

 Chapter 5 Interaction Models — Use Cases,
Actions, and Collaborations
Outline

Chapters 3 and 4 have described how to model the behaviors of an object by spec-
ifying operations in terms of attributes. However, the most interesting aspects of
any design lies in the interactions among the objects i.e. how the net behavior
resulting from their collaborations realizes some higher-level function, when they
are configured together in a particular way.

Use cases, actions and collaborations abstract the interactions among a group of
objects above the level of an individual OOP message send, and let you separate
abstract multi-party behaviors, joint or localized responsibilities, and actual inter-
faces and interaction protocols.

Section 5.2 begins with examples of object interactions to show that many varia-
tions in interaction protocols achieve the same net effect, and so motivate the need
for abstract actions. Section 5.3 and Section 5.4 introduce the continuum from
abstract localized to joint actions and use cases, and discuss how they defer spe-
cifics of protocol, parameter passing, and action initiation. A concrete example in
code shows how these ideas apply even to detailed design. Section 5.5 discusses
how to interpret abstract actions, and relates them to refinement, effects, and use
cases.

Collaborations — sets of related actions — are introduced in Section 5.6. Section
5.7 describes how to use collaborations to either describe the encapsulated inter-
nal design for some type specification, or an ‘open’ design pattern. The separation
of actions internal versus external to a collaboration forms the basis for effectve
collaboration models, and is the topic of Section 5.8.
© Desmond D’Souza & Alan Cameron Wills 1998/May/11 11:04 5-205 of 236

5.1 Designing object collaborations

The big difference between object oriented design and the procedural style is that you
not only have to make your program work as a sequence of statements: it also has to
be well-decoupled so that it can easily be pulled apart, reconfigured, and maintained.
You have to make this extra set of decisions about how to distribute the program’s
functionality between all these little operational units with their own states; and in
return — if you do it well — you get all the above benefits.

The big questions in object oriented design:

• What should the system do?

— which was the focus of type specification in the previous chapter. Guid-
ance on putting it together in Chapter 16, p.581.

• What objects to choose?

— The first draft is the static model we used for the type specification;
though modified by design patterns to improve decoupling.

• How should the objects interact?

— Most importantly, so as to meet the specification!
— Also such as to separate different concerns into different objects; but bal-

ancing the needs of decoupling with performance.

The art of designing the collaborations is so important that many experts advocate
making collaborations the primary focus of object oriented design. We agree, though
we believe it is useful to get some idea of the requirements first.

In Catalysis, collaborations are therefore first-class units of design, like types. A col-
laboration is a design for how objects interact with one another to achieve a mutual
goal.

• A type represents a specification of the behavior seen at an interface to an object.

• A collaboration represents a design of how a group of objects interact to meet a
type specification.

There are several situations in which to use collaborations:

• Designing what goes on inside a software component.

• Describing how users (or external machines or software) interact with a compo-
nent you’re interested in. It is useful to understand how a component is to be used
before constructing it.

• Decribing how ‘real world’ objects in a business organisation (or a hardware
design) interact with one another. This would typically be to help understand the
business in which a system is to be installed or updated.
5-206 Designing object collaborations

5.2 Object Interactions — A Need for Abstract Actions

We need to abstract away
alternate protocols

For any action that involves multiple objects, there are many possible variations in
interaction protocols that achieve the same net effect, so we need a way to abstract
away from these protocols. Consider the interactions between a retailer and whole-
saler, in which the retailer purchases some quantity, q, of a product, prod, and pays for
it. Figure 89 depicts 3 different interaction protocols for this transaction; other varia-
tions are possible. The solid arrows represent requests, and the dashed arrows repre-
sent completion of the request.

a. The retailer first queries the price for some product, then requests a sale by
providing the product and payment; which returned the items.

b. The retailer requests the sale, and the wholesaler calls back requesting pay-
ment of the appropriate amount. When the payment is returned, the whole-
saler returns items.

c. This wholesaler triggers the retailer to buy the product, perhaps by monitor-
ing the retailer’s inventory systems. The retailer returns a payment, and the
wholesaler then delivers the items.

Point-to-point interac-
tions force detailed deci-
sions

When modeling at the level of point-to-point interactions we are often forced to
decide specific protocols e.g. should the retailer first enquire about the cost for a pur-
chase and send the payment along with the request to sell, or should the wholesaler
make a callback to the retailer for payment? These differences do not matter at the
abstract level.

All three variations have
the same net effect

Clearly, these 3 variations all achieve the same basic effect: a sale transaction between
retailer and wholesaler, with the same essential information exchange. We could
describe the specifics of each interactions, as shown in Figure 89. However, we would
like an abstract model that describes all three variations. What they have in common
is the same net effect of transferring a quantity of items and money based on the
wholesaler’s price. They differ in who initiates which operation, and the protocol of
interactions.

We could abstract out the details of these interactions in two ways:

Figure 89: Three protocols for a sale of items

rtlr: whslr:

p := price(prod,q)

sell (prod,p)

items

sell (prod, q)

payment

items

pay (p) order (prod, q)

take (items)

payment

(a) (b) (c)

stockLow (prod)

request

completion

rtlr: whslr: rtlr: whslr:
Object Interactions — A Need for Abstract Actions 5-207

An abstract 1-sided ‘sell’
operation

• We could adopt a 1-sided view of the action, in which the wholesaler provides a
single service sell, describing what the wholesaler does in a sale without relating
it to the retailer, and regardless of the specific protocol. Section 5.3 discusses this.

Or an abstract joint
action

• At a coarser and more abstract level, we could describe the overall effect of this
interaction with a single joint action, sale, including its effect on both retailer and
wholesaler. This is covered in Section 5.4.

This lets us focus on
‘activities’

As we will show, the idea of abstract actions — both joint, and localized — provide a
sound basis for modeling that focuses on activities and tasks, rather than on specific
interaction protocols for achieving these tasks; and give a principled way to define
‘use cases’. Abstract actions also enable us to describe more general ‘connectors’
between components, as explained in Chapter 16. Chapter 14, Refinement and Abstrac-
tion, will discuss in detail how different levels of description are related to each other.
5-208 Object Interactions — A Need for Abstract Actions

5.3 Abstract Localized Actions

An abstract, localized
‘sell’ action

Let us view sell as an action localized on the wholesaler i.e. an action described com-
pletely from the perspective of the wholesaler, ignoring the role played by the retailer.
All three protocols variations reduce to a single more abstract request, sell, in which
some requestor asks for a given quantity of a product, providing correct payment for
it, and is returned the appropriate set of items.

-- a wholesaler sells a quantity of a product to some requestor for some payment
action Wholesaler::sell (p: Product, q: Quantity, pay: Money): Set(Item)

pre: -- provided the payment is correct for that quantity of the product
pay = p.priceOf (q) and
-- and the product is in stock
p.stock >= q

post: -- an appropriate set of items (correct quantity and product) is returned,
result.product = p and result->size = q
-- and stock and money are updated
p.stock = p.stock@pre - q and cash = cash@pre + pay

It ignores the role of the
retailer

This only describes the effect this action has on the
wholesaler — relating it to price, stock, and quan-
tity; it does not say how this action relates to the
retailer e.g. that the product requested is something
needed by the retailer, or what the retailer does with
the items returned. This is the nature of a localized
action; the requesting object remains anonymous
and type-less, since we say nothing about how the
action relates to its state. The localized action can be

shown listed on the bottom of the relevant type box, or as a ‘action ellipse’ targeted at
the receiver, with an anonymous initiator.

