

 Chapter 4 Behavior Models — Object Types
and Operations
Outline

In Catalysis, we separate the internal design of a component from its external
behavior. Behavior is described by specifying the component’s type — a list of
actions it can take part in, and how it responds to them.

The type description in turn has two parts:

• the Static Model of an object’s internal state, using attributes and associations
and invariants;

• specifications of the effects of the actions on the component, using the vocab-
ulary provided by the Static Model.

We dealt with the Static Model in the previous chapter; this present chapter deals
with specifying actions. An action is specified by its effect on the state of the
object, and any information exchanged in the course of that action. This state is
described as a type model of the object, and of its in/out parameters. This chap-
ter describes how to derive and write precise action specifications, and how to
interpret them.

At this stage, the objective is just to specify the actions, not implement them
(though we will look at some program code as examples). The latter part of this
chapter will also briefly discuss programming language classes, and how they
relate to the specifications. The key to an implementation is the how the objects
inside the component collaborate together to provide the effects specified here.
Such collaborations will be the subject of the chapter after this.
© Desmond D’Souza & Alan Cameron Wills 1998/May/11 10:46 4-129 of 204

4.1 Object Behavior — objects and actions

In component-based development, you have to construct software from components
you can’t see the insides of: you have to treat them more or less as black boxes. And
you have to construct your own components so that they will work with a wide vari-
ety of others: components that aren’t interoperable have a low value. So it’s not just
that you are denying yourself a peep inside some specific black box: it’s that there are
so many, each with its own special features, that the only option is to isolate the fea-
tures that you need. (As we said before, this has been the situation in hardware for
years: that it’s novel to our profession should perhaps be an issue of some embarras-
ment for us!)

For that reason, we are interested in separating external specification of behavior from
the internal works. Ideally, we would like to describe the operations a component per-
forms, without any reference to anything inside; but as we observed at the start of the
previous chapter, that isn’t possible: the instruction label on the black box has to
include some sort of picture of what’s inside — even if only a hypothetical picture.
This is the Static Model. It can be very much simplified, so long as it provides a vocab-
ulary for describing the operations; and provided the resulting model is accurate
enough that users get the results they expect.

4.1.1 Business models, component models, object models

Near the end of the previous chapter, we
remarked that a type model can deal with
things in the ‘real’ world, or it can model
the internal state of a larger object such as
a computer system or component —
which we showed graphically by drawing
the type of the component containing the
types of the objects it ‘knew’ about.

The techniques of this chapter can be used
to specify either changes in the real world,
or changes inside a component; but what
both situations have in common, is that we
are specifying just the outcome or ‘effects’ of the actions, rather than what goes on
inside. We close our eyes in between the start and end of every change, and just
describe the comparison between the two ‘snapshots’ of the business or system state.

4.1.2 Snapshot pairs illustrate actions

Actions change object
state

Over their lifetime, objects undergo state changes as a result of actions. For example, if
we had the object snapshot depicted in the top half of Figure 55, and a client requested
a session of the javaCourse, then we might end up with the snapshot depicted in the
lower half of Figure 55. The new session is assigned to paulo, as he is qualified to
teach that course. An occurrence of the scheduleCourse action separates the two snap-
shots.

types representing
what it knows about

type of component

types of things
in the external world

action schedule ...
action cancel ...

specs of operations this component performs
— use static component model as vocabulary

static compt model:

action ...specs of interactions in
terms of participants’ types

Some Component
4-130 Object Behavior — objects and actions

Snapshots illustrate
actions

These before/after snapshots provide a useful way to envisage what each action does.
Looking at the diagram, can you see what “cancel(session-32)” would do? And what
about “reschedule(session-5, 2000/1/5)”, or “qualify(paulo, catalysisCourse)”?

Type model attributes
help describe actions

This is the primary reasons for making a model of object state: we choose objects and
attributes, whether written inside the types or drawn as links, that will help us define
the effects of the actions. It would be very difficult to describe the effect of schedule
course without the model attributes depicted on the snapshots.

