 
directly by the user.

Sum Each instance represents a sum of the content of two 
other cells determined by the user.

Blank The initial content of all the Cells of a new Sheet.

User, Cell c ::
setNumber(n : int)

Represents the ability of the User to set a Cell’s content 
to be a Number.
Postcondition: Cell c’s content is a Number, with value 
== n.

User, Cell c ::
setSum(c1 : Cell, c2 : Cell)

Represents the ability of the User to set a Cell’s content 
to be the Sum of two other Cells. 

Postcondition: Cell c’s content is a Sum whose left and 
right are the Cells c1 and c2.

Precondition: c is not a descendant of c1 or c2

Spreadsheet Requirements

inv
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Snapshots illustrate specific example situations. Figure 129 shows a snapshots show-
ing the state of our spreadsheet before and after an operation. (The thicker lines and 
bold type represent the state after the operation.) 

..easily describe net 
desired effect

Notice that because we are dealing with a requirements model here, we show no mes-
sages (function calls) between the objects: those will be decided in the design process. 
Here we’re only concerned with the effects of the operation invoked by the user. This 
is part of how the layering of decisions works in Catalysis: we start with the effects of 
operations, and then work out how they are implemented in terms of collaborations 
between objects.

Figure 129: Spreadsheet snapshots

A5 :Cell

C6 :Cell

:Number

value==6

:Number

value==4

B4 :Cell

:Sum

value==14 23

:Number

value==4

C2.setSum(A2, B3)

C2 :Cell

:Sum

value==13

B3 :Cell

:Number

value==3

A2 :Cell

:Sum

value==10
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7.3.2 An implementation

Part of the program code Now let’s consider an implementation. The first thing to be said is that the program 
code is much larger than the model, so we’ll only see glimpses of it. Here is some:

(The “_I” suffixes distinguish the ‘implementation’.)

It has differences from 
the model

Now the first thing a reviewer might notice is that the classes I have written don’t 
seem to correspond directly to the classes mentioned in the specification. Their 
attributes are different, etc. “We are doing object-oriented design,” says the reviewer; 
“Your code ought to mirror the spec. It says so in fifty different textbooks.” 

...but the internals 
should not matter

I am quick to my defense. Point (a), Encapsulation: The spreadsheet as a whole, seen 
through the eyes of a user (including other programs driving it through an API), does 
exactly what the spec leads them to expect. They won’t know the difference. This is 
encapsulation, “also mentioned in about a hundred and fifty different books,” I point 
out.

... it is performance opti-
mized

Point (b), Engineering: while the spec was written to be easily understood and general 
to all implementations, my particular implementation is better. It works faster, uses 
fewer resources, and is better decoupled, than some amateur attempt that slavishly 
follows the model in the spec. And for many programs, there would be practical 
issues like persistence not dealt with in the spec.

...and it can do much 
more

“And fourthly,” I add, “my program is a whole lot more than just a spreadsheet: to 
use it as such is to play Chopsticks upon the mighty organ of a grand cathedral; to ask 
Sean Connery to advertise socks.” In other words, the spec from my point of view is 
partial, expressing the requirements of only one class of user; and so the implementa-

package SpreadSheetImpl_1;

class SpreadSheet_I // This class implements SpreadSheet
{

private Cell_I [ ] cells; // array of cells of my spreadsheet
... // various code here

}

class Cell_I
{

private int m_value; // The current value of the Cell
private Sum_I sumpart; // Null if it s a plain number
public int value ( ) { return m_value; }
// will need some mechanism to keep m_value in sync with sumpart!
... // More code for manipulating Cells goes here

}

class Sum_I // Represents Sums
{

private Cell_I [ ] operands; // An array of several operands
int get_value ( )
{ int sum=0;

for (int i= 0; i<operands.length; i++)
sum += operands[i].value( );

}
... // More code ...
}

Figure 130: Implementation code for spreadsheet
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tion classes you see here are chosen to suit a much broader scheme. Nevertheless, I am 
able to function merely as a spreadsheet when required, and wish to be validated as 
such against the spec.

7.3.3 The refinement relationship

Bottom line: is it a valid 
refinement?

Now whether you believe all that about my spreadsheet is not too important here. 
Certainly there are many cases where performance, decoupling, or a partial spec lead 
to differences between model and code. So the reviewer is faced with trying to deter-
mine whether there is some correspondence between them: whether the code con-
forms to the spec (or ‘refines’ it).

No need to wait for test-
ing

Naturally, proper testing will be the final judge. But understanding the conformance 
relationship allows an earlier check, can clarify the design and the rationale for the 
differences. Also, and very importantly, it provides traceability: the ability to see how 
any changes in either the spec or the code impact the other.

As we’ve seen, we can distinguish a few main primitive kinds of refinement. Combi-
nations of them cover most of the valid cases: you can explain most design decisions 
in terms of them. In a large development, the usual layers of requirements, high-level 
design, detailed design, and code, can be seen as successive refinements.

...if we check refinementsUnderstanding refinement has several advantages:

• It makes clear the difference between a model of requirements and a diagram 
more directly representing the code (one box per class).

• It makes it possible to justify design decisions more clearly. 

• It provides a clear trace from design to implementation.

Design patterns are 
canned refinements

Many of the well-known design patterns are refinements applied in particular ways. 
The refinements we’re about to discuss are, in some sense, the most primitive design 
patterns; they are themselves combined in various ways to define the more popular 
design patterns.

We’ll now see examples of the four refinements we looked at in Section 7.1.3.3, “Four 
basic kinds of abstraction,” on page 267.
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7.4 Refinement #1: Model conformance

We make a drawing of 
the code

The reviewer begins by getting me to produce a drawing of my code. Figure 131 
shows a view focusing on the external user operations and their postconditions. You 
can see the direct correspondence between the static model and the variables. Indeed, 
there are tools that will take the code and produce the basis of the diagram.

check how the abstract 
model is represented

So the reviewer begins with how the information in the model is represented.

“How is the spec’s Sum represented?” she asks.
“By my Sum_I” I reply. 
“So where are the left and right attributes of a Sum?” 
“No problem. All the information mentioned by the requirements is there --- it’s just 
that some of the names have changed. If you want to get the left and right operands of 
any Sum, look at the first and second items of my operands array. But since the 
requirements doesn’t call for any operations that directly ask for the left or right, I 
haven’t bothered to write them.” Nevertheless, anyone using my code would see it 
behaving as they expect from reading the spec. 

class Cell_I
{ private int value;
   Sum_I sumpart;   // null for a Number
...

class Sum_I
{  Cell_I operands [ ];      // array
...

setAddition(Cell)

addOperand(Cell)

Figure 131: A picture of my code

User 1
Spreadsheet 1

SpreadSheet Implementation 1

Cell_I
value

Sum_I
sumpart

0,1

*operands {seq}
*

setNumber(int)

User, Cell_I ci ::
setAddition(ci1: Cell_I )

post: ci.sumpart is a new Sum_I with ci1 as its 
only operand

User, Cell_I ci ::
addOperand(ci2: Cell_I)

post: ci2 is appended to ci.sumpart.operands 

User, Cell_I ci :: 
setNumber(n : int)

post: ci.sumpart==null && ci.value==n

Cell_I :: sumpart <> null => 
value = sumpart.operands->sum
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7.4.1 What a type model means and doesn’t mean

The types in a model provide a vocabulary for describing a component’s state. The 
terms can be used to define the effects of actions. However, the model does not pro-
vide any information about the internal structure of the component. 

But we need to move on 
to behaviors

A static model (types, attributes, and associations) provides, by itself, no useful infor-
mation about what behavior to expect. Only the action-specifications based on it pro-
vide that. The complete specification is a true one if the statements it makes or implies 
about the component’s behavior (response to actions) are always correct. Features of a 
static type model not used by action specifications are redundant, having no effect on 
the specification’s meaning.

7.4.2 Documenting model conformance with a Retrieval

First ‘retrieve’ the model 
attributes in the code

The general rule is that, for each attribute or association in the abstract models, it 
should be possible to write a read-only function in the implementation code that 
abstracts (or ‘retrieves’) its value. Here are the retrievals for Sum_I I’ve just mentioned 
to my reviewer:

class Sum_I
{  private Cell_I [ ] operands;     // array
   Cell_I left ( ) {return operands [0]; }

Cell_I right ( ) {return operands [1];}
...

It does not matter if the 
retrieval is complex

These abstractions happen to be particularly easy — the correspondence to the spec 
model is not too far removed; some are more complex. But it doesn’t matter if an 
abstraction function is hopelessly inefficient: it only needs to demonstrate that the 
information is in there somewhere. Nor does it matter if there is more information in 
the code than in the model — I can store more than just two operands, though readers 
of the official spec won’t use more than two.

7.4.2.1 Drawing a model conformance

Drawing a retrievalRetrievals can be made more clear with a diagram. It can be very helpful to draw both 
models on a single diagram. You can then visually relate the elements across the 
refinement using associations, and write invariants that define the abstraction func-
tions for all attributes in the spec1. These associations are introduced specifically for 
this purpose, and are distinguished with a “//” marker. The figure below shows that 
each Cell_I in the implementation corresponds 1-to-1 with a Cell in the spec; ditto for 

1. This refinement could even be documented in a separate package from either the spec, or 
an implementation ()
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Sum_I and Sum. So any specification related to a Cell or Sum can be traced to the 
implementation. All we need is to document how the attributes of Cell or Sum can be 
computed from the attributes of Cell_I or Sum_I. 

Note that Content has no direct counterpart in the implementation, unless it is a sum; 
in which case it corresponds to Sum_I. But what about Number and Blank? For such 
cases, step back a level to Cell, and define the cell’s attributes to include those of con-
tent e.g. cell.content.value is defined in the figure above. Check 

7.4.3 Testing using abstraction functions

Useful for testing QA departments may insist that such retrieval (abstraction) functions should be writ-
ten down, or even written into the code. Even though they are not always actually 
used in the delivered code, they are useful:

• Writing them is a good cross-check, helping to expose inconsistencies that might 
otherwise have been glossed over.

• They make an unambiguous statement about exactly how the abstract model has 
been represented in your code.