Individual types are
described this way in
code

At the programming level, all actions will be fully localized i.e. operations. When any
single object is specified as a type to be implemented, you describe operations that
must be implemented to meet this specification, regardless of who invokes them, or
why. The invoker can expect the specified outcome — returned values and other
changes of state — provided the specified pre-conditions were met— including input
parameters and initial state.

Localized actions are
refinable until code

Code-level operations will typically not be refined any further before being imple-
mented. Thus, when an operation signature is declared in Java or C++, it is imple-
mented to precisely that signature, assuming a single call and return. Localized
actions, in general, can be refined. Thus, with appropriate mappings, any one of the
three protocol variations in Figure 89 could achieve the sell action specified above.

Inputs, outputs represent
information exchange

If a localized action is subject to refinement, what do the input and output parameters
mean? Inputs represent information that is somehow determined or selected by the
invoker, through a protocol that is yet to be defined. Outputs represent information
that is determined or selected by the receiving object and returned to the invoker,
again through some protocol.

Wholesaler

cash: $

sell (....)

Product

priceOf (q)
stock

*sell

equivalent
Abstract Localized Actions 5-209

Some protocols may
exchange extra informa-
tion

You could design an interaction protocol in which the retailer pays at least the
required price, and the wholesaler returns the appropriate change. Should we intro-
duce change as an output parameter in the abstract sell action? Similarly, you could
have a protocol in which the retailer first inquires about the catalog of available prod-
ucts before selecting a product to order. Should the catalog then be one of the parame-
ters of the abstract sell action?

Only retain what is rele-
vant to your abstraction

This is a modeling decision you must make; every abstraction is created for a particu-
lar purpose, focusing on some aspects while deferring others. If it is important for this
purpose to describe change returned then include it in the action spec; otherwise defer
it as an artifact specific to a particular refinement. The catalog could also be treated as
a detail of a particular refinement i.e. one particular mechanism for the retailer to
identify the product of interest.

Decide what refined
paths correspond to the
abstraction

When such questions arise, first sketch out the abstract action with its specification.
Walk through paths in the alternate refinements and decide which paths, with well
defined start and end points, constitute the abstract action. Lastly, decide how to
abstract the net effect and information exchanged so as to permit alternate refine-
ments, to capture the essence of the transaction at the abstract level.

Some paths will not
result in a ‘sell’

There will almost always be some paths through the refined protocol which do not
constitute a valid abstract action. For example, in protocol (c), the retailer may decline
to make the purchase the wholesaler suggested. Such a sequence would clearly not be
considered as a sell; it will either be considered insignificant at the more abstract level;
or will constitute a different abstract action at that level; or you may model it as an
exception to the abstract action. Chapter 14, Refinement and Abstraction, describes how
to model these mappings and exceptions.
5-210 Abstract Localized Actions

5.4 Abstract Joint Action = Use Case

Designs are rarely about
single objects

Localized actions provide a 1-sided view of an interaction. Of course, designs are
mostly about how these interactions affect all participants involved, achieving some
overall desired effect e.g. when a retailer’s inventory of a particular product drops
below some threshold, that retailer re-stocks from a wholesaler, affecting attributes on
both sides. Joint actions and collaborations serve this role.

A joint action relates and
affects all parties

The different interaction protocols in Figure 89 clearly depend, and have an effect, on
both parties involved — retailer and wholesaler. We need a way to specify the overall
effect of any of these interactions on both parties. For this we define a single action,
sale, that spans the start to the end of all three interaction variations, and write a spec-
ification that abstracts the effect of all three sequences on the objects involved
(Figure 90).

A joint action is called a
‘use case’

Such an action is called a use case, following [UML]. It can involve multiple partici-
pants, has an overall effect, and can be refined into different interaction protocols. In
particular, we will prefer the term use case for actions at the business level, where the
granularity of the action accomplishes a meaningful objective for one of the partici-
pants; and prefer a slightly different form to document them as use cases. The terms
are otherwise interchangeable.

It’s effect is described
like any other action

A use case represents a set of interactions that occur, across history, involving some
group of objects. It is characterized by a signature and postcondition, showing the
overall effects of the interaction; but abstracts away from the details of exactly what
dialogue of operations are performed between the objects.

Snapshots and related
techniques apply to it

All the techniques we introduced in Chapter 4 — including snapshots, invariants,
attributes and specification types providing a ‘vocabulary’ for action specifications —
apply to use cases and joint actions as well; you could try to sketch some before/after
snapshots for the joint action sale.

It has multiple partici-
pants

The action is represented within a type model by an ellipse linked to type-boxes, each
link representing a ‘participant’. Associated with the action (on the diagram, or in the
Dictionary or other documentation) is one or more action-specs: a signature — con-
sisting of named participants and parameter — plus pre and postcondition. Joint
actions are often better named as nouns e.g. sale, rather than sell.

We distinguish partici-
pants from ‘parameters’

We make a distinction between participants and parameters. Participants are objects
that play an active role in the use case, and are listed before the operation name. For
joint actions, ‘self’ is a tuple consisting of the participants, except they must be explic-
itly named. Parameters represent information that must be exchanged or selected to
determine the effect of the use case, and that would not be determined fully by the
attributes of the declared participants.
Abstract Joint Action = Use Case 5-211

Joint actions define par-
ticipant types

The action is part of the definition of the participants’ types, but not of the parameter
types. It shows that there is some way, not specified here, in which the participants
may conduct a dialogue leading to the achievement of the postcondition, provided
the precondition is true at the outset.

Its effect relates
attributes of all parties

Note that the effect is specified in terms of both participants. The set of items sold has
become a part of the owns set of the retailer, and is no longer in the wholesaler’s stock.
In contrast, the localized action described in Section 5.3 treats this set of items as an
output, and does not say anything about what the (anonymous) retailer does with it.

It is still a model Being a model, there will always be alternate ways to describe the same action; and
alternate abstractions that may capture different aspects for different reasons. For
example, we could just as well describe the sale action with two parameters: the prod-
uct being sold, and its quantity. The two descriptions would be equivalent; any
refined protocol that realized one would also realize the other.