4.1.3 Pre and Post-conditions specify effect of actions

The effect of an action
can be specified

The limitation of snapshots is that they show particular example situations. Of course,
we want to describe what effect an action has in all possible situations. We can do that
by writing ‘postconditions’ — informal statements or formal expressions that define
the effect of an action, using the same ‘navigation’ style as invariants in Section 3.5,
“Static Invariants,” on page 115. For example,

action schedule_course (reqCourse: Course, reqStart: Date)
pre: Provided there is an instructor qualified for this course

who is free on this date, for the length of the course.
post: A new confirmed session has been created, with course = reqCourse,

startDate = reqStart, and endDate – startDate = reqCourse.length.

Figure 55: An action causes a change in state

paulo: Instructor

course

sess32: Session
startDate = 1999/6/2
endDate = 1999/6/6instructor

sess5: Session
startDate = 1999/7/23
endDate = 1999/7/27

instructor
laura: Instructor

qualifiedFor

catalysis: Course

qualifiedFor

course
java: Course

paulo: Instructor

course

sess32: Session
startDate = 1999/6/2
endDate = 1999/6/6instructor

sess5: Session
startDate = 1999/7/23
endDate = 1999/7/27

instructor
laura: Instructor

qualifiedFor

catalysis : Course

qualifiedFor

course
java: Course

sess33: Session
startDate = 1999/8/4
endDate = 1999/8/7

(a) “before” snapshot

(b) “after” snapshot

instructor

course

schedule
course

an action occurrence

instructor
Object Behavior — objects and actions 4-131

Postconditions are (par-
tial) specifications

Notice that we have only stated some parts of what this action does. In fact, this is one
of the nice things about specifying actions rather than designing them: you can stipu-
late just those characteristics as you need the outcome to have, and leave the rest
unsaid, with no spurious constraints. This is exactly what’s required for component-
based development: we need to be able to say “a plug-in component must achieve
this”, but should not say how, permitting many realizations.

and can be combined
easily.

It is also very easy to combine requirements expressed in this way: different needs can
be and’ed together — something you can’t do with chunks of program code. And dif-
ferent versions, expressed in different subtypes, can add their own extra constraints to
the basic requirement (see Section 9.4.5, “Joining type specifications is not subtyping,”
on page 375).
4-132 Object Behavior — objects and actions

4.2 More precise postconditions

Postconditions can be used as the basis for writing a test harness: valuable when
developing any complex system; and even more valuable when you are couipling
together a variety of components from who knows where! (More in Chapter 7.)

To be useful in this way, we should therefore write the postconditions in a more pre-
cise style. They should be boolean functions, and they should be read-only — a post-
condition that changes what it is testing is no use! For this purpose, you can use the
boolean-expression part of your favorite programming language. Here, we use a gen-
eral form called Object Constraint Language [OCL]. It translates readily to most pro-
gramming languages, but being purpose-built for specification, has one or two
features that make it less clumsy in this context than, say, C++.

The other benefit of writing the postconditions more formally is that doing so tends to
make you think harder about the requirements. The effort is not wasted: you would
have had to make these decisions anyway; you’re just focussing on the most impor-
tant ones, and getting a better end result.

The rest of this section deal with key features of the more precise style. It is applicable
to both business and component modelling. Later sections differentiate the two, and
go into more details of action specification.

4.2.1 Using snapshots to guide postconditions

A postcondition states what we want the end result to be.

For example, let’s suppose one instructor may be the mentor of one other: perhaps
some of them get too outrageous in class from time to time. The action of assigning a
mentor is, informally:

action assign_mentor (subject: Instructor, watchdog: Instructor)
post: The watchdog is now the mentor of the subject.

This can be shown on a pair of snapshots (Figure 56).

Figure 56: Assigning a Mentor

paulo: Instructor laura: Instructor

(a) “before” snapshot
(b) “after” snapshot

an action occurrence

jo: Instructor crispin: Instructormentor

paulo: Instructor laura: Instructor

jo: Instructor crispin: Instructormentor

mentor

assign mentor (paulo, crispin)
More precise postconditions 4-133

There wasn’t any mention of mentors in the model we
drew earlier, so we needed to invent a way of describing
them. Every instructor might or might not have a mentor,
so this fragment of static model seems appropriate.

Now we can write the action in terms of this association:

action assign_mentor (subject: Instructor, watchdog : Instructor)
post -- the watchdog is now the mentor of the subject

subject.mentor = watchdog

Notice:

• The postcondition states what we need; it doesn’t say anything about aspects we
don’t care about (though we might want to be more explicit about what happens
to any existing mentee of the watchdog). Looking at the snapshot, you can see
how the example we illustrated corresponds to the change.