• For testing purposes, testbeds can be written that execute the postconditions and 
invariants defined in the requirements models. These talk in terms of the abstract 
model’s attributes, so the abstraction functions will be needed to get their values. 

For example, recall we wrote one of the invariants as:

Sum:: value == left.content.value + right.content.value

Cell_I
value

Sum_I
sumpart

0,1

*operands {seq}
*

1Cell Content

Sum
* *

left 1 right 1 value
1

content

Sum:: 
-- left, right cells are first/second operand
left = sum_I.operands[1].cell
right = sum_I.operands[2].cell

Number

Blank

Cell:: 
-- content’s value is cell_I’s value 
content.value = cell_I.value
-- if contents is Sum, sumpart <> null
content:Sum => cell_I.sumpart <> null

special associations for “retrieval”

Figure 132: Retrieval diagram
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Now that we’ve defined what left and right mean as executable functions — and could 
do the same with content and value — we should be able to insert this expression in 
our code, and use it as a debugging check before and after every operation. 

7.4.4 Model conformance summary

Where possible, map-
ping should be direct, 
except for...

We’ve seen how a model can be very different from the code, and yet still represent 
the same information. Now, as we’ve said before, the Golden Rule of object oriented 
design is to choose your classes to mirror your specification model. When that is pos-
sible, the abstractions are trivial, a 1-1 correspondence. But there are several circum-
stances where it isn’t possible, and model refinement gives us a way of understanding 
the relationships. Typical cases include:

...performance,• The model that gives best execution performance is very different from one that 
explains clearly to clients what the object does.

partial views,• The implementation adds a lot to the specified functionality. It is possible for one 
object to satisfy several specifications, especially where it plays roles in separate 
collaborations (as we will see in later chapters). Each role-specification will have 
its own model, which will have to be related to the implementation.

and purchased parts• You specified a requirement, and then went out and bought a component that 
comes with its own spec. The first thing you have to work out is how their model 
corresponds to yours.

We’ve also said before, that it is a matter of local policy, how formal you get in your 
documentation. When you’re plugging components together to get an early product 
delivery, you don’t care about all this. But when you’re designing a component you 
hope will be reused many times, it is worth the extra effort. And even if you don’t go 
to the trouble of writing the abstraction functions, it is useful to do a mental check that 
you believe they could be written if you were challenged to.

7.4.5 Testing by representing the specification model in code

Ideally, we would repre-
sent the spec in code: a 
test harness

What the Quality Assurance department really wants is to be able to represent a spec 
in code, so that it can be run as a test-harness. They want to be able to write one set of 
invariants, postconditions, and so on, that every candidate implementation can be 
tested against. As far as they are concerned, the spec-writer writes a spec and associ-
ated test assertions; and each hopeful designer has to supply two things: the design, 
plus a set of abstractions that enable the test assertions to execute.

This very rigorous view of specification and testing leads to a view in which all mod-
els can be cast into program code (which is not so tedious as it was before code-gener-
ating tools). The types in a specification turn into abstract classes, of which the 
designer is expected to supply implementations. Figure 133 shows this done for the 
invariants; postconditions are omitted.

The coded specs move 
onto abstract classes

(In Java, you’d think spec types would be written as interfaces. Unfortunately, if we 
want to put the invariants and postconditions into the types themselves in real execut-
able form, they need to be classes. This has the uncomfortable effect of disallowing 
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Figure 133: Specification directly translated to code, and implementation with retrievals

Specification as Code
package SpreadSheetSpec;

abstract class SpreadSheet
{

public abstract Cell [ ] shows ();
// Cell [ ] --array of Cells
// abstract --header only, no body

// invariant true if all constituents OK
public boolean invariant ( )

{ boolean inv= true;
for (int i= 0; 

i<shows().length; i++)
inv &&= shows()[i].invariant();

return inv;
} }

abstract class Cell 
{ abstract Content content ();
//invariant true if content is OK

boolean invariant ( )
{ return content( ).invariant(); }

}
abstract class Content
{ abstract int value ( );
// default invariant - depends on subclass:

boolean invariant ( ) { return true; }
}

abstract class Sum extends Content
{

abstract Cell left();
abstract Cell right();

// crucial spreadsheet invariant 
boolean invariant ( ) 
{ return super.invariant() &&

value() == 
left().content().value( )

+ right().content().value( ); 
} }

abstract class Number extends Content
{

abtsract void set_value (int v);
// post: v == value()

}

class Blank extends Content
{

boolean invariant ( ) 
{ return super.invariant() 

&& value()==0 ;
}
// This is so obvious ... let s just do it
public int value ( ) { return 0; }

}

Implementation (part)
package SpreadSheetImpl;
import SpreadSheetSpec;

class SpreadSheet1 extends SpreadSheet
// This class implements SpreadSheet

{ private Cell_I [ ] cells;
//retrieval:

public Cell [ ] shows ( )
{ Cell [ ] r= new Cell [cells.length];

for (int i= 0; i<r.length; i++)
r[i]= cells[i];

return r;
} }

class Cell_I extends Cell
{ private boolean isBlank= true;

private int m_value; // current value
private Sum_I sumpart; // null for Number

// retrieval as a Cell:
public Content content () 
{ if (isBlank) return new Blank( );

else if (sumpart==null)
return new NumberCellAdapter(this);

else
return sumpart;

}
public int value () {if (sumreturn m_value;}

// services retrieval of Number:
void set_value (int v) { m_value= v; }

}

class Sum_I extends Sum
{ private Cell_I [ ] operands;

public int value ( ) { ...add operands...}
// retrievals as a Sum:

public Cell left ( )
{ if (operands.length == 0)

return new Cell_I ( ); //blank
else return operands[0];

}
public Cell right ( )
{ if (operands.length <= 1)

return new Cell_I ( ); //blank
else return operands[1];

} ... }

// This class is used for retrieval 
// when debugging -- not required in delivery.
class NumberAdapter extends Number
{ private Cell_I myCell;

NumberAdapter (Cell_I c) // constructor
{ myCell= c; }

public int value ( ) 
{ return myCell.value(); }

public void setValue (int v)
{ myCell.setValue(v); }

}
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one implementation class from playing more than one role. An alternative is to put all 
the test apparatus in a separate set of classes that interrogates the states of the types. 
Once again, we find ourselves applauding Eiffel, in which all this is natural and easy.)

Spec and implementa-
tion, both in code

If we can write the whole thing, spec and all, in code, we can also show both the 
abstract model and the more detailed design in one picture: see Figure 134.

But our reviewer has been thinking. “I notice your left and right return Cell_I, so that 
must be your representation of Cell, right? So what’s a Cell_I’s content?”

“In my terms, that’s its sumpart”

“But that only works if the Cell’s content is a Sum. What if it’s a Number or a Blank?” 

Some model attribute 
types may not corre-
spond to implementation

Well, good question. The spec always models every Cell as having a Content, even if 
it’s just a plain Number; while I keep the value in the Cell_I itself, and only use an 
extra object to deal with Sums. The information is all in there, but distributed in a dif-
ferent way. But it does present an obstacle to the executable invariants idea: a term 
like left().content().value() wouldn’t work where left() is a plain number-cell, since it 
doesn’t have a content. 

We can either just docu-
ment the retrieval...

What I really would like to say is that expressions in the spec like “content.value” 
should be translated into the terms of the implementation as a whole: the con-
tent.value of a Cell_I is its sumpart.value if it’s a sum, and its own variable m_value 
otherwise. This is perfectly reasonable if all I want to do is document the abstraction 
function and persuade my reviewer that my code is OK. 

1

Spreadsheet

Cell* Content

Sum Number
* *

left right

inv Sum :: 
value == left.content.value

+ right.content.value

value : int

Blank
{ Blank:: value == 0 }

1
shows content

1 1

Spreadsheet 1

Cell_I

value : int
Sum_I

sumpart
0,1

*operands

*
*cells

Figure 134:  Spec and code, showing main correspondences

isBlank : Boolean
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..or, to test, add imple-
mentation adapters

But for executable test assertions, content() must return something that will then 
return the appropriate value(). This leads to the invention of the class NumberAdapter 
(so now we have abstraction classes as well as functions). It can be kept fairly mini-
mal: all it has to do is know our implementation well enough to extract any informa-
tion required by the test assertions in the spec type Number.

A pattern for executable 
specs

So the general pattern for executable abstractions is that for every type in the spec, the 
designer provides a direct subclass. Sometimes these can be the classes of the imple-
mentation; in practice they often have to be separately written — mostly because your 
classes have more interesting things to be subclasses of. Each adapter retrieves from 
the implementation that part of the component’s state that its specification supertype 
represents. Notice that our adapters are created only when needed.

Violated encapsulation? What has happened to our ideal of encapsulation? We started out with the idea that 
internal workings unseen by the user could be designed any way you like; now we’ve 
had to put back all the structure of the model.

Not really; this is for test 
only

Well, not quite. The adapter classes only have to translate, and are there only for veri-
fication. The real implementation still does the hard work. And you’ll only need them 
if your QA department is pretty stringent!

And often useful for 
other reasons as well

As it turns out in practice, adapters of this kind are frequently needed for each exter-
nal interface that a component has — whether it is a user interface or to another com-
ponent. This is because the component’s internal state must be translated into the 
view understood by each external agent. (For human users, the GUI usually encom-
passes the adapter.) 

7.4.5.1 Specifications in code — summary

Specifications can be written not just as pictorial models, but also in the form of exe-
cutable test frameworks. The benefit is a much stronger assurance of conformance, 
especially where there may be a variety of candidate implementations.

Spec

Adapter Implementation

Implementation Package

User user interface

Figure 135: Test by adapting the implementation

Business
Core Adapter

Spec

Adapter

Spec

interface interface

Component

Figure 136: Adaptors for other interfaces
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Implementers have to provide executable abstraction functions, to translate from the 
component’s internal vocabulary to that of the specification. Often, this leads to pro-
viding an ‘adaptor,’ a set of classes directly mirroring the types in the spec. However, 
adaptors can be useful at the interface of a component, in addition to their role in ver-
ification.
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7.5 Refinement #2: Action conformance

A specified function is 
missing — refined to a 
collaboration

The next thing my code reviewer notices is that nowhere is there a function set-
Sum(Cell, Cell). I explain that I have decided to refine this action to a finer-grained 
series of interactions between the User and the Spreadsheet — see Figure 131 on 
page 290. To set a cell to be the sum of two others as per requirement, the user per-
forms this scenario: 

• select the Cell in question by clicking the mouse;

• setAddition: type “=” and click one of the operand Cells;

• addOperand: type “+” and click on the other.