Use case template When describing a use case (a joint action at the business level), you may prefer a dia-
gram view without the type models; and use a form that looks a bit more like a narra-
tive template for review by customers; making it precise is still your job:

use case sale
participants retailer, wholesaler
parameters set of items
pre the items must be in stock, retailer must be registered,

retailer must have cash to pay
post retailer has received items and paid cash

wholesaler has received cash and given items
-- formal versions hidden

Figure 90: A joint action, or use case

Wholesaler

cash: $

Product

priceOf(q)
catalog *

*

Retailer

cash: $

*

*

*registrands

Item

stock

sale (x)

0..1
0..1

action (r:Retailer, w:Wholesaler):: sale (x: Set(Item))
-- retailer, wholesaler are participants; items x is a parameter
let (price = prod.priceOf(x->size)) in (
pre: -- items were in stock, retailer must be registered with w

x : w.products.stock and r: w.registrands and
-- and retailer must have cash to pay for that quantity of items
r.cash >= price

post:-- a += b is short for a = a@pre + b; +, - apply to collections
r.owns += x and r.cash -= price and -- retailer items and cash
w.catalog.stock -= x and w.cash += price) -- wholesaler items, cash

use case =
joint action

owns

r w
5-212 Abstract Joint Action = Use Case

Auxiliary use case infor-
mation

It is also useful to document informally the performance requirements on a use case,
whether it is considered a primary or secondary use case (alternately, priority levels),
the frequency with which it is expected to take place, and concurrency with other use
cases.

use case sale
.....
priority primary
concurrent many concurrent sales with different wholesaler reps

no sale and return by the same retailer at the same time
refinement criteria -- what to consider when refining this use case into a sequence

frequency 300-500 per day
performanceless than 3 minutes per sale

Through the rest of this book, we will sometimes explicitly show the informal use case
template equivalent of a specification. However, the joint action form can always be
represented in the narrative use case template.

5.4.1 From Joint to Localized Actions

Joint actions can have
initiators and receivers

A joint action is interesting because its effect says something important about all par-
ticipants. Although some joint actions, such as the one in Figure 90, do not designate
any participant as an initiator, in general you can designate initiator and receiver.
Here are some variations of a 3-way use case, sale, between a retailer, wholesaler, and
agent. We use the convention that variables names implicitly define their types.

(retailer, wholesaler, agent) :: sale (x: Item)

This represents a joint action with 3 participants, with no distinguished initiator
or receiver. The effect refers to all participants, parameters, and their attributes.

retailer -> (wholesaler, agent) :: sale (x: Item)

A joint action, this time initiated by the retailer. It is now meaningful to mark
some parameters as ‘inputs’ — determined by the initiator by means unspecified
in the effect clause; and others as ‘outputs’ — determined by other participants,
utilized by the initiator in ways not fully specified in the effects clause.

retailer -> agent:: sale (x: Item, w: Wholesaler)

A ‘directed’ joint action which designates the retailer as initiator, and the agent as
the receiver; the sale is initiated by the retailer and carried out principally by the
agent. Once again, the effect refers to all participants and parameters. In this
example, the wholesaler is identified to the agent by the retailer as a parameter.
An alternate arrangement might leave the choice of wholesaler to the agent,
appearing only in the effect clause based on some attributes of the agent.

initiator: Object -> agent :: sale (....)

A directed joint action initiated by some object, received by the agent. Nothing is
known about the type of the initiator, or its role in this action; hence initiator is
declared to be of unknown type Object.

Our use case template permits these additional distinctions to be made:

use case sale
participants retailer, wholesaler
Abstract Joint Action = Use Case 5-213

initiator retailer -- also listed as participant
receiver wholesaler

parameters set of items -- can separate inputs/outputs for directed actions

A localized operation is a
special ‘1-sided’ case

A localized ‘operation’ is a degenerate case of a joint action with a distinct receiver, in
which nothing is known or stated about the initiator’s identity or attributes. All rele-
vant aspects of the initiator are abstracted into into the input and output parameters
of the operation.

Agent:: sale (....)

A fully localized operation which cannot refer to the initiator at all.

Diagram arrows In the diagram notation, we show an arrow from the initia-
tor to the use case, and from the action to the receiver, if
either one is known.

5.4.2 Inputs and Outputs

‘Participants’ document
a partial design choice

Within the effects clause, there is no strong difference between participants and
parameters: both can be affected by the action. The distinction is intended to docu-
ment a partial design decision: the participants exist/will be built as separate entities,
with some direct or indirect interaction between them to realize the action; and the
parameters together represent information that is passed between the participants,
encoded in a form not documented here, and possibly communicated differently.

Inputs and outputs only
apply to directed actions
(joint or localized)

The concept of inputs and outputs are only meaningful for directed requests — either
fully localized operations or joint actions with initiators/receivers, where the invoker
of an operation somehow provides the inputs, and utilizes the outputs. In the case of
joint actions without distinguished initiators or receivers, the effect is expressed in
terms of, and on, all participants, and there is no need to explicit list inputs or outputs.

Parameters in joint
actions provide non-
determinism

The input parameters in a directed action were simply attributes of the initiator in a
corresponding un-directed joint action; they represent state information known to the
initiator when it provides the inputs to a directed request. Equivalently, the outputs of
a directed action were state changes in attributes of the sender in the joint action.
When parameters are used in a joint action, the parameter list simply represents infor-
mation exchanged that is not fully determined by attributes in the participants i.e.
they provide a degree of non-determinism.

Advanced Topic 5.4.3 Abstracting a single operation in code

Let us examine some
code level interactions

We have seen how an entire sequence of interactions between objects can be
abstracted and described as a single joint action. We will next see how even in pro-
gram code, an operation invocation itself has two sides to it: the sender, and the
receiver. A localized operation specification de-couples the effect on the receiver from
any information about the initiator, by using input and output parameters.

Consider this interaction sequence between retailer and wholesaler. The retailer first
requests the price of some quantity of the product. It then requests a sale, paying the
required amount, and gets as a return a set of items. Let us examine the sell operation.
Its spec, based on the type model shown in Figure 91, could be:

P a (x) Q
5-214 Abstract Joint Action = Use Case

action Wholesaler::sell (prod: Product, q: integer, payment: Money) : Set(Item)
pre: -- provided the request product is on our catalog, and payment is enough

catalog->includes (prod) and payment >= prod.price * q
post: -- the correct number of items has been returned from stock

result ->size = q and catalog.stock -= result and cash+= payment

This spec says nothing about how the values of p, q, and payment are related to any
attributes of the retailer. Nor does it say what effect the returned set of items has on
the retailer. While this is quite useful when designing the wholesaler in isolation, of
course, in the bigger picture of the overall interaction between retailer and wholesaler,
those details are quite important.

We identify distinct
points in the interactions

The numbers in Figure 91 will help understand what is going on here. The numbers
mark increasing points in time (although the separations may be a bit artificial for a
procedure-calling model of interactions):

1: retailer has just issued the first price request.

2: wholesaler has received that request.

3: wholesaler has just replied with the requested price

4: retailer has accepted and the returned price

5: retailer has just issued the sell request

6: wholesaler has just received that request

7: wholesaler has completed processing the request and just returned items

8: retailer has accepted the items

The operation spec has
very narrow scope

When we wrote our specification for Wholesaler::sell, the span we were considering
was from 6-7, no more, no less. Thus we ignored all aspects of the Retailer in the spec-
ification.