• Associations are by default bidirectional, so it isn’t necessary also to write “watch-
dog.mentee = subject”. However, that would be an alternative to what we wrote.

• Navigation expressions in an action spec should generally start from the parame-
ters. (So mentor=watchdog would be wrong — whose mentor?) Other starting
points are self (in actions performed by a particular object); and variables you
have declared locally, in such as forAll and let clauses (Figure 49 on page 117).

Informal –> snapshot –> formal. This basic procedure is the general way to formalise
a postcondition. However, you need to be careful of alternative cases: a snapshot only
illustrates one case, and so you may need to draw several to get a feel for the whole
gamut of possibilities. It’s the action postconditions you’re really trying to determine
— the snapshots are mainly thinking tools.

4.2.2 Comparing before and after

A postcondition makes an assertion about the states both immediately before and
immediately after the action has happened. In every object, it therefore has two com-
plete sets of attribute-values it can refer to. By default, every mention of an attribute
refers to the newer version; but you can slide up to the prior state by suffixing it with
@pre. So:

subject.mentor@pre — our subject’s old mentor

subject.mentor.mentee@pre — subject’s new mentor’s old mentee

subject.mentor@pre.mentee@pre — subject’s old mentor’s old mentee

subject.(mentor.mentee)@pre — same as previous (= subject)

subject.mentor@pre.mentee — subject’s previous mentor’s new mentee

Each navigation expression is a way of getting from one object to antoher, that nor-
mally works all within the same plane of time. @pre can be applied to an expression
to make it evaluate in the previous time. But what you get from an expression is the
identity of an object, which continues through from one time to another; and unless
you keep applying @pre, further expressions will always evaluate in the newer time
(Figure 57).

Instructor
mentor 0,1 0,1 mentee (?)
4-134 More precise postconditions

An example:

action assign_mentor (subject: Instructor, watchdog : Instructor)
post subject.mentor=watchdog

-- watchdog is now subject’s mentor,

and let ex_mentee = watchdog.mentee@pre in
ex_mentee

≠

 null ==> ex_mentee.mentor = null

-- and if watchdog had a previous mentee, they now have none

Notice:

• The use of

null

 to represent ‘no object’ where an association permits none;

• The use of ‘==>’, also written ‘

implies

’ — meaning: if ... then ...

•

@pre

 takes you back to the previous value of a changeable attribute , not to the
previous state of the object it refers to. Parameters have the same values all the
way through, so there is no point in the expression

subject@pre

.

• In an action spec, we’re only dealing with two states, so

x@pre@pre

 is undefined.

Abstract yet precise –> raises pertinent questions.

The level of detail here is enough
to draw out debate. Doing this example in groups, this is often a point where discus-
sion arises about what should happen to the ex-mentee (dreadful expression! I hope
never to be one.) For example, should the static model be revised to allow more than
one mentee per mentor?

Whatever the answer, this is a business question; but it might not have arisen at this
early stage if we hadn’t tried being more precise. And yet we have done so without
waiting until we are wading around in the detail of the program code.

4.2.3 Newly-created objects

A thing that can happen as a consequence of an action is that new objects will be cre-
ated. The set of these objects has the special name

new

 in a postcondition, and there
are some special idioms for using it. After drawing the snapshot in Figure 55 on
page 131, we can write:

action schedule_course (reqCourse: Course, reqStart: Date)
post: let ns= Session.new [course = reqCourse and startDate = reqStart

and endDate – startDate = reqCourse.length]
in ns.instructor.available@pre(startDate, endDate)

-- there is a new Session — call it ns — with the properties requested; and
-- its instructor (as she was previously) was available for the requested period

Figure 57: The kebab model of object history

time

after

before

object kebabs

the Skewer of Identitya navigation
expression

the Griddle of the Present

menteem
en

te
e@

pr
e

mentor
More precise postconditions 4-135

Notice:

• The power of the postcondition, to avoid unnecessary detail. We have not said
definitely which instructor should be assigned; nor how one should be chosen
from the available ones. We have limited our statement to just the requirements
we need, that whoever is chosen, they should have no prior commitment.