Same overall effect The requirement is provided for by a combination of features in my implementation. 
My “=” operation turns the Cell into a single-operand sum, and each “+” operation 
adds another operand. So although there is no single operation with the signature set-
Sum(Cell, Cell), either at the user interface, or anywhere inside the code, the user is 
nevertheless able to achieve the specified effect.

It is an important feature of a Catalysis action that it represents a goal attained by 
some collaboration between the participants, without stating how. The goal can be 
unambiguously documented with a postcondition or guarantee condition. A confor-
mant implementation is one that provides the means of achieving the goal. 

A collaboration changes 
protocol, and affects the 
user

Different implementations will require different behavior on the part of every partici-
pant, since they will involve different protocols of interaction. A user who knows how 
to use my spreadsheet-implementation will not necessarily know how to use another 
design. It is the collaboration that has been refined here, not the participants individu-
ally. 

7.5.1 Action conformance: realization of business goals

Software specs are (parts 
of) business goals

In general, the specification-actions are about the business goals of the system. “The 
user of our drawing-editor must be able to duplicate picture elements; and must be 
able to copy them from one drawing to another.” The actual actions we provide break 
up these larger goals into decoupled pieces: we invent a clipboard and provide cut 
and paste operations — with which the user can achieve the stated goals. 

Another example: “The customer of our bank must be able to get money at any time 
of the day or night.” So we invent cash machines and cash cards, and provide actions 
of inserting card into machine, selecting service, etc. — with which the user, with the 
help of a good user interface, can achieve the stated goals.
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7.5.2 What an action means and doesn’t mean

7.5.2.1 Defining an action

Actions have partici-
pants and parameters

The action represents an effect which is achieved by 
some interaction between the participants. You may 
draw an action with any number of participants and 
parameters, each of which has a type.

An action ellipse is a variant of the type box, and may 
have labeled ‘associations’, its participants; the 
‘attributes’ are its parameters.

You can specify its effect in any desired degree of for-
mality or informality, but should for preference refer 
to attributes and associations of any of the partici-
pants’ and parameters’ types.

..and individual occur-
rences

An occurrence of an action may be shown as a hori-
zontal bar on a sequence diagram, linking the 
instances affected. To show an action extended in 
time, draw two bars linked with a dotted vertical bar.

An action is declared within the context of a particu-
lar model, at a given level of detail.

7.5.2.2 The meaning of an action

The ellipse defines a state 
change caused by some 
interactions

Drawing an ellipse on a type diagram signifies that this change of state, documented 
as the spec of this action, may occur as a result of interactions between instances of 
these types. The parameters and participants of an action together list those aspects 
that can differ, from one occurrence to another. Any occurrence of the action may, on 
refinement, be found to consist of a set of smaller actions, involving parameters and 
participants not mentioned in the more abstract model.

The pre/post apply to all 
(refined) occurrences

The postcondition states a fact about changes that can be seen in any occurrence, com-
paring the participants’ states at the beginning and end of the occurrence. Other 
changes not mentioned by the postcondition may also have happened. Any precondi-
tion states the circumstances under which an occurrence can begin. 

Actions are non-atomicAn occurrence of an action extends in time: other actions may occur concurrently.

Rely and guarantee 
define concurrency

Any guarantee condition states a fact that will be maintained true by the refining col-
laboration of the participants while the action is in progress. Any rely condition states 
a fact that must be maintained true by other objects, throughout the period of an 
occurrence. It sets limits on the possible effects of concurrent actions.

The only objects affected are the participants and parameters. Any other objects men-
tioned in the same model are unaffected. 

Participant type 1

Participant type 2

attrib_a : T1

attrib_b: T2

act1 (p:T3)

action act1 (p:T3)
post ...x.attrib_a ... z...

x y*

z

pt1 pt2 pt3

act1(p)
x y z
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7.5.3 Checking action conformance

Mapping of action refine-
ments

We need to check that, for every action defined in the Specification, there is some com-
bination of Implementation actions that the user could follow, to achieve the defined 
goal. Let’s take setSum as an example.

These action specs were given (in Figure 128 and Figure 131):

Abstract and concrete 
snapshots...

A little thought suggests that a setAddition followed by an addOperand should 
achieve the effect of a setSum. A comparison of snapshots in the two views will help; 
the arrows show which links are created by each action:

Now we can see that performing the sequence

<ci.setAddition(ci1), ci.addOperand(ci2)> 

should achieve an effect corresponding to the spec’s c.setSum(c1, c2). To be abso-
lutely sure, we can use the abstraction functions we worked out earlier. 

with retrieval functions, 
show the mapping

setSum’s postcondition talks about the left and right of Cell c. In our implementation, 
we claim that Cell_Is represent Cells, and so in our example snapshot, cin represents 
cn.; we also decided that content.left in the spec is represented by sumpart.oper-
ands[0]. So does this sequence of steps achieve that “Cell c’s content is a Sum whose 

From the Spec:
User, Cell c ::
setSum(ci1:Cell , ci2:Cell)

Represents the ability of the User to set a Cell’s content to 
be the Sum of two other Cells. 

Post: Cell c’s content is a Sum whose left and right are 
the Cells c1 and c2.

From the Implementation:
User, Cell_I ci ::
setAddition(ci1:Cell_I)

Post: ci.sumpart is a new Sum_I with ci1 as its only 
operand

User, Cell_I ci ::
addOperand(ci2:Cell_I )

Post: c2 is appended to ci.sumpart.operands 

Pre: ci.sumpart != null — this is already a Sum

ci : Cell_I

 : Sum_I

sumpart

ci1 : Cell_I ci2 : Cell_I

operands

2. ci.addOperand(ci2)

1. ci.setAddition(ci1)c : Cell

 : Sum

c1 : Cell c2 : Cell

c.setSum(c1, c2)

Specification view Implementation view

left right

content

Figure 137: Snapshots in specification and implementation
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left is Cell c1”? Yes, because the first step makes ci.sumpart.operands[0] ==ci1. And 
does it achieve that c.content.right == c2? Yes, because the second step achieves 
ci.sumpart.operands[1] == ci2. 

7.5.4 Documenting action conformance

Refinement outlines the 
mapping

We can document the refinement as in Figure 138. The diamond “assembly” symbol 
just says that there is some way in which the specification effect can be achieved by 
some combination of the implementation actions. But exactly what sort of combina-
tion — concurrent, sequential, some sort of loop — needs to be said separately. 

Statechart can show tem-
poral combination

In the case of a sequence, this can be done with a statechart. Each implementation 
action is a transition on the diagram; each state represents how much of the overall job 
has been achieved so far.

Exception paths can be 
added separately

This one is very simple: the initial setAddition takes us into an intermediate state, 
OneOperandEntered, from which an addOperand will complete the overall setSum 
action. This achievement is denoted by the caret mark “^”. It is not specified here, 
what happens if addOperand occurs when we’re no in OneOpnd, or what happens if 
setAddition is performed again when we’re in OneOpnd. Those exceptions can be 
shown separately.

Can add guards etc. 
scoped within statechart

Names are chosen in the statechart (here, c1 and c2), to indicate how the arguments of 
the actions are related. You can use the names in guards and postconditions written in 
the chart, to show other constraints and results in more detail.

As usual, the diagrams are not intended to be a substitute for good explanation in 
your natural language: they are supposed to complement it and take out the ambigu-
ities. 

7.5.5 Testing action conformance

Testing is trickierTesting action conformance at run time isn’t so easy as just inserting a few lines of 
code to monitor the postconditions. The problem is that there is nowhere that my user 
explicitly says to my implementation, “Now I want to do a setSum”. It’s the same 
with our other examples: a user doesn’t say to the drawing program “now I’m going 
to move a shape from one drawing to another” — they just use the select, cut and 
paste operations in such a way as to achieve that.

Figure 138: Action conformance

^setSum(c1, c2)

addOperand(c2)

setAddition(c1)

OneOperandEntered

setSum

setAddition addOperand

1 1..*
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But can still be auto-
mated

Therefore we have two options: to write a test harness that performs the requisite 
sequences and checks the postconditions by comparing states before and after; or to 
perform the equivalent checks manually, following a written test procedure. This is a 
matter of policy in your project — each approach will be appropriate in different cir-
cumstances. Either way, the documented action conformance should be used to guide 
the creation of the tests; and the retrievals (whether just documented, or actually 
coded as we saw earlier) provide the mapping between the different levels of model.

7.5.6 Action conformance and layered design

7.5.6.1 Action refinement brings model refinement

Action and model refine-
ment go together

Action refinement is nearly always associated with model refinement. The more 
detailed model needs more information, in order to represent the intermediate states. 

Refined model tracks 
intermediate states

Action refinement is about taking some large interaction with many parameters, and 
breaking it down into several steps with fewer and simpler parameters. For example, 
“get_cash(ATM, person, account, $)” breaks down to several steps like 
insert_card(ATM, card) and enter_amount($) each of which identifies just a few 
parameters at a time. After the first step, the ATM system needs to remember whose 
card has been inserted, so that when the later $ step happens, it knows which account 
to debit. The association of “Account x currently using ATM y” is not needed at the 
more abstract level. Ultimately, the process can be taken right down to individual key-
strokes and mouse clicks.