A broader scope needs a
joint action

If we wanted to describe the effect including points 5 and 8, we would include the fact
that the product, quantity, and payment from the retailer are precisely those previous
exchanged with the wholesaler (at time 5), and increase the inventory of the retailer
(step 8). We can introduce attributes on the retailer to describe the product, quantity,
and payment known to it at point 5, and the set of items that will be increased at step
8, and then define a directed joint action.

action (r: Retailer -> w: Wholesaler) :: sale (out items: Set(Item))

Figure 91: Scope of operation vs. joint action

rtlr: whlslr:

p := price(prod,q)

sell (prod,q, payment)

items

1 2
34

5 6
78

Wholesaler

cash

sell (.....)

Product

price

Item
*

sell operationjoint-action

stock *catalog
0..1
Abstract Joint Action = Use Case 5-215

let (prod = r.prod, -- the product the retailer wants
 q = r.qty, -- the qantity the retailer wants
 pay = r.pay) in (-- the amount to be paid
pre:

-- provided retailer has enough cash
r.cash >= pay
-- and product is available and in stock
and w.catalog->includes (prod) and prod.stock->count >= q

post:
-- payment and inventory of that product has been appropriately transferred
r.cash -= pay and w.cash+= pay and
items.product@pre = prod and items->count = q
r.items += items and w.catalog.stock -= items

)

Specify in terms of
attributes of the retailer

Note that the effect is defined almost completely in terms of attributes of the retailer,
rather than by parameters that would otherwise be unrelated to retailer attributes.
Some of these attributes may even correspond to local variables within the retailer’s
implementation, in which the product, quantity, and payment due are stored after
step 4. The particular set of items transferred has been modeled as an output, since the
specific items can be determined by the wholesaler in ways not specified here, pro-
vided they are of the right product and quantity.
5-216 Abstract Joint Action = Use Case

5.5 What do Use Cases and Abstract Actions mean?

There are 2 meanings to
an abstract action

Abstract actions represent multi-party interactions, deferring many details of the
interaction. They have two important interpretations: a retrospective one, by which
you can examine a detailed history of objects and protocol-specific interactions and
determine what abstract actions actually took place; and a teleological one, which acts
more as a prescription on design yet to be done.

5.5.1 Retrospective View — on Object History

You can retrospectively
identify abstract actions
in object histories

Imagine looking at the entire detailed histories of your objects and trying to determine
where, in this history, you had occurrences of different abstract actions. To discover
whether you have an occurrence of a sale use case anywhere, search for object states
using the following criteria:

• You need to match an object, across some part of its history, to each link emerging
from the action ellipse. They need not be separate objects, though often the logic
of the pre or postcondition implies that they must be. For example, sale insists
that the cash attributes of its participants change in different directions, so in this
case matching one object to both participants wouldn’t satisfy the postcondition.

• The type-boxes at the ends of each link constrain the types of the participants.
Reject all permutations that are of the wrong types.

• For the parameters, you need to find a set of objects constituting a valid model-
refinement of the parameter list. That is, a set of objects that contain the informa-
tion implied by the parameter list. In the steps below about matching states to pre
and postconditions, you will apply the abstraction function to retrieve the param-
eters from the refinement. Model refinement and the abstraction function are dis-
cussed in detail in Chapter 14.

• Choose a start-time and an end-time, and look at the states of your candidate par-
ticipants and parameters at those times.

• Both the before-state and the after-state must satisfy the invariants of the model in
which the action is defined: including both explicitly-written invariants and
things like cardinalities of links, types of attributes.

• The before states must satisfy the action precondition; and the before and after
states must satisfy the action postcondition.

5.5.2 Designer View — what should be built

The action prescribes
some constraints on
upcoming design

The action mandates the designer(s) of Retailer and Wholesaler the joint responsibil-
ity to work out a way that they can perform buy together. It might consist of one oper-
ation or a long dialogue, and may involve other objects, we don’t care. It must be
capable of being put into operation when the precondition (and invariants in the
model of which this action-spec is a part) is true. We haven’t specified in this case
which of them will be required to initiate it, although we certainly could.
What do Use Cases and Abstract Actions mean? 5-217

A joint action does not indicate how responsibilities are distributed between the par-
ticipants. It is specifically intended for representing the important decision about
there being some interaction involving these participants, not necessarily directly
between them, and abstracting from the detail of who does what.

5.5.3 Refining an Action or Use Case

A preview of action
refinement

Abstract actions and use cases will be refined. Chapter 14 will discuss refinement in
detail, but we include a short discussion here to show how abstraction and realization
levels are related to each other in the context of actions.

An abstract re_stock on
WHA

One of the finer grained actions in a sale is the delivery of product to the retailer. Con-
sider a simple retailer warehouse object, WHA. One of its operations is re_stock, by
which one of the products in that warehouse is re-stocked by some quantity. One
abstract description of this uses a very simple type model:

action WHA::re_stock (p: Product, q: Quantity)
post: p.stock += q

Realized by 3 finer-grain
actions on WHB

One realization of this warehouse, WHB, provides a sliding door which can be moved
to a particular product before opening; then items are added to that product shelf one
at a time before closing the door. The actions at this level of realization need a slightly
richer type model, with a selected_product attribute:

action WHB::open (p: Product)
post: selected_product = p

action WHB::insert ()
post: selected_product.count += 1

action WHB::close ()
post: selected_product = null

Is is clear that a certain sequence of these detailed actions constitute a valid re_stock
action. Thus the sequence:

open (p); insert1(); insert2(); ... insertn(); close()

The refinement relation
maps the action
sequence

constitutes an abstract action: re_stock (p, n). The
refinement relation between the two levels of descrip-
tion documents this mapping. The state-chart shows
how the parameters and state changes in the detailed
action sequence translate to the abstract action and its
parameters. In this example we use a counter
attribute to define this mapping; it is an attribute of a
specification type representing a re_stocking in
progress at the more detailed level.

open_door (p)

insert ()
/ n += 1

/ n = 0

close ()

^ re_stock (p,n)

WHA

WHB
5-218 What do Use Cases and Abstract Actions mean?

5.5.4 Refinement and use case documentation

A use case ‘goal’ means a
refinement of invariant,
action spec, ...

Some innovative use case practitioners recommend adding an explicit statement of
‘goal’ to a use case. In Catalysis this is taken care of by refinement. Goals can usually
be described as some combination of:

• invariant: what ever happens, this must continue to be true after

• action specification: an action that should get me to this postcondition

• effect invariant: any action that makes this happen, must also ensure that.

Refinement allows us to trace action refinements back to the level of such ‘goals’.

Use case steps should
only be documented as a
refinement

Likewise, many use case practitioners recommend listing the steps of the use case as
part of its definition; we do not do this, as it mixes the description of a single abstract
action, with one specific (out of many possible) refining action sequence. Instead, first
describe the use case as a single abstract action without any sequence of smaller steps
(Section 5.4, “Abstract Joint Action = Use Case,” on page 211); document its postcon-
dition. This forces you to think about the intended outcome precisely, a step back from
the busy details of accomplishing it.