• How we have devolved some complexity, by assuming a parameterised attribute
available defined with Instructors. We’ll have to go back and write that some-
time....

4.2.4 Collections

In this superposed pair of snapshots, the new state is shown in bold:

Many of the associations in a model are of multiple cardinality, and by default repre-
sent ‘flat’ sets. We can use the collection operators (Figure 49 on page 117):

action reassign_course (session : Session, new_inst: Instructor)
post: --An existing Session is taken off one instructor’s schedule, and onto this new one

let ex_instructor = session.instructor@pre
in

ex_instructor.schedule = ex_instructor.schedule@pre – session
and new_inst.schedule = new_inst.schedule + session

Notice:

• Use of + and – with collections — just the set union and difference.
(The construct collectionAttribute= collectionAttribute@pre + x is so common that
some of us have taken to writing collectionAttribute += x. But if you do this, please
remember that this is not an assignment, merely a comparison between two
states.)

• We could perhaps more simply have asserted:

session.instructor == new_inst

Since the static model tells us a Session only has one instructor, this might have
been adequate. However, an designer might mistake the meaning of this, and
make this session the only one the new instructor is assigned to, deleting all his
other commitments. So we choose to be more explicit.1

Figure 58: Snapshot for action reassign_course

1. There is a big issue here concerning ‘framing’. In a fully formal spec such as for safety-criti-
cal systems, you would have to be more explicit about what objects are left untouched.

jo : Instructor
 : Session

session: Session

 : Session

 : Session
laura : Instructor

scheduleinstructor

instructor
schedule

action reassign_course
(session, laura)
4-136 More precise postconditions

4.2.5 Preconditions

Many of the actions we could define only make sense under certain starting condi-
tions, which can be characterised by a precondition. The precondition only deals with
one state, so it doesn’t have @pre or new.

For example:

action assign_mentor (subject : Instructor, watchdog : Instructor)
pre -- only happens if the subject doesn’t already have one

subject.mentor = null
post ...as before ...

4.2.6 More precise postconditions — summary

This section has looked at the basics of writing action specifications precisely enough

• to form the basis of a test harness for ‘plug-in’ components or for a system being
built;

• and to make the model explicit enough for discussion of the major business con-
cerns.

The techniques we have seen can be used to describe the interactions that occur
within a business; or they can describe the actions performed by a software system or
component; or — the simplest case — they can describe the operations performed by
an individual object within a software design. That is what we will look at next.

(The syntax of action specs and postconditions is tabulated in Figure 72 on page 158.
Specifying requirements for a complete software system (with a user interface etc) is
the topic of Chapter 16 How to Specify a Component, p 581; specifying the interface to a
substantial component is in Chapter 11 Components and Connectors, p 437.)
More precise postconditions 4-137

4.3 Types in business and software

4.3.1 Objects and Actions are not just about software

Our terms ‘object’ and ‘action’ cover a broad range:

‘Object’ includes whole
systems

• ‘Object’ includes not just individual programming-language objects, but also soft-
ware components, programs, networks, relations, records; as well as hardware,
people, organizations --- anything that presents a definable encapsulated behav-
ior to the world around it.

‘Action’ includes dia-
logues

• ‘Action’ includes not just individual programming-language messages or proce-
dure calls, but also complete dialogues between objects of all kinds. But we can
always talk about the effects of an action, even without knowing exactly who ini-
tiates it or how it works in detail — as in this schedule_course example.

Model is of real world... The diagram in Figure 55 can be seen in two ways. Firstly, it can be a picture of the
real-world. The objects represent human instructors, scheduled sessions, etc. The
attributes represent who is really scheduled to do what, as written on the office wall
planner and the instructors’ diaries. An action is an event that has happened in the
real world; and invariably, it can be looked at in more detail whenever we wish —
scheduling a course involves several interactions between participants and resources.

... or of software system Alternatively, the diagram may be about what a particular object knows about the
world outside it (which may, of course, be inaccurate, out of date, or inconsistent with
some other object’s view). In particular, it can be a model of the state of a computer
system (that is, application, suite, component, etc.) that we intend to build.

Action could be real-
world event ...