For example, selecting a 
cell

In our spreadsheet, we glossed over something of this nature. We originally said that 
the user first selects a cell, and then performs a setAddition operation, to identify the 
first operand. In other words, select(Cell_I) sets some current_focus attribute of the 
spreadsheet as a whole; and setAddition’s postcondition should properly have been 
written in terms of current_focus.

action setAddition (ci1: Cell_I)
post: current_focus.sumpart is a new Sum_I with ci1 as its only operand

Person

pocket: $

Bank

Account

balance:$
get_cash

post: More in person’s pocket,
less in account’s balance

Person

ATM
Account

balance:$

current_user

0,1
0,1

Bank

action insert_card 
post this person’s Account is

action enter_amount ($)
post debit the current_user’s balance

current_user of this ATM

pocket: $

Abstract model More detailed model

action get_cash

Figure 139: Action refinement means intermediate attribute
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...down to mouse co-
ordinates

And of course, we can take the action refinement even further. How is a setAddition 
performed? By typing ‘=’ and clicking in a Cell. For that we need even more model: to 
record that after the ‘=’, we’re now in the ‘identify Cell for adding’ state; and to map 
mouse coordinates to Cells — yes, finally, we’ve got down to something that uses the 
graphical layout of the spreadsheet.

7.5.6.2 Reifying actions

To have a concrete repre-
sentation of a concept

‘Reification’ means making real — we use it to mean making an object out of some 
concept. In a model, we can feel free to represent any concept we like as an object; in a 
design, reification is the decision to write a class to represent that concept.

Abstract action is often 
reified in software...

It is often useful to represent an action as an object, particularly an abstract action 
with refinements. Its purpose is to guide the refined actions through the steps that 
lead to the achievement of the abstract action’s postcondition; and to hold the extra 
information that we have seen is always required to represent how far the interaction 
has progressed.

So in the bank example, we might create an ATM_transaction object as soon as a user 
inserts a card. This would keep all the information about which account has been 
selected, what the current screen display should be, what the menu options are, and 
so on.

Secondary purposes to reified action objects include: forming a record of the action 
after it has completed, for audit trail purposes; and keeping the information necessary 
for an ‘undo’ operation. (See [Gamma 94], Command..) This transaction object is also 
the place to put all the functionality about exceptional outcomes, rollbacks, and so on.

...and in the real worldWe can see reified actions in real-world business transactions. An ‘order’ is the busi-
ness concept representing the progression of a ‘buy’ action through various sub-
actions such as asking for the goods, paying, delivery. An ‘account’ is the reification of 
the ongoing action of entrusting your money to your bank. 

These are called ‘control’ 
objects

Reified actions are often called ‘control objects’ or ‘transaction objects’. Whenever we 
draw an action ellipse on a type diagram, we are really drawing a type of object — 
which might or might not be reified in an implementation.

It is a direct correspon-
dence

And it’s easy to see the direct correspondence: the participants of the action are drawn 
as, and are, associations of the reified action; the action’s parameters, variable values 
we don’t bother to depict as links on the diagram, are the object’s attributes: 

Person Account

ATM

get_cash(amount:$)

1

1 1

Person Account

ATM

Get_cash

1

1 1

amount : $

Figure 140: Reification of "get_cash" action
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As we put in detail about the constituent actions, the extra information is added to 
this object. The state diagram we drew, depicting the correspondence between the 
abstract and detailed actions, becomes the state chart of this object.

7.5.6.3 Action refinement and design layers

Reified actions show up 
at all levels

The relationships between abstract actions and their more detailed constituents covers 
a scale from individual keystrokes or electrical signals, to large-scale operations. The 
objects that reify these actions range from GUI controllers to whole application pro-
grams: for example, the operations of editing words and pictures in a drawing pro-
gram can be seen as refinements of the overall action of creating or updating a 
document; the in-memory version of the document, and mechanisms such as the cur-
sor and scrollbars, are part of the extra information attached to the object at the more 
detailed level. At an even bigger scale, workflow and teamwork systems help control 
the progress of a project through many individual tasks, with documents as interme-
diate artifacts.

They also often separate 
architectural layers

Within a software design, the different levels of refinement are generally associated 
with different, decoupled, layers in the software. We can see this, for example, in the 
conventional separation into business and GUI layers. We can also see it in communi-
cations protocols, from the individual bits up through to the secure movement of files 
and web pages. 

7.5.7 Action conformance within software

Actions defer software 
protocols, not just UI

Action refinement is not just about user interactions. The same principle can be used 
when describing dialogues between objects in the software. This enables collabora-
tions to be described in terms of the effects achieved by the collaborations, before 
going into the precise nature of the dialogue.

e.g. change-propagation 
on Cells

For example, one of the invariants of the spreadsheet implementation is that the value 
of a Cell_I with a sumpart shall always be the sum of sumpart.operands. To achieve 
this, my design makes each Sum register as an observer of its operand Cells. When 
any Cell’s value changes, it will notify all its observers; Sums in turn notify their par-
ent Cells. The effect is to propagate any change in a value.

We can be precise whilst 
deferring protocol detail

We can document that requirement, whilst deferring the details of how the change is 
propagated. Does a Cell send the new value in the notify message? Or the difference 
between old and new values? Or does it send the notification without a value, and let 
the observer come back and ask for it? In the midst of creating the grand scheme of 
our design, we don’t care: such details can be worked out later, we want to get on to 
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other important issues first. The art of abstraction is about not getting bogged down in 
detail! All we need do at this stage is to record the relationship and the effect it 
achieves:

7.5.8 Action conformance — Summary

Actions are used to describe the way in which objects collaborate — whether they are 
people, hardware, or software. Actions are primarily described by their effects on the 
participants; and secondarily as a series of steps, or another refinement to smaller 
actions.

Action abstraction allows us to describe a complex business or software interaction as 
a single entity. Action refinement can be traced all the way from business goals down 
to the fine detail of keystrokes and bits in wires. 

A useful technique in documenting action conformance is to draw a statechart of the 
progress of the abstract action through smaller steps.

Cell

int value

Sum
update

Cell c, Sum s :: c.value <> c@pre.value && c in s.operands => update ( )

post: The difference in value is propagated to the Sum.
c.value – c@pre.value == s.~sumpart.value – s@pre.~sumpart.value

update occurs whenever any operation changes the Cell’s value

sc

Figure 141: Deferring update protocol
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7.6 Refinement#3: Object conformance

Object conformance means recognizing that a particular single object is an abstraction 
representing several constituent parts; and that the state and responsibilities attrib-
uted to the abstract object are in fact distributed between the constituents.

Often goes with action 
refinement

Object conformance often accompanies action conformance, when it turns out that the 
detailed dialogue is not conducted between the participants as wholes, but between 
their parts. You can get cash from a Bank, but more specifically from one of its cashiers 
or ATMs. In fact, looking at the actions in detail, when you receive cash from an ATM, 
it actually comes out of its money-dispenser.

In Catalysis, we separate writing the requirements of a system from designing the 
internal messages that deal with each action. In requirements specs, we treat the sys-
tem or component we’re designing as a single object. The closer inspection of a system 
to treat it as a set of interacting objects is but one example of object refinement.

Process is entirely fractal The process can be fractal: like all of our techniques, it applies as well to a complete 
system as to a small object inside the software. A system design can start by refining 
into major components, and define the high-level actions between them. Subse-
quently, those actions can be refined to provide more interactive detail; and each com-
ponent can be itself be refined into constituent objects; and so on, until the actions are 
individual messages, and the objects are things you can write directly in your favorite 
programming language. 

‘Zoom’ in or out Looking in the other direction, the system we’re interested in designing is part of 
some larger machine or organization or software system. By ‘zooming out’, we can 
understand better how our design will help fulfill the overall goals of that larger 
object.

This section will use the term ‘component’ to refer to the object we are interested in 
refining — but the same principles apply on every scale.

UserA UserBSystem

Cmpt1 Cmpt2

Cmpt3

UserA UserB

Cmpt3

System

Figure 142: Fractal process of refinement
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7.6.1 What an object does and doesn’t mean

Object and type apply at 
all levels

We can use an object to describe any concept, including the active components of 
some system — whether people, hardware, or software; or groups or parts thereof. 
Likewise, we can use a type to describe the behavior of such objects, and actions to 
describe its participation in interactions with other objects.

An object is an abstrac-
tion of several others

A type always describes the behavior of some linked-together collection of smaller 
constituents. A closer look will reveal the parts, and that different parts deal with dif-
ferent behavior. 

Type and collaboration 
describe each level

To specify the abstract object’s behavior, a type model is used, that tells us nothing 
about the abstract object’s internal structure. The internal structure can be described 
as a set of linked objects participating in actions; the actions are both between them-
selves, and the actions in the outside world. A more detailed picture that reveals the 
internal structure must account for how the external actions visible in the abstract 
view are dealt with by the internal structure.

7.6.2 The process of object refinement

The kinds of refinement we’ve already looked at can be used in a variety of ways; but 
they fit together particularly well as part of an object refinement. So let’s review those 
techniques as steps forming part of object refinement.

(We’ve looked at this process in other parts of this book. The point here is to see the 
steps in terms of the formal refinements defined in this chapter.)

7.6.2.1 Start with the specification

Specify all high-level 
actions

The model we begin with specifies the behavior of our component. Most objects are 
involved in more than one action: our spreadsheet has addOperand, setNumber, etc. 
Some are involved in actions with several other objects: while the spreadsheet has one 
user, the bank’s ATM has customers, operators, and the bank’s host machine to deal 
with. Each of the actions may be specified at a fairly high level, with details to be 
worked out later. For each action, we have a specification, in terms of more-or-less rig-
orously defined pre/postconditions (and possibly rely/guarantee conditions).

Next, need to work out 
‘inside’ of the object

Given this context, what we need to do is work out what objects there are inside our 
abstract object, and how they collaborate to achieve the effects specified for each of the 
abstract object’s actions.

Our Component

pre ...
post ...

Action specs refer to 
model defined here

Figure 143: Joint action specified in terms of multiple participants
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Notice that we might either be refining just one of these objects — perhaps the others 
are users, whose behavior is the province of the GUI designer and the manual writer. 
Or it might be that we will be refining several of them, if they are components in a 
larger system.

7.6.2.2 Decide design object model

Action affect our object, 
among others

The actions are specified in terms of their effects on the participants, of which our 
component is one. For that purpose, each participant has a model: for simple objects, 
it may just be a few attributes; for complex ones, it will be a picture based on the busi-
ness model. Our spreadsheet had Cells and their various Contents.