When you do separately refine the action (Chapter 7, Refinement), it is useful to docu-
ment the refinement textually in a use case template.

use case telephone sale by distributor
refines use case sale
refinement 1. retailer calls wholesaler and is connected to rep

2. rep gets distributor memberhip information from retailer
3. rep collects order information from retailer, totalling the cost
4. rep confirms items, total, and shipping date with wholesales
5. both parties hang up
6. shipment arrives at retailer
7. wholesaler invoices retailer
8. retailer pays invoice

abstract result sale was effectively conducted
with amount of the order total, and items as ordered

5.5.5 Actions and Effects

Effects can name joint
transitions

An effect is simply a name for a transition between two states. We can define joint
effects just as we define localized effects in Section 4.7.5.

effect (a: A, b: B, c: C) :: stateChangeName (params)
pre: ...
post: ...

An effect is not an inter-
face operation

Actions and operations describe interactions between objects; an effect describes state
transitions. You use effects to factor a specification, or to describe important transi-
tions before the actual units of interaction are known. Just as attributes are introduced
as convenient to simplify the specification of an operation, independent of data stor-
age, so can effects be introduced to simplify or defer the specification of operations.
What do Use Cases and Abstract Actions mean? 5-219

Localized effects can
describe “responsibili-
ties”

Effects can also be used when responsibilities of objects (or groups of objects, in the
case of joint effects) are decided but their interfaces and interaction protocols are not
yet known. Actions can then be expressed in a factored form without choosing inter-
faces or protocols.

effect Wholesaler::sell (x: Item)
pre: -- item must be in stock
post: -- gained price of item, lost item

effect Retailer::buy (x: Item)
pre: -- must have enough to pay
post: -- has paid price of item, gained item

The joint action (or another effect) can then be written conveniently, using a single
postcondition:

action (r: Retailer, w: Wholesaler) :: sale (x: Item)
post: r.buy (x) and w.sell (x) and r: w.registrants@pre

“Quoting” refers to the
effect of an action

Every action introduces an effect, which can be referred to by “quoting” it. This is a
way to use the specification of that action, committing to achieving its effect without
committing to specifically invoking it in an implementation.

.... [[(r,w).sale (x)]]

“Invocation” commits to
an interaction

The joint action can also be “invoked”. This simply means that one of the protocol
sequences that realizes that joint action will be executed; specific participants and
parameters are identified, but how they are communicated is left unspecified.

.... ->(r,w).sale (x)

It is not meaningful to “invoke” an effect.

5.5.6 A Clear Basis for Use Cases

Use cases have a precise
definition in Catalysis

The use case has become a very popular term in object-oriented development. A use
case is defined as “the specification of a sequence of actions, including variants, that a
system (or other entity) can perform, interacting with actors of the system”. This con-
cept is given a solid foundation in Catalysis, based upon actions and refinements.

A use case combines an
action with a particular
set of refinements

In the common literature, a use case is typically a joint action
involving at least one object (called an “actor”) outside the sys-
tem of interest, where the granularity of the action is such that it
accomplishes some objective for that actor. The use case will be
refined into a more detailed sequence of actions, and explored
with sequence diagrams illustrating that collaboration. Use case diagrams can be used
to capture the action refinement. Most current accounts of use cases fail to separate
the specific action refinement (one of many that may be possible) from the single
abstract action, since the use case definition itself includes the specific sequence of
steps followed to accomplish that use case; this can make it quite difficult to handle
alternate decompositions.

«extends» «uses»
5-220 What do Use Cases and Abstract Actions mean?

‘uses’ and ‘extends’ rela-
tionships

The use case approach also defines two relationships between use cases — extends and
uses — to help structure and manage the set of use cases. These relationships are
defined in the UML as:

extends: A relationship from one use case to another, specifying how the
behavior defined for the first use case can be inserted into the
behavior defined for the second use case.

uses: A relationship from a use case to another use case in which the
behavior defined for the former use case employs the behavior
defined for the latter.

‘extends’ corresponds to
refinement and packages

The extends relation serves two purposes. Firstly, to defne certain user-visible behav-
iors as increments relative to an existing definition — for example, to define different
interaction paths based on configurations or incremental releases of functionality; sec-
ondly, to do so without directly editing the existing definition — a fancy editing con-
struct. Catalysis meets these objectives within the framework of actions and packages,
where a second package may specify additional behaviors or paths for the same basic
service from another package (Chapter 8, Packages).

‘uses’ is achieved with
actions and effects

The uses relationships between use cases is meant to let use cases share existing use
cases for some parts that are common. There is, however, a conflict between the oft-
stated goal of having a use case correspond to a user task, and the need to factor com-
mon parts across use cases. This leads to some confusion and variations in interpreta-
tion, even among use case ‘consultants’. Catalysis provides actions and effects as the
basis for this sharing; ‘using’ another use case means you use its effect, or quote the
action itself.

Refinement provdides
further flexibility

Based on refinement, Catalysis provides a more flexible mapping between abstract
actions and their realizations. For example, here are two partially overlapping views
of a sale. A customer views a sale as some sequence of <order, deliver, pay>. A sales-
person may view a sale as a sequence of <make call; take order; wait for collection; file
commission report; collect commission>. Both views are valid, and constitute two dif-
ferent definitions of a sale.

How many use cases is
this?

Consider the following example from an Internet newsgroup discussion, which high-
lighted some of the confusion surrounding a precise definition of use case:

A system administers dental patients across several clinics. A clinic can refer a patient to
another clinic. The other clinic can reply back, accepting or otherwise updating the status
of the referral. Eventually, the reply is seen back at the referring clinic, and the case file
updated. Later the final treatment status of the patient is sent back to the referring clinic.
Lastly there is a financial transaction between the two clinics for the referral.

Several questions arise:

• Is this one large-grained use case, Refer Patient?
• Are there separate use cases for Send Referral, Accept Referral, Get Accep-

tance, Final Referral Status, Transfer Money?
• What if Accept Referral was actually done by a receptionist printing it from

the system, then leaving it in a pile for the dentist to review. The dentist
reviews, and annotates acceptance. The receptionist then gets back on the sys-
tem and communicates that decision. How many use cases is that?
What do Use Cases and Abstract Actions mean? 5-221

Actions and refinements
solve this problem

In Catalysis, all these are valid actions at different levels of refinement. There is a top-
level action called Refer Patient. In our approach, the name you choose for a use case
is almost secondary; its meaning is defined by the pre/postconditions you specify for
that usecase. Just like any other action (Section 4.3.5, “Actions and Operations
Defined,” on page 141), a use case can be refined into some sequence of finer-grained
actions; and alternate refinements may be possible as well. The steps of a use case are
also actions, just as the use case itself is an action.

Use cases should provide
business value

Use cases gives reasonable guidelines on how fine-grained a use-case should get, if
only at the bottom end of the spectrum: if the next level of refinement provides no
meaningful unit of business value or information, do not bother with finer grained
use cases; just document them as steps of the previous level of use case.
5-222 What do Use Cases and Abstract Actions mean?