The occurrence of the schedule_course action could represent a dialog between play-
ers in the real world: a representative from the client’s company contacts the course
scheduler in the seminar company and negotiates the dates and fees for a new session
of the course.

... or dialog with system Equally, the action could be an abstraction of a dialog with a software system. In that
case, because of the Golden Rule of OO design (that we base the design on a domain
model) we can use the same picture to denote objects (whether in a database, or main
memory) that the system uses to represent the real world. The interesting actions are
then the interactions between the system and the rest of the world: they update the
system’s knowledge of what is going on in the world, as represented in the attributes.

This could describe sys-
tem state, state changes,
and behaviors

Now “schedule (paulo, javaCourse)” can refer to whatever dialogue someone has to
have with our system to get it to arrange the session. And we can use snapshots of the
system state to describe what effect the action has on the system. In turn, the system’s
state (as described by the snapshots) will have an effect the outcome of future actions,
including the outputs to the external objects (including people!) who interact with it.
4-138 Types in business and software

The attributes do not pre-
scribe an implementation

We’ve already said that these drawings are only models. The meaning of a link in the
system model is subject to interpretation (and so must be documented in the Dictio-
nary) just as much as a link in the domain model. A link or attribute only represents a
piece of information that can be got out of the system somehow — via a GUI, a query,
or indirectly by its effect on other actions — but it will be the job of the designer to
decide how it is represented inside.

Nor do the actions.The same goes for the actions. Schedule in the domain means the achievement of
whatever situation is represented by the existence of the session object. Schedule, the
system action, means whatever dialogue has to be conducted with the system, and
whatever algorithms have to execute within the system, to achieve the state of the
code represented in our model by the existence of the session object in the model of
the system’s internal state. Only once the actual implementation of the object has been
defined, can the detailed code to implement this operation be fixed.

4.3.2 Types

Types group objects by
behavior

Different objects will react in different ways to the same interaction. But rather than
describe each object separately, we group objects into types: sets of objects that have
some (not necessarily all) behavior in common. A type is described by a type specifi-
cation, that tells what the effects of some actions are, on the internal state of the object;
and conversely, what effect the state has on the outcome of actions.

Types can be combinedTypes are generally partial descriptions. They say “if you do X to one of my members,
the resulting response will have this property and that property”. But they don’t tell
you about what will happen if you try doing actions that aren’t mentioned; and they
don’t always tell you everything there is to know about the outcome. This is very
important, because it means that type-specs can be easily combined or extended,
essentially by and’ing them together. This is quite different from a programming-lan-
guage class, which is a prescription telling the object how to do what it does.

Figure 59: Models of Domain and System

an_installation : Our_System what our system

the ‘real world’

knows about
the ‘real world’

our system

(as modeled
by us)

interactions
between our system
and the real world

(Notice, same
model!)

schedule (paulo,
 javaCourse)
Types in business and software 4-139

Types describe roles
played for others

Types correspond to real-world descriptions, as OO concepts always should. An
Employee is something that does work when you give it money; a Parent is some-
thing that does work and gives you money; a Shopkeeper gives you things when you
give it money. These descriptions are all partial, focusing on the behavior that inter-
ests certain other objects that interact with them. In object design, we build systems
from interacting objects, and so these partial perspectives are crucial. And each object
is likely to play several roles, so we need to be able to easily talk about Employee *
Parent, i.e. someone who does work when paid (by the appropriate other person), and
will also provide money (ditto).

Interesting behaviors
need model attributes

Because these descriptions are ‘black box’ (“I don’t care
how my parent gets the money, just so longs as s/he pro-
vides it”), it would be nice if we could describe the actions
entirely without reference to anything inside the object.
That is possible for simple behaviors, but not for complex
ones. “Why will my employees not work when I ask them
to?” “Because their pockets are empty” “How can their
pockets be filled?” “You pay them.” In this conversation,
it is implicit that an Employee can have a pocket, repre-

senting an amount of money. It doesn’t really matter to the Employer how or where
they keep their money; it is just a model, a device to explain the relationship between
the actions of payment and request to work.

The type model can be
pictorial.

In a complex model, we find a few attributes like pocket
insufficient, and tend to use pictorial attributes instead.
But the idea is the same: the model is principally there to
explain the effects of the actions. And we can use the same
principle to describe both small simple objects and large
complex systems. Of course, the large complex systems
will need a few more tools for managing complexity and
structuring a specification, but the underlying ideas will
be the same.