Pick the design objects Focusing on the system we’re interesting in refining (the spreadsheet rather than the 
user), we may decide, as we did in this example, to use a different set of objects in the 
actual design. We have already seen how to use abstraction functions to relate the 
design model back to the specification.

7.6.2.3 Refine actions and mask specs

Refine the specified 
actions

We refined the actions (so that setSum became <setAddition, addOperand>), and 
specified the more detailed versions in the terms of the design model (Cell_I rather 
than Cell etc.). 

Focus on entirely ‘one-
sided’ action specs

At this stage, we ‘mask’: remove anything from the action specs that talks about the 
other participants in the actions. For example, we don’t care about the state of the 
ATM-user’s pocket, so long as the ATM dishes out the dosh. In the spreadsheet exam-
ple, we had never said much about the user’s state anyway. In an action involving 
two or more software components, the team working on each component would 
make their own version of the action spec, that just defined its effect on their compo-
nent.

...by ignoring some con-
juncts

In some cases, masking is easy: the postcondition says “oneParticipant.someEffect 
AND theOtherParticipant.someOtherEffect”. We just throw away the clauses that 
don’t apply to us — the other components’ teams will worry about them.

...or designing finer 
actions with the outside

Sometimes the postcondition is written in such a way that the effect on our compo-
nent depends on something elsewhere. In the ATM, for example: “IF the account in 
the user’s bank is in credit, THEN the user gets the money.” This means that, in refin-
ing the action, we must include an action with the user’s bank that transfers that 
information here. (This also applies to preconditions, which are equivalent to an if-
clause like this.)
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We get down to fully 
directed actions

Masking should also make the actions directional, with a definite initiator and 
receiver: more like messages. However, they may still encapsulate a dialogue refined 
later. This enables us to summaries the component spec in the form of a type diagram, 
with model and action specifications:

But stop at the level of 
meaningful business ops

We refine the actions down from the highest level business abstractions, but not right 
down to individual keystrokes or electrical pulses. We refine actions to the point 
where they make sense as individual actions on the objects we have chosen for our 
design — if you like, to the same conceptual layer as our design. “Make a spread-
sheet” is too abstract for our design; “click mouse at (x,y)” is too detailed; but “set-
Number(n)” makes sense as a message to one of our Cells. 

Such judgements are all relative. Working in the GUI layer, mouse clicks and key-
strokes are what we deal with, and the job is to parse them into actions that can be 
dealt with by the spreadsheet core. Working in a workflow system, the creation of a 
spreadsheet might be just one action, so that from its point of view, the spreadsheet 
program is all a detail of the user interface that builds a series of cell-setting opera-
tions into one spreadsheet-creation. A good guideline is: “what would constitute a 
useful unit of work for the client?” i.e. something they would cheerfully pay for.

7.6.2.4 Localize each action to a constituent object

Pick the primary inter-
nal ‘recipient’ object

We now make each action the prime responsibility of one of the design objects inter-
nal to our component. Usually, a good choice is the proxy object that represents the 
external participant of the action — which might be a user or a piece of hardware, or a 
software object in a different component. If there is no such proxy — as in our spread-
sheet, which has not representation of its user — then one of the action’s parameters is 
the next choice. We’ll choose the target Cell c. (In any case, a proxy often just sends the 
message on to one of the parameters. But there is good pattern, that all messages to 
and from an external object should go through their local proxy; which thereby keeps 
abreast of what its external counterpart is up to.)

With the assignment of a component action to one of its constituents must, of course, 
go the specification of what is supposed to achieve.

Spreadsheet 1

Cell_I

value : int
Sum_I

sumpart
0,1

*operands

*
*cells

isBlank : Boolean

setNumber (c:Cell, n:int) post c.value=n & c.sumpart=null & ! c.isBlank
setAddition (c:Cell, c1:Cell) post c.sumpart.operands==c1
addOperand (c: Cell, c2:Cell) post c.sumpart.operands-> += {c2}

Figure 144: Localize and specify actions
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7.6.2.5 Operation refinement for each component-level action

Delegate internally Now we work out how each component-level action is dealt with by the object it is 
assigned to — in other words, design the sequence, or write the operation code so as 
to meet the spec. Typically this will mean sending messages to other objects. 

Internal actions before 
messages can help defer

We could put it more generally, and say that each object may initiate actions with one 
or more other objects: because you may know what you need to achieve, and who 
should be involved, but not care (yet) how, or who should be primarily responsible 
for each bit.

The receiving objects must themselves be designed, and so they then pass messages to 
other objects. The result is that many of the component’s internal objects now have 
their own specified actions.

We repeat the procedure for each of the component-level actions. The component’s 
responsibilities are now distributed between its constituents: this is the essence of 
object refinement.

7.6.2.6 Visibilities

Choose directional links One last step is to decide who can see whom i.e. object attributes: we append arrow-
heads to the links in our model. The simple criteria here is: any object needs some 
state corresponding to a link to every other objects that it must ‘remember’ across its 
operations. Once again, these links do not have to correspond to stored pointers in 
program code; they can themselves be abstractions, subject to further refinement.

In some cases, each object of a linked pair needs to know about the other. This in itself 
can add some final operations, relating to the management of the link. Important pat-
terns are:

Two-way link When two objects refer to each other, it is important that they do
not get out of sync: pointing at different objects, or pointing at a
deleted object.

Therefore, the only messages that immediately set up or taking
down the link should come from the object at the other end.
When an object wishes to construct a two-way link with another,
it should set its own pointer, and then register with the other.

7.6.3 Documenting object conformance

Interaction diagrams Interaction diagrams (also called ‘object interaction graphs’ or OIGs) are snapshots 
with messages added. They are useful for illustrating particular cases. One or more 
collaboration can be drawn for each component-level action.
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For example, our spreadsheet Cell will respond to an addOperand by sending the 
message on to its Sum, which will set up an observer action with the target Cell:

The diagram shows the new links and objects in bold. A new observation relationship 
is created; it is an ongoing action, characterised by its guarantee rather than its post-
condition. It is treated just like an object in these diagrams. We have decided that, at 
this stage, we don’t care how it works, although we will specify what it achieves.

Update the design model 
of types and classes

As is often the case when working out an interaction, we find we have brought new 
elements into the design. These should now be incorporated into the class diagram 
and specified. At the same time, we can begin to add localized actions to the classes:

(Recall that the [[action]] notation is used within a postcondition to specify that 
another action has been performed as part of this one.)

We have specified the observation action; it may become an object in its own right, or 
(more likely) will turn out just to be a contractual relationship between its partici-
pants. 

c:Cell_I
value = 2
isBlank=false

: Sum_I : Cell_I
value=2

sumpart
operand[0]

observation

c2: Cell_I
value=3

c.addOperand(c2)

1. addOperand(c2)

1.3. create 
(this, c2)

observation

operand[1]

1.1 c2.getValue()->v

1.2 add(v)

Figure 145: Internal interactions in spreadsheet

Cell_I

value : int
isBlank : Bool

addOperand(c2:Cell)

Sum_I

sumpart

0,1

addOperand(c2:Cell)

observation
1

0..*

1

1..*

operands

action observation 
guarantee subject.value <> subject@pre. value =>

observersubject

parent

 [[observer->notify(subject.value –  subject@pre.value)]]

add(v:int)
post value += v

 
-- whenever the value of the subject changes, the difference will be 

sent to the observer, using the notify message

 

post operands += 
new observation(c2, this)

notify (change:int)
post [[parent->add(change)]]

 

Figure 146: Update class diagram with localized actions and specs
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Notice that while the interaction diagram is useful for illustrating specific cases, the 
class diagram (with associated dictionary, specifications and code) is the canonical 
description of the design. As more collaborations are drawn, more detail can be added 
to the class diagram. Ultimately, we must also resolve ‘observation’ to specific mes-
sages and attributes.

A sequence diagram is an alternative presentation of the same information as is in a 
collaboration diagram, and is better at showing the sequence of events; but the collab-
oration diagram also shows the links and objects. As an example, here is the sequence 
showing how the propagation of changes works:

 

7.6.4 Object access: conformance, façades, and adapters

 

How do the external objects get access to the appropriate constituent objects within 
our component?

 

7.6.4.1 Direct access

 

We can directly expose 
the internal objects

 

If the external objects and our component are all in the same body of software, there is 
a straightforward answer: they all have references to those of our constituents they 
want to communicate with. When we do an object refinement, the main task is to 
work out how the externals will initially connect to the appropriate internal. Our 
abstract component object is just a grouping of smaller objects, and we allow the 
boundary to be crossed arbitrarily.

There can be a variety of drawbacks to the direct access scheme, though each of them 
applies only in certain circumstances.

c1 : Cell

any operation
changing
c1.value

s:Sum
c1 is an
operand
of this

notify(2)

value=3

value=5

s.parent:Cell

add(2)
value=7

value=9

s.parent is an
operand
of this

s2:Sum

notify(2)
add(2)

s2.parent:Cell

Figure 147: Sequence diagram alternative

 

abstract object

 

Figure 148: Direct external access to internal objects
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7.6.4.2 Façade

 

Or build a ‘facade’

 

A façade is a single object through which all communication to a component flows. It 
simplifies several aspects of object refinement.

• The external objects do not have to be designed to know which constituent to con-
nect to. In the Direct Access scheme, refining our object also means designing the 
externals to work with our organization. 
An business analogy is where a company provides a single point of contact for 
each customer or supplier. It saves them from having to understand the com-
pany’s internal organization.
A corollary is that, if the design of the external objects is already finalized, a 
façade is necessary.

• Invariants applying to the component as a whole can be supervised by the façade, 
since it is aware of every action that could affect it. Conversely, the external 
objects have no direct access to any objects inside.

 

It makes maintaining 
invariants simpler

 

The supervision of invariants is a common motivation. Consider for example a Sort-
edList object, where the members of the list are NumberContainers; the value of a 
NumberContainer can be changed by sending it an appropriate message. The docu-
mented invariant of SortedList is that its members are always arranged in ascending 
order. But if external objects have direct access to the list’s members, they can sneakily 
disorder the list by altering the values, without the anchor SortedList-instance know-
ing.