5.6 Collaborations

A collaboration is a set of
related actions with
typed participant roles

A collaboration is a set of related actions between typed objects playing certain roles
with respect to others in the collaboration, within a common model of attributes. The
actions are grouped together into a collaboration so as to indicate that they serve a
some common purpose. Typically, the actions will be used in different combinations
to achieve different goals or maintain some invariant between the participants. Each
role is a place for an object, and is named relative to the other roles in the overall col-
laboration.

For example, the Subject-Observer pattern uses a set of actions enabling the Subject to
notify its Observers of changes; and the Observer to query the Subject about its state;
and enabling the Observer to register and deregister interest in a particular Subject.
These actions taken as a set form a ‘collaboration’.

‘order, deliver, pay’ is a
refinement of ‘sale’

Where there are several actions with the same participants, it is convenient to draw
them on top of one another. The collaboration in Figure 92 describes a set of 3 actions
between retailers and wholesalers. This collaboration is a refinement of the joint sale
use case we specified earlier, since particular sequences of these refined actions will
realize the abstract action.

Figure 92: A collaboration that realizes the abstract “sale”

Retailer Wholesaler

cash: $ cash: $

Product

price: $Iterm

name: String

*

*

*

catalog

stock

r

w

*
*

order(p:Product)
deliver(x:Item)

pay(m:$)

Order
*

*
orderbook*

0..1

0..1

0..1

action (r:Retailer, w:Wholesaler):: order (p : Product)
pre: -- product is in catalog, and retailer is registered with wholesaler

p : w.catalog & r : w.registrands
post: -- new order on w’s books for this order

w.orderbook += Order.new [product=p & retailer=r & item = null]

action (r:Retailer, w:Wholesaler):: deliver (x : Item)
pre: -- there must have been an order for this delivery

w.orderbook[retailer=r & product=x.product & item=null] <> y
post: -- item transferred from stock to retailer

w.catalog.stock -= x & r.items += x &
-- and 1 order on the order books has been fulfilled with item=x
w.orderbook[retailer=r & product=x@pre.product

& item@pre=null & item=x] -> size = 1

registrands

Order Fulfillment
Collaborations 5-223

Collaborations distrib-
ute responsibility

A collaboration represents how responsibilities are distributed across both objects and
actions, showing what actions take place between what objects, optionally directing
or localizing these actions. The actions are related by being defined against the same
model, and achieve some common goal or refine a single more abstract action.

Participant type is just
one role of some object

Associated with a collaboration is a set of types — those that take part in the actions.
Typically, they will be partial views, just dealing with the roles of those objects
involved in this collaboration. For example, the retailer in this collaboration may well
have another role in which it sells the items to end customers.

As a side note, a type specification is a degenerate special case of a collaboration spec;
one in which all actions are directed, and nothing is said about the initiator.
5-224 Collaborations

5.7 Uses of Collaborations

Collaborations describe
encapsulated or ‘open’
designs

Collaborations are used to describe designs, in two primary forms:

Enscapsulated: the behavior of an object may be specified
as a type; it can then implemented with that object being
comprised of some others, collaborating to meet its behav-
ior specifications. Individual classes fall into this category.

Open: a requirement can span a group of objects via an
invariant or joint action; a collaboration is a design for this
requirement. Services (infrastructure ones like transactions
and directory services; and application specific ones like
spell-checking, or inventory maintenance), uses cases, and

business processes usually fall into this category.

5.7.1 Encapsulated Collaboration — Implements a Type

A type is implemented
by a collaboration

A collaboration with a distinguished ‘head’ object can serve as the implementation of
a type. It can appear within a three-part box, like a type: the difference is that the mid-
dle section now includes actions (directed or not), along with the collaborating types
and links (directed or not) between them.

The roles now represent
‘design’ types

So in fact the ‘type’ is now a class, or some other implementation unit (such as an exe-
cutable program whose ‘instance variables’ are represented as global variables within
the process). The collaboration describes how its internals work. The
Editor_implementation type, and those within its box, are all “design types” (rather
than hypothetical ‘specification’ types, as discussed in Section 4.10) — any implemen-
tation of this collaboration will need to implement them in order to realize this collab-
oration.

Figure 93: A collaboration implementing the Editor type

Editor_implementation

ClipBoard

Document

focus

*open
cut, copy replace(s):Selection

Selection

copy
clip

cut

Editor_spec

cut

«implements»

0,1

0,1

0,1

0,1

cut
copy
paste

copy

copy

name

internal

section
external

section
Uses of Collaborations 5-225

This collaboration diagram shows 5 actions, recognized by the action ‘ellipse’ on the
lines between types: the external cut and copy operations which the editor must sup-
port according to the specification, and the internal cut, copy, and replace actions
between the editor, the focus document, its internal selection, and the clipboard, that
will realize it. The lines without ellipses represent type model attributes — now with
directions on them — and eventually denoting specific implementation constructs
such as instance variables. As usual, we can choose to show just some of the actions in
one appearance of this collaboration, and show the rest on other pages; all model ele-
ments can be split across multiple diagram appearances1. You would normally show
all internal actions required for the external actions on that diagram.

7.1.1 Interaction Diagrams

Interaction diagrams
show action sequences

This collaboration diagram shows object and action types; it does not indicate what
sequence of these internal actions realize the specified effect of cut. An interaction dia-
gram (Figure 94) describes the sequence of actions between related objects that are
triggered by a cut operation; it can be drawn in two forms:

• A graph form: actions are numbered in a dewey-decimal manner: 1, 2, 2.1, 2.2,
2.2.1, etc. For consistency, we prefer to show actions with an ellipse ;
however, directed actions can be shown with simple UML arrows, optionally
with a “message flow” arrow next to the action name itself. This diagram high-
lights inter-object dependencies; sequencing is by numbering. The encapsulated
objects could be shown contained within the editor, as in Figure 93.

• A time-line/sequence form: this diagram highlights the sequences of interactions,
at the cost of inter-object dependencies; otherwise, it captures the same informa-
tion as the graph version. Again, multi-party joint actions, such as entire use case
occurrences, require an alternate notation to the ‘arrow’ (Section 5.8.5).

Typical use of an interaction diagram will show just two or three levels of expanded
interactions, with a specification of the actions whose implementation has not been
expanded; more levels on one drawing can get confusing. Interaction diagrams can
also be used at the business level (Section 2.7) and at the level of code (Section 4.4.1).

1. Within the scope of a package, as discussed in Chapter 12
5-226 Uses of Collaborations

5.7.2 Open Collaboration — Design a Joint Service

Collaborations can also
represent pure design
patterns

Some collaborations do not have a ‘head’ object of which they are a part, like the pre-
ceding editor example; there are no specific external actions on the objects that are
being realized by the collaboration. These collaborations are shown in a dashed box,
to indicate the grouping. An open collaboration can have all the syntax of an encapsu-
lated collaboration, except that there is no “self”. Like a type box, it has a name, an
internal section with participant types and internal actions, and an external section
that applies to all other actions.