Making the façade the only way of accessing the list elements is one way to keep con-
trol; the other is to implement a more complex Observation scheme, whereby the ele-
ments notify the façade when they are changed.

 

7.6.4.3 Façade components

 

But the facade becomes 
coupled to the insides

 

The big drawback of a single façade object is poor decoupling: as soon as you change 
or add to any of the types in the component, you need to extend the façade to cope 
with the new messages. 

 

Instead, can have many 
smaller interface objects

 

However, we can make the façade itself an abstract object consisting of a collection of 
‘peers’ — objects that each handle communication with a given class of internal 
object. Most GUIs are constructed this way: corresponding to each spreadsheet Cell, 
for example, will be a CellDisplay object, that deals with position on the screen and 
appearance; and also translates mouse operations back to Cell operations.

In a more general scheme, different categories of external object may have different 
‘ports’ through which to gain access — each of them a different façade.

 

7.6.4.4 Adapters

 

How to refer across soft-
ware boundaries?

 

It’s easy enough to draw links and messages crossing the boundary of a component; 
but what if the objects are in different host machines, or written different languages; 
or what if the external objects are machines or people? How do the messages cross the 
boundary, and what constitutes an association across the boundary?
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Build an adapter

 

These objections are met by building an appropriate adapter — a layer of design that 
translates object references and messages to and from bits on wires (such as CORBA); 
or to pixels and from keystrokes and mouse clicks (the GUI). An adapter is a façade 
with strong translation capabilities.

 

Map object IDs to strings, 
screen positions, voice-
prints

 

References across boundaries are typically dealt with by mapping strings to object 
identities: your bank card’s number is the association between that real card object, 
and the software account object in your bank’s computer; the spreadsheet cells can be 
identified by their row-column tags. The other common method is by mapping screen 
position to object identity, as when you point at its appearance on the screen.

 

The adaptor decouples 
from this mapping

 

It is because of the Adapter(s) that we can always begin the object refinement by 
assuming that the appropriate internal object will be involved in the external actions: 
we just leave it up to the Adapter design.

In the case of the spreadsheet, a considerable GUI will be required to display the 
spreadsheet; and to translate mouse operations into the specified incoming messages, 
and direct them to the appropriate Cells.

 

7.6.4.5 Boundary decisions in object refinements

 

Object access is an 
important design point

 

Object refinements, whether on a small or large scale, always involve some decision 
about how the boundary is managed — whether direct access is OK, or whether a 
façade or the more general adapter layer are required.

Our original picture of an object refinement as a simple group of objects has now 
become a group of objects plus a layer of adapters:

 

7.6.5 Object conformance — Summary

 

Object abstraction gives us the ability to treat a whole collection of objects — people, 
hardware, software, or a mixture — as a single thing with a definable behavior. This 
can be applied on the large scale of complete computer systems and businesses; or the 
small scale such as software sets and lists.

The key to documenting conformance is to show how the responsibilities of the 
abstract object are distributed to its constituents.

 

Component

 

Core object refinement

Adapter layer

Types understood
by client

Adapter

actions mediated
by adapter

external 
objects  

Figure 149: Object refinement with adapter objects
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7.7

 

Refinement #4: Operation conformance

 

From operation spec to 
program code

 

Operation refinement means writing a program that fulfills a given pre/post (and/or 
rely/guarantee) specification. This is where we finally get down to program code. In 
one sense, this is the bit we need to say least about, since the point of this book is not 
to teach programming: you know how to put together loops and branches and 
sequences, and can trivially learn any (far more verbose) graphical representations of 
the same. However, there are some special considerations, mostly about decoupling 
— since that is what OO programming is all about.

 

7.7.1 What operation abstraction does and doesn’t mean

 

Operations are one-sided 
actions

 

Operation is a subtype of Action: operations are actions consisting of an invocation 
from a sender to a receiver, followed by some activity on the part of the receiver, and 
possibly ending with a return signal to the sender; they are a one-sided view of the 
sender-receiver interaction.

 

Some cases can always 
be left unspecified

 

If an operation is invoked in a situation when the precondition is false; or if, during 
the execution of the operation, its rely condition becomes false: then the specification 
does not state what the outcome should be. 

 

Others must have guar-
anteed outcomes

 

If an operation is invoked in a situation when the precondition is true and the rely 
condition is true throughout, then by the end of the operation, the postcondition will 
have been achieved; and during its execution, the guarantee condition will have been 
maintained.

Unstated pre- and rely conditions are equivalent to ‘true’ — no obligation on the 
sender. Unstated post- or guarantee conditions are equivalent to ‘false’ — no obliga-
tion on the implementer.

The operation should not alter variables which could be left untouched whilst achiev-
ing the post and guarantee conditions.

Any invariant in the model should be considered to be ANDed to both the pre and 
postconditions (but not the rely and guarantee conditions).  

7.7.2 Strong decoupling

 

OO design imposes 

 

more

 

 decisions: 

 

who?

 

In conventional programs, you split a big program up into subroutines so that com-
mon routines can be invoked individually; and so that the program is easier to under-
stand. In OO programming, the process goes even further: for every statement, you 
think: Which object should this be attached to? Which object has the information and 
the other operations most strongly relevant to this? Send off a message to the object 
that should. Actually, that’s not for every statement: it’s for every subexpression.

 

Done well, this provides 
decoupling

 

The purpose is to ensure the program is well decoupled. If the preceding stages of 
design have gone well, many of these questions should be sorted out. However, you 
definitely do have more decisions to make in an OO development than in procedural.
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7.7.2.1 Parameters and Internal variables

 

Declare all variables as 
types, not classes

 

The choice of local variable types — temporaries, inputs, and even return values — 
for an operation is crucial to good decoupling. As soon as you declare a variable or 
parameter that belongs to a particular class, you have made your part of the program 
dependent on that class. That means that any changes there may impact here. Instead, 
it is usually better to declare all variables as 

 

types

 

; the only place in a program where 
you absolutely have to refer to a concrete class is to instantiate a new object.

There is a variety of powerful patterns to help reduce dependencies.

Role decoupling A variable or parameter contains an object or a reference to one.
Frequently, the component in which the declaration occurs will
use only some of the facilities provided by that object.
Therefore, define a type (= interface/abstract class + specifica-
tion) that characterizes only the features that you will use.
Declare the variable to be of this type. Declare the object’s class
to be an implementer of this type.

This will minimize the dependency of your component on the
other object. Related patterns are 

 

Adapter

 

 and 

 

Bridge

 

 [Gamma
94].

(Role decoupling is particular important for two-way links.)

 

Use factories for instanti-
ation

 

Factory An object has to be created as a member of a definite class. This
gives rise to a dependency between your class and that. 
Therefore, devolve to a separate class, the decision about which
class the new object should belong to. By doing this, you encap-
sulate the class dependency behind a type-based creation
method. [Gamma 94]

 

7.7.3 Opspec conformance

 

How to check that imple-
mentation meets spec?

 

Whether we have written them informally or in more precise form, we should have 
some specification of what is expected of each operation. We should attempt to check 
that the program code of each operation conforms to what is expected of it. 

 Test, or show correct-
ness? Both are useful

 The most reliable method is to turn them into test harnesses as we discussed earlier. 
But there is also the Deep Thought approach: as a general principle, it is possible to 
inspect both specification and code, and check that one meets the other by a judicious 
mixture of careful reasoning and guesswork. Although Deep Thought is not an eco-
nomical method of verification outside safety critical circles, being aware of the basic 
principles can help anyone root out obvious mistakes before getting to the testing 
stage. 

 

...depending on code re-
used vs. written

 

There are two ways of fulfilling a spec. The hard way is to write the entire implemen-
tation yourself. The easy way is to find something that comes close to already does the 
job — and possibly bend the requirements to suit what you’ve found. The latter is 
usually more economical, if you’re fairly confident of its provenance and integrity 
(See Section 11.7, “Heterogenous components,” on page 472, for example).
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7.7.3.1 Comparing two operation specs

 

For reused code with 
specs

 

Suppose we find some code in a library, and suspect it does the job we require. Mirac-
ulously, it comes with a spec and model of some sort, which we want to compare to 
our requirements spec.

 

...the two specs should 
be compared thusly

 

The rules for comparing two pre/postcondition specs are:

• Any invariants in each model should be ANDed with both pre and postcondi-
tions written in that model.

• If the requirement has several pre/postcondition pairs — which may come from 
different supertypes — they should be ANDed in pairs: (pre1=>post1) AND 
(pre2=>post2) to give an overall requirement postcondition; if the pre/post condi-
tions are not from supertypes, and are subject to ‘joining’ (Section 9.4.4, “Joining 
action specifications,” on page 373), compose them accordingly.

• The implementation’s vocabulary should be translated to the specification’s by 
using retrieve functions as in Section 7.4 (Refinement #1: Model conformance).

• The precondition of the requirement should imply the precondition of the imple-
mentation. For example, if the requirement says “this operation should work 
whenever Cell c contains a Number”, then an implementation that works “when-
ever c is non-Blank” is fine — because it is always true that: “a Cell contains a 
Number => it is not Blank”.

• The postcondition of the implementation should imply the postcondition of the 
specification. (Notice the other way around from preconditions — a feature called 
“contravariance”). So if the implementation claims “this operation adds 3 to the 
Cell’s value” while the requirement is more vague: “this operation should 
increase the Cell’s value” — then we are OK, because it is always true that: “3 
added to value => value increased”.

 

7.7.3.2 Comparing operation specs with code

 

But reused code usually 
has no specs

 

More likely, you will have to compare your specification with code (whether you’ve 
written it yourself, or someone else has). Once again, the most effective strategy is to 
write test harnesses, as we discussed before.

 

1

 Turn on pre/postcondi-
tion checking in debug 
more

 In debug mode, preconditions should be written as tests performed on entry to an 
operation; postconditions are tested on the way out. The only complication is that, 
since postconditions can contain “@pre”, you have to save copies of those items while 
checking the precondition. (Or you may be lucky enough to be using a language with 
this facility built-in.) The main caveat is to ensure that the pre and postconditions 
don’t themselves change anything.