Figure 95 depicts a collaboration for lodging services, showing how responsibilities
are distributed across three actions — checkin, occupy, checkout; and across the two
participant types — lodges provide checkin, initiated by the guest; guests occupy
rooms, initiated by the lodge; and checkout may be initiated by either.

Figure 94: Two forms of interaction diagrams

editor:

document:

clipboard:

copy()

1: s := copy()

2: replace (s)

selection:

1.1: copy()

editor: document: selection: clipboard:

s2:

{new} s2:

1.1.1: create()

copy()
s := copy()

copy() create()

replace (s)

1.1 is a (nested) consequence of 1

2 happens after 1

optional

new object created

“message flow”

Figure 95: An “open” collaboration

Guest Lodge

checkin

occupy

checkout

Lodging-Service name

internal section

external section
Uses of Collaborations 5-227

The participant types
represent related roles

This style of collaboration is common where each participant is one role of many
played by some other object, and the collaboration is part of a framework. These
generic pieces of design are rarely about one object. Instead, they are about the rela-
tionships and interactions between members of groups of objects. Most of the design
patterns discussed in books and bulletin boards are based around such collaborations:
for example, the “observer” pattern which keeps many views up to date with one sub-
ject; or “proxy”, which provides a local representative of a remote object; or any of the
more speciallised design-ideas that are fitted together to make any system.

We we discussed in Section 2.6, interface centric design leads us towards treating
these “open” collaborations as design units. Each interface of a component represents
one of its roles, which is relevant only in the context of related roles and interactions
with others. An open collaboration is a grouping of these roles into a unit that defines
one design of a certain service.

Collaborations can be
composed

Collaborations, including encapsulated designs, will often be built by composing
‘open’ collaborations. The services in an ‘open’ system are extended by adding new
roles to existing objects and introducing new objects with roles that conform to a new
service collaboration, subject to the constraints of existing collaborations.

Figure 96: Collaborations can be de-composed and re-composed

Airline Passenger

Travel-and-Lodge-Design

Guest Lodge

Lodging-Service

Person LodgeAirline

Travel-Service
5-228 Uses of Collaborations

5.8 Collaboration Specification

A collaboration separates
internal actions from
external

Every interacting object is part of some collaboration, usually more than one. Every
collaboration has some participants that interact with objects — hard, soft, or live —
outside the collaboration. So every collaboration has ‘external actions’ and ‘internal
actions’ — the latter being the ones that really form the collaboration. In the encapsu-
lated collaboration in Figure 93, the external actions include the three specified opera-
tions on the editor implementation; in the ‘open’ collaboration in Figure 95, all actions
involving the guest or lodge, excepting the checkin, occupy, and pay actions, are
external.

5.8.1 External actions

External actions are not
explicitly listed for open
collaborations

If these are listed explicitly, they can be depicted as action ellipses outside the collabo-
ration box; or may be listed in the bottom section of the box. Encapsulated collabora-
tions will always have explicit external actions. Open collaborations will typically
have unknown external actions — you do not know what other roles, and hence
actions, will affect the objects you are describing. External actions still have specifica-
tions in the form of post-conditions.

External actions are spec-
ified in a type spec...

For an encapsulated collaboration, if you wish to repeat an external action’s spec (it
will usually have already been given in the type specification for whatever this is an
implementation of), it can be written inside the box, written in terms of ‘self’, repre-
senting any member of the implemented class. Equivalently, you can write it any-
where, context-prefixed with the class name “Editor_implementation :: ”.

Or by constraints on
placeholder or unknown
actions

For an ‘open’ collaboration, you can write an external action’s spec outside the box; in
that case, you have to list the participants and give them names explicitly. External
actions often take the form of ‘placeholders’ in frameworks — actually replaced by
other actions when the frameworks are applied, as described in Chapter 15; or they
are constrained by effect invariants, as described below in Section 5.8.3.

5.8.2 Internal actions

The main collaboration
actions are internal

These are depicted as actions — directed or not — between the collaborators inside
the middle section of the box. These actions also have specifications — either in the
body of the box, with explicit participants, or within the receiver types if they are
directed actions. Alternately, the specs can be written elsewhere, fully prefixed with
the appropriate participant information.

5.8.3 Invariants

Invariants range over all
actions, or only external
ones

Since collaborations explicitly separate external from internal actions, you can now
define invariants — both static as well as effect invariants — that range over different
sets of actions. The two useful cases are ranging only over external actions (internal
ones are excluded, and do not have to maintain these invariants); and ranging over all
actions, both internal and external.
Collaboration Specification 5-229

You can write an invariant that applies to all the external actions in the bottom section
of the box. A static invariant would be and’ed with all their pre and postconditions; an
effect invariant would be and’ed with all postconditions. This is very useful for
expressing some rule that is always observed when nothing is going on inside the col-
laboration, but that is not observed by the collaborators between themselves.

Effect invariants are use-
ful in open collabora-
tions

An open collaboration typically cannot list external actions explicitly, since these are
usually unknown. Instead, you can use an effect invariant to constrain every external
action to conform to specific rules. For example, the external effect invariant in
Figure 97 states:

If any action on a guest causes that guest’s intended location (where) on the fol-
lowing day to be different from his current lodge location, that action must also
cause a checkout to take place.

They constrain unknown
actions

This invariant applies to all ‘external’ actions on a guest; hence it excludes the checkin
and occupy actions themselves. A guest who checks into a lodge when his intended
location for the next day is not at that same location will not trigger a checkout. How-
ever, actions from other collaborations could trigger it: the home_burned_down
action from the insurance collaboration, or the cops_are_onto_me action from the
shadowy_pursuits collaboration, most definitely could.

Invariants can be written inside the middle section of the box, and apply to both inter-
nal and external actions of this collaboration.

5.8.4 Sequence constraints

Internal actions may
have general sequence
constraints

You can draw a statechart showing in what order it makes sense for the actions to
occur. This isn’t as concrete as a program, since there may be factors abstracted away
that permit different paths, and intermediate steps, to be chosen; a program will usu-
ally spell out every step in a sequence. The statechart is a visual representation of sen-
sible orderings that could equally, if less visibly, be described by the pre and
postconditions of the actions.

Figure 97: An external effect invariant

Guest Lodge
checkin

occupy

checkout

Lodging-Service

inv effect Guest::checkout_trigger
post: self.where (now + 1 day) <> lodge.location

implies [[(self, lodge).checkout]]

where(Date) location

internal section

external section
5-230 Collaboration Specification

Specific sequences will
be realizations of abstract
actions

This is not the same as a statechart showing how different orderings actually result in
achieving different abstract actions. The actions of a collaboration may have many
possible sequences in which they can sensibly be used, but each abstract action con-
sists of just certain combinations of them. For example, there are many combinations
in which it makes sense to hit the keys of a Unix terminal. The keystrokes and the
responses you get on the screen are a collaboration. But there is a more abstract collab-
oration, in which the actions are the Unix commands. To form any one of these, you
hit the keys in a certain sequence, given by the syntax of the shell language. The over-
all sensible-sequences statechart is more permissive than the statechart that realizes
any one abstract command.