 

Deep Thought ‘lite’ can 
help

 

If you insist on the Deep Thought approach, many (rather academic) books have been 
written on how to document this kind of refinement. [E.g. Jones, Morgan.] To sum-
marise their works:

 

1. For more on the Deep Thought approach, see Morgan 88 or Jones 86. For more on executing 
pre and postconditions, see Meyer 88.
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Write assertion for inter-
mediate states

 

• For sequences of statements separated by “;”, it is useful to write assertions within 
the sequence — conditional expressions that should always be true. This helps see 
how the requirements are built up with each statement, and can be a useful debug 
tool if the expressions are actually executed. The assert macro provided with C++ 
can be parallelled in other languages.

• Where some operation is called within a sequence, its precondition should be sat-
isfied by the assertion immediately before it; and the assertion after it should be 
implied by its postcondition.

 

Branches

 

• If-statements ensure preconditions for their branches. The postcondition of the 
whole thing an OR of the branches’:

 

if (x>0) z= square_root(x)           // pre of square_root is ‘x>=0’
else z=square_root(–x);

assert z*z == x  or  z*z == –x

 

Loops

 

• In a loop, it is useful to find the loop invariant: an assertion that is true every time 
round the loop. It works as both pre and postcondition of the body of the loop. 
Together with the condition that ends the loop, it ensures the required result of 
the loop. For example, in this routine:

 

post sort queue into order of size
{ int top= queue.length;

while (top > 0)
invariant everything from top to end of queue is sorted,
// and everything before top is smaller than everything beyond top
{ post move biggest of items from 0 to top along to top

{ ... to be written ... }
top = top –1;

}
// top == 0 and everything from top to end of queue is sorted

}

 

the invariant separates the queue into two parts, unsorted and sorted. The ‘top’ 
pointer moves gradually downwards, until the whole queue is in the sorted part. 

If you were called to review a refinement like this, you should check that (1) the 
claimed invariant is bound to be satisfied on first entry to the loop (which it is 
here, because there’s nothing beyond top); (2) if the invariant is true before any 
iteration of the body, then it is bound to be after; (3) that the invariant and the exit 
condition together guarantee the effect claimed for the whole thing (true in this 
case because when top gets to 0, the whole queue must be sorted).

Notice how a postcondition has been written to stand in for a chunk of code not done 
yet; we are simply using techniques we know to defer details, except now in code. 
(How would you design it? What would be the loop invariant?)

 

7.7.3.3 Operation conformance and action conformance — Differences

 

Both operation and action conformance show how a single action with an overall goal 
is released by a composition of smaller actions, and some of the techniques for estab-
lishing the relationship are the same. The differences are:

top0
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Operations start with a 
specific invocation

 

• An operation begins with an invocation — a function call or message-send. This 
prescribes the limits on the sequence of events that should happen. So we know 
from the beginning of the sequence, which operation we’re dealing with.

 

An action may start in 
many different ways; 
each start may end in dif-
ferent actions

 

An action is identified only in retrospect. If someone selects some goods in a shop, 
it will often be the first step to a sale; but they might decide not to buy, or they 
might walk off without paying; so it turns out not to have been a sale, but a theft.
An action is a name for an effect. We can provide a protocol of smaller actions 
whereby it can be achieved, but the same actions may be composed in some other 
way to achieve something different.

 

Operations are one-sided

 

• When we design a procedure that refines an operation spec, we can focus on the 
receiving object, and devolve subtasks out to other objects we send messages to. If 
we change the design, we are changing this one object.

 

Actions involve multiple 
parties

 

When we design a protocol of actions that satisfies an action spec, we focus not on 
any one participant, but on the interactions between them. If we change the 
refinement, we are affecting the specs of all of the participants.

 

Operation refinement is 
encapsulated

 

• Refining an operation is like designing a computer monitor: you have the specs of 
the signals that come along the wires, and their required manifestations on the 
screen. Your work is to define the insides of the box; you may involve others by 
specifying parts you will use inside. Your design talks about the specifications of 
the constituent parts, and how they are wired together.

 

Action refinement affects 
all participants

 

Refining an action is like devising an interface standard for the signals on a video 
connection. You have to involve all of the designers who might make a box to go 
on either end of this connection — or at least, all those you know at the moment. 
You have to agree a specification for what is achieved, and then refine it to a set of 
signals that, in some parallel or sequential combination, achieve the overall 
required effect. 

You cannot talk in terms of anything inside the boxes, because they will all be dif-
ferent; you can only make models that abstract the various boxes, and talk in 
terms of the signals’ effects on them.

 

Test an op by response

 

• To test an operation refinement, you push a variety of signals in, from different 
initial states, and see if the right responses come out. There are various ways to 
use a precise specification to generate test cases that reasonably cover the state 
space of input parameters and initial state.

Test an action by traces 
and net effect

To test an action refinement, you have to see whether it permits a variety of differ-
ent combinations of participants to collaborate together, and achieve the desired 
effect. Interoperability is the general goal. The goal here is to explore each 
sequence of refined actions that should realize the abstract one — a much larger, 
sequential state space. Scenarios defined during modeling form a useful basis.

7.7.4 Operation conformance

Operation abstraction makes it possible to state what is required of an object, without 
going into the detail of how.
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7.8 Statecharts and refinement

Transitions can take time In the Catalysis interpretation, the states in a statechart are boolean conditions; and 
the transitions are actions. As such, actions may take time; there is a gap between one 
state going false, and the next state lighting up (rather like the floor indicator in many 
elevators).1

States are boolean func-
tions of attributes

Most statecharts focus on a given type, and the states are defined in terms of its 
attributes. For example, we might define the statechart of a Cell, as containing Blank, 
a Number, or a Sum. 

We would have to wait for the user to enter two operands before the transition to 
becoming a Sum was completed. In between times, the implementation is in no state 
that the abstract spec understands. The addition of the intermediate state is a valid 
change specifically in a refinement:

Each state in a statechart should be documented with a condition stating when it is 
true. In this case, isBlank corresponds directly to the attribute of that name; isSum == 
(content : Sum) (“the content attribute is of type Sum”).

States are retrieved just 
like any attribute

Since states are just boolean attributes, retrieving a state is no different than retrieving 
any model. The abstract states can still be seen in the refinement, though you have to 
use the abstraction functions to translate from sumpart to content. The extra state has 
to be given its own definition.

1. We prefer our statecharts like this, as they are easier to reconcile with the actuality of the 
software compared with ‘instantaneous event’ models; and they tie in better with the 
actions. In some notations, they would have an event representing the start of an action, 
and another for the end of it, and a state in between representing the transitional period. 
But at a given level of abstraction, we do not know enough to characterize the intermediate 
state, because that is only defined in the more detailed layers of the model.

isBlank

isSum

isBlank

isSum

OneOpndSum

setSum(a,b)
setAddition(a)

addOperand(b)

Figure 150: Intermediate states due to refinement
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7.8.1 States definitions are not restricted

States for cell selectionConsidering the GUI for a moment, it may be useful to make a small statechart about 
whether a Cell is selected or not.

This defines (part of) the 
spreadsheet state

The Cell type forms part of the Spreadsheet’s model; the actions are those of the 
spreadsheet as a whole (Section 4.9.3, “State Charts of Specification Types,” on 
page 177). The states diagram applies simultaneously to every Cell in the model. Any 
Cell that is the subject of a select operation gets into the selected state; all others go 
into unselected, as defined by the guard.

Add attributes to define 
the state

To accommodate the new bit of information, we could add an optional link to the 
model. It is then easy to write a definition for the selected state:

But in the code, a ‘cell’ 
has no ‘selected’ state

Now, when we come to the implementation, the pointer to the currently selected Cell 
comes from somewhere in the GUI, and since the pointer is one way, the Cell itself 
does not know that it is selected. Is the state diagram still valid if the Cell has no infor-
mation about its state of selection?

Spreadsheet

Cell

unselected selected

select(c) [c==self]

select(c) [c <> self]

Figure 151: Cell selection statechard

Spreadsheet

Cell

*shows currentSelection0,1

Cell:: selected == (~currentSelection ≠null)

0,11

Figure 152: Link for indicating cell selection

SpreadSheet_I

GUI
0,1 Cell_I

current_selection *

Figure 153: Implementation: does a cell still have a “selected” state?
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That’s OK; just interpret 
carefully

Yes, it is. For one thing, the state diagram is of a Cell, not a Cell_I; and the abstraction 
function to Spreadsheet from Spreadsheet_I should yield all the information about 
each Cell. And in any case, it would still be valid to draw that diagram for a Cell_I: we 
just have to define the state with a little more imagination — something like:

Cell :: selected = (there is a Spreadsheet_I si, for which
si.gui.current_selection == self)

The ‘there is’ means in practice that you have to go searching around the object space 
until you come to a Spreadsheet, and try it for that property; but we did say that spec-
ification functions don’t have to execute efficiently to be meaningful.

7.8.2 Other statechart refinement rules

If your project uses statecharts extensively, you may wish to look at [Cook & Daniels], 
where a complete set of rules for refining statecharts is provided.
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7.9 Abstraction, refinement, and testing

The various kinds of abstraction make it possible to discuss the essentials of a specifi-
cation or design, clear of the details; and to define systematic approaches to verifying 
that an implementation does what it was supposed to do.

Catalysis provides a coherent set of abstraction techniques, and also provides the 
rationale to relate more detailed accounts back to the abstractions.

The verification techniques can be applied in varying degrees of rigor, from casual 
inspection to mathematical proof. In between, there is the more cost-effective option 
of basing systematically defined test code on the specifications. 
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7.10 Process Patterns for Refinement

Here are a set of high-level process guidelines for applying refinement techniques.

Pattern-119, The OO Golden Rule (Seamlessness or Continuity) (p.325): how to achieve 
one of the most important benefits of objects, a seamless path from problem domain to 
code.

Pattern-120, The Golden Rule vs. Optimization (p.327): when stringent performance 
requirements keep you from maintaining straightforward continuity to code.

Pattern-121, Refinement is a relation, not a sequence (p.328): do not make the common 
mistake of thinking that refinement means top-down development; it is a fundamen-
tal relation between different descriptions, regardless of which one was built first.

Pattern-122, Recursive refinement (p.330): the ideas of refinement apply at all levels, 
from describing organizations and business processes, to program code. This means it 
can form the single consistent basis for traceability.
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Pattern-119 The OO Golden Rule (Seamlessness or Continuity)

SummaryBuild a system that mirrors the real world; and keep it that way.

IntentAn object oriented design is one in which the structure of the designed system mir-
rors, to the extent possible, the structure of the world in which it works. Many of the 
advertised benefits of object technology come from this. It is to this end that languages 
supporting OOD provide mechanisms that simulate the ‘real’ world’s dynamic inter-
action between state-storing entities; and this is the reason that object technology orig-
inates in simulation techniques and languages (such as Simula). Objects have a strong 
relationship to the AI subculture’s ‘frames’, which are units of an agent’s understand-
ing of the world around it.

ConsiderationsTruth and Reality. Obviously you have to begin by making a model of the real world. 
But what does ‘real’ mean?

• One person’s view of it will be different from another’s. There are numerous 
views of reality. Many of them may be self-consistent, but cast in terms different 
from each other. It is important that the model of each (class of) user must be 
clearly reflected in the system

• There are numerous ways to use the notation to model the same set of ideas.

• While constructing a model, you will ask and (hopefully) get resolved many ques-
tions that were never resolved until now. This is a good thing, but you have to be 
aware that you are actually constructing reality, not just passively discovering it; 
and again, the different interested parties will have different views on what the 
answers ought to be.

Compromise with practicality. The design that mirrors the users’ concepts most 
closely will not always be the most efficient. Compromises must be made, and there is 
an architectural decision about how far to do so. Fortunately, this can be taken to dif-
ferent degrees in different parts of the design — see Pattern-120, The Golden Rule vs. 
Optimization (p.327).

StrategyBuild and integrate users’ business models. See Pattern-15, Make a business model 
(p.553)

Cast system requirements in terms of business model. See Pattern-33, Construct a 
system behavior spec (p.594)

Choose classes based on business model. From system model. Deviations forced by 
performance and other constraints should be local and clearly documented as refine-
ments to maintain traceability.

Maintain development layers (business model to code) in step. This clearly conflicts 
with the usual short-term imperative of getting changes done last week; but the 
changes are normally localized, and experience shows clear long term benefits. Fur-
thermore, since the documents as you go up the tree are more abstract, you come to a 
point where there is no change: performance improvements, for example, will usually 
change the code but not the requirements or the model in which they are expressed.
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Build many projects on same model. But don’t take this as a reason for perfecting a 
model before building your first system — see Pattern-15, Make a business model 
(p.553).

Benefits Many of the advertised benefits of object technology come from what is variously 
called ‘continuity’, ‘seamlessness’, or ‘the OO Golden Rule’: 

• The resulting system relates well to the end users. It’s easy to learn because it 
deals in the terms they are familiar with. The relationships are as they expect.

• Changes are easy to make because users express their requirements in terms that 
are easy to trace through to the model.

• The same business model can be used for many projects within the same business; 
and of course, much of the code can also be generalized and re-used.
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Pattern-120 The Golden Rule vs. Optimization

SummaryConsciously trade-off localized performance optimization against seamless design.

IntentIdeally, the structure of the design is based on the structure of the world in which it 
works (to an appropriate extent). Performance constraints will sometimes dictate 
against such continuity, and elements from architectural design down may need to 
differ from a ‘real-world’ model. How to balance the goals of maintainability and 
tuned performance?

ConsiderationsShould the program code be object oriented? If it is, how do we choose the classes?

Mirroring the world in code exactly is very good for simulations: every time you 
change your picture of the world, you can easily find which bits of the code to change. 
This is how OOP originated with the language ‘Simula’; and also what makes it great 
for writing any kind of program whose requirements change regularly — that is, just 
about all of them. It’s been estimated that 70–80% of total spend in a program’s lifecy-
cle is in the maintenance phase, after first delivery.

On the other hand, we gain that flexibility at the cost of making all those decisions 
about which object should take responsibility for each small part of the job; and at the 
cost to run-time performance of all those objects passing control to one another. This 
can make a big difference in, for example, communications or process control soft-
ware, where throughput is vital.

Flexibility comes from decoupling — making components independent of each other. 
Optimization for performance generally means that pieces of code that were ideally 
decoupled become dependent on each other’s details. So the more you optimize, the 
more you mix concerns that were independent before — so that in the extreme you 
end up with a traditional monolithic program.

Strategy1. Make it an upfront architectural decision how much you’re going to optimize for 
performance against code flexibility. If your clients shout for little functional 
enhancements every day (typical for in-house financial trading software), opti-
mize the underlying communications stuff, but leave the business model pristine. 
But if your software will be embedded in a million car engines for ten years, opti-
mize for performance.

2. 80% of the execution is done by 20% of the code. Design your system in a straight-
forward object-mirroring way, then abstract and re-refine the pieces that are going 
to be most critical to performance. (Or analyses a prototype and worry about the 
execution hotspots.) See π 10. “Refine the system type spec” (p.32)

3. Buy faster hardware and more memory. It’s a lot cheaper than programmers.

BenefitAn OO program is one that is refined from an OO design. A rigorously applied refine-
ment carries a ‘retrieval’ that relates it to the abstraction, even when the design has 
been optimized from a real-world abstraction.
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Pattern-121 Refinement is a relation, not a sequence

Summary Use refinement for any combination of top-down, bottom-up, inside-out, or assembly-
based development; it does not imply sequential top-down development

Intent Realistic deliverables for each development cycle, depending upon what develop-
ment process is most suited to the project.

We have a clear picture of the ideal refinement relations from business model to code. 
How is this related to the actual series of cycles of the development process?

Considerations Clearly there are some dependencies between prior phases and consequent ones. 
Even the most unregenerate hacker does not begin to code without at least some 
vague idea of an objective (well; not many of them, anyway!) 

But it is obstructive to be too concerned about completing all the final touches on any 
phase before going forward to the next. This is a well known demotivator, paralyzing 
the creative processes — and is often an excuse for people who don’t know how to 
proceed. 

But again, if too much is undertaken without clear documentation of the aims of each 
phase (as determined by the outcome of the preceding ones), all the usual misunder-
standings and divergences will arise between team members, and between original 
target and final landing.

In any case, it’s an illusion that the design is determined by the requirements. It’s 
often the way other around. When they discovered the laser, it was not so they could 
make CDs. Few of us knew we needed musical birthday cards before they were pro-
vided for us. We build and use what we have the technology for.

Strategy The typical deliverables of a development cycle (Pattern-39, Interpreting Models for 
“Clients” (p.606)) are not individual completed documents from the linear lifecycle. 
More usually, they might be “first draft requirements; GUI mockup; client feedback; 
second draft requirements; critical core code version 1; requirements modified to what 
we find we can achieve; ....”

Get it 80% right. To avoid “analysis paralysis” — the tendency to want to get a per-
fect business model, requirements, or high-level design before moving on — deliber-
ately start the next phase when you know its precursor is still imperfect. As early as 
you like, but no later than when you estimate there’s still about 20% finishing off to 
do. (Personal wisdom about the exact figures varies of course.) The results from the 
next phase will in any case feed back to the first. 

Bottom up and top down. The proposition that the delivered system should be docu-
mented in such a way that the spec is consistent with the design (and other layers of 
documentation) in no way constrains you to begin with the requirements and end 
with the code. Called upon to write an article, there’s no need to begin at the begin-
ning — you edit the whole in any order you like, as long as it makes sense when 
you’ve finished. 
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In the same way, consider the various documents of a development to be elements in 
a structure that you are editing. The goal of the project is to fill in all the slots in the 
structure and make them all consistent when done. Feel free to begin at the bottom; 
and don’t worry if things get inconsistent en route, provided they come back in line at 
some planned milestone.

Coding can even help with “analysis”. People know what they don’t want better 
than they know what they do want. (Ask any parent!) When you put a finished system 
in front of a customer, they’ll soon tell you what changes they need. And the system 
will alter their mode of work, so their requirements will change anyway. To circum-
vent some of this, deliver early: a slide show or a prototype or a vertical slice — what-
ever will stimulate the imagination. OO is great for this incremental design. But it 
must be a clear part of the plan:

• What information will be extracted and fed back to analysis from an early deliv-
ery? (And how will the information be obtained? And is the planned delivery 
adequate to expose that information?)

• What will happen to the code? Is it a throwaway? If not, all proper documentation 
and reviews must be applied. Prototypes are too often excused proper QA — and 
then incorporated into the real thing!

• What will happen to the other design documents? The design material usually 
represents more valuable work than the code itself — so you can indeed build a 
prototype as a throwaway, even in some other language. This assumes that, as a 
reader of this book, you’re documenting the design in some form other than just 
the code.

The important thing is getting 

the refinement relationships right
in the end — not the order in which
you complete them.

spec

cmpt
spec cmpt code

Figure 154: Refinement is a relation, not a sequence
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Pattern-122 Recursive refinement

Summary Establish a traceable relationship, based on refinement, between most abstract spec 
and detailed implementation (program code).

Intent The abstract spec should bears a systematic relationship to the code, expressed as a 
series of refinements. Many of these are decompositions, which break the problem 
into smaller pieces.

We wish to document the outcome of design.

Strategy • Use frameworks to build specifications.

• Model separate views.

• Compose views or frameworks into one spec.

• Refine spec using one of the standard refinements. Some refinements are 1-1; 
some are decompositions. Decompositions split the spec into several separate 
specs, each of which can be dealt with as a separate goal.

• Each decomposition is documented with a refinement that states how the constit-
uents work together to fulfill the abstract spec.

• Each decomposition divides the job into a set of constituents, each with a specifi-
cation that can be fulfilled separately. The same principles can be applied to its 
design, recursively.

• ‘Basic design’ short-cuts some of the recursive refinement process by going 
straight for a set of decisions that accept the specification types as proto-classes. A 
judicious combination of basic design, subsequent optimization, and recursive 
refinement is practical.

Result A design traceable through the refinements.
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