5.8.5 Role-Activity Diagrams

Scenarios show actions
traces and state changes

An action-occurrence is an interaction between two particular points in time involv-
ing specific participant objects bringing about a change of state in some or all of them.
A scenario is a particular trace of action occurrences, starting from a known initial
state. An action-occurrence is shown pictorially:

• as a horizontal bar (with arrows or ellipses) in a role-activity diagram ;

• as a line with an ellipse in an interaction graph; sometimes abbrevi-
ated to just an arrow from initiator to receiver.

In the role-activity diagram below, each main vertical bar is an object (not a type: if
there are several objects of the same type in a scenario, that means several bars). Each
horizontal bar is an action. Actions may possibly be refined to a more detailed series
actions — perhaps differently for different subtypes, or in different implementations.
The elliptical bubbles mark the participants in each action: there may be several. If
there is a definite initiator, it is marked with a shaded bubble.

Figure 98: Scenario sequence diagram with joint actions

greaseCity : BurgerBar

jo : Customer pat : Customer chris: Server bill : Chef order1: Order

in_prep

ready

order burger

call for bill

order1 ready

open
each bar is one object

not created yet

states

rendezvous:
needs both ready

initiator
action name

consequent action

participants
Collaboration Specification 5-231

Actions bubbles are
sometimes abbreviated
as arrows

We use horizontals with bubbles instead of the more common arrows because we
want to depict occurrences of abstract actions, even of complete use cases. They often
do not have a distinguished ‘sender’ and ‘receiver’, and may often involve more than
two participants. Arrows are acceptable for other cases, including to illustrate the call-
ing sequence in program code.

Starting from the initial state, each action occurrence in a scenario causes some state
change. We can draw snapshots of the state before and after each action occurrence,
for joint and localized actions. The snapshots can show the collaborators and their
;links to each other and to associated objects of specification types.

Other vertical connections show that participation in one action may be consequent
on an earlier one. This might be implemented as directly, for example, as one state-
ment following another in a program; or it might be that a request has been lodged in
a queue; or it may just mean that the first action puts the object in a suitable state to
perform the second.

5.8.6 Abstracting with Collaborations and Actions

The most interesting aspects of design and architecture involve partial descriptions of
groups of objects and their interactions relative to each other. Actions and collabora-
tions provide us with important abstraction tools:

• A collaboration abstracts detailed dialogue or protocol. In real life, every action
we talk about — for example “I got some money from the cash machine” — actu-
ally represents some sequence of finer-grained actions e.g. “I put my card in the
machine; I selected ‘cash’; I took my money and my card”. Any action can be
made finer. But at any level, there is a definite postcondition. A collaboration spec
expresses the postcondition at the appropriate level of detail. (“There’s more cash
in my pocket, but my account shows less.”). Thus we defer details of interaction
protocols.

• A collaboration abstracts multiple participants. Pinning an operation on a single
object is convenient in programming terms, particularly for distributed systems;
but in real life — and at higher levels of design — it is important to consider all
the participants in an operation, since its outcome may affect and depend on them
all. So we abstract operations to “actions”. An action may have several partici-
pants, one of which may possibly be distinguished as the initiator 1 . For example,
a card-sale is an action involving a buyer, seller, and card-issuer. Likewise, we
generalize action-occurrences, as depicted in sce-nario diagrams, to permit multi-
party actions, as opposed to the strictly sender-receiver style depicted by using
arrows in sequence or message-trace diagrams. A standard OOP operation (=
message) is a particular kind of action. The pre/ post spec of an action may reflect
the change of state of all of its participants. We can thus defer the partitioning of
responsibility when needed.

• A collaboration abstracts object compositions. An object that is treated as a single
entity at one level of abstraction may actually be composed of many. In doing the
refinement, all particpants need to know which constituent of their interlocutor
they must deal with. For example, in abstract “I got some cash from the bank” —
actually, you got it from one of the bank’s cash machines. Or in more detail, you
inserted your card in the card-reader of the cash machine...
5-232 Collaboration Specification

Hence, actions and collaborations are useful in describing abstractly the details of
joint behavior of objects, an important aspect of any design.
Collaboration Specification 5-233

5.9 Collaborations — summary

Collaborations are units of design work that can be isolated, generalised, and com-
posed with others to make up a design.

To help design a collaboration, we can use different scenario diagrams: Object Interac-
tion Graphs and Message Sequence Diagrams for software; and Action Sequence Dia-
grams for abstract actions.

Figure 99: Collaborations

Guest Lodge
checkin

occupy

checkout

Lodging-Service

inv effect Guest::checkout_trigger
post: self.where (now + 1 day) <> lodge.location

implies [[(self, lodge).checkout]]

where(Date) location

internal section

external section

collaboration

participant type

joint action

Collaboration notations

Airline Passenger

Travel-and-Lodge-Design

Guest Lodge

Lodging-Service

Person LodgeAirline

Travel-Service

Composing collaborations
5-234 Collaborations — summary

Figure 100: Collaborations

Scenario notations

greaseCity : BurgerBar

jo : Customer pat : Customer chris: Server bill : Chef order1: Order

in_prep

ready

order burger

call for bill

order1 ready

open
each bar is one object

not created yet

states

rendezvous:
needs both ready

initiator
action name

consequent action

participants

editor:

document:

clipboard:

copy()

1: s := copy()

2: replace (s)

selection:

1.1: copy()

editor: document: selection: clipboard:

s2:

{new} s2:

1.1.1: create()

copy()
s := copy()

copy() create()

replace (s)

1.1 is a (nested) consequence of 1

2 happens after 1

optional

new object created

“message flow”

Object Interaction Graphs

Used for describing software designs

Message Sequence Diagrams

Equivalent to OIGs

Role-Activity Diagrams
Multi-participant action-occurrences
Collaborations — summary 5-235

5-236 Collaborations — summary

	Chapter 5 Interaction Models — Use Cases, Actions, and Collaborations
	5.1 Designing object collaborations
	5.2 Object Interactions — A Need for Abstract Actions
	5.3 Abstract Localized Actions
	5.4 Abstract Joint Action = Use Case
	5.4.1 From Joint to Localized Actions
	5.4.2 Inputs and Outputs
	5.4.3 Abstracting a single operation in code

	5.5 What do Use Cases and Abstract Actions mean?
	5.5.1 Retrospective View — on Object History
	5.5.2 Designer View — what should be built
	5.5.3 Refining an Action or Use Case
	5.5.4 Refinement and use case documentation
	5.5.5 Actions and Effects
	5.5.6 A Clear Basis for Use Cases

	5.6 Collaborations
	5.7 Uses of Collaborations
	5.7.1 Encapsulated Collaboration — Implements a Type
	7.1.1 Interaction Diagrams

	5.7.2 Open Collaboration — Design a Joint Service

	5.8 Collaboration Specification
	5.8.1 External actions
	5.8.2 Internal actions
	5.8.3 Invariants
	5.8.4 Sequence constraints
	5.8.5 Role-Activity Diagrams
	5.8.6 Abstracting with Collaborations and Actions

	5.9 Collaborations — summary