4.3.3 Subtypes and type extensions

A subtype specifies a
subset of objects

Because a type-spec is a just description of behavior, an object can be a
member of many types. In fact, an object is a member of every type whose
specification it conforms to — even if that type specification was written
after the object was created. In other words, it can play several roles. And
one type can be a subset, or subtype, of another — even if they were
defined separately. To say that all Sheep are Animals, is the same as say-
ing Sheep is a subtype of Animal. You expect of Sheep everything
expected of Animals in general; but there is more to say about Sheep.
Some objects that are Animals — i.e. conform to the behavior specifica-
tion for that type — may exhibit the additional properties of Sheep.

A subtype is often
defined as an extension
of a super-type

Putting more into a specification, raising the expectations, reduces the set of objects
satisfying it. It’s often useful to define one type-specification by extending another,
adding new actions, or extending the specifications of existing ones; subject to certain
restrictions, this will result in the definition of a subtype.

Employee

pocket : Money

pay (amt : Money)

work (...)
post: pocket increased by amt

pre: pocket > 0 ...

TrainingScheduler

schedule (Instructor,
Course)

Course Instructor

Session **

* *

Animal

Sheep

weight
eat

grow

wooliness
chew cud

go baa
4-140 Types in business and software

4.3.4 State Charts

Postconditions can be
drawn on state charts.

State charts are a powerful pictorial tool for envisioning the effects of different
sequences of actions, most useful where there are distinct changes of behavior in dif-
ferent states. The states in the chart represent boolean expressions, and transitions
between them represent actions. State charts are covered in more detail in Section 4.9.

4.3.5 Actions and Operations Defined

An action specifies a set
of action occurrences

Action. An action-occurrence is an interaction involving specific participant objects
between two particular points in time, bringing about a change of state in some or all
of them. An action-spec denotes a set of action occurrences by specifying the effects of
an action. ‘Action’ or ‘action-type’ means any or all the action-occurrences that con-
form to a given action-spec; action is sometimes used to refer to an action occurrence
in this text, where the meaning is clear.

Over a period of time, objects are affected by several actions, and will progress
through a series of changes as shown in Figure 60.

Actions abstract detailed
interactions

Actions may be composed of finer-grained actions; the sequence of three action occur-
rences a,b,a in Figure 60 may be modeled as a single more abstract action, A. Func-
tion-calls, rendezvous, hardware signals, and messages are all varieties of action. So
are use-cases, sessions, remote procedure calls, and complete dialogues.1

An object’s history can be envisaged as the column that threads its states in successive
snapshots; the history lists all the actions it is involved in, and the resulting states. A
type is a set of all the possible histories conforming to a given set of action specs.

Two kinds of Actions

Object have individual
and joint behaviors

There are two main kinds of actions we are concerned with in this book. One kind —
an localized action; at the level of implementation code this is often called an operation
— is an action which an individual object is requested to perform, and responds
accordingly. The other kind — a joint action — is an action in which a group of objects
participate, and is always an abstraction of a more detailed dialog between these par-

Figure 60: Snapshot history over time

time

i

j

k

l

action a

action b

action a

snapshot
A

1. Your reading this entire book is itself an action; so is the reading of each chapter, and exam-
ination of each footnote. If only we could be sure about the postconditions....
Types in business and software 4-141

ticipants. Use-cases are an example of joint actions, subject to refinement to a particular
dialog of interaction between objects. At the level of program code, actions will corre-
spond to operations. This chapter focuses on the former kind of action.

An operation is per-
formed by one object

Operation. When describing the behavior of an individual object, our focus is on the
individual operations that may be requested of that object, and the effect of each such
operation, without consideration of the initiator of the action. You can recognize oper-
ations by their focus on a single distinguished object type:

action Type::operationName (...) ...

Program code is at the
level of operations

At the level of program code, one object requests another to
perform an operation; as a result of the operation there is a
state change, and some outputs produced. The interactions
are illustrated with a sequence diagram: individual objects are
vertical lines, and each operation-request is shown with an
arrow. The objects a,b,c could be objects in the business such
as client, seminar company, instructor; or instances of classes

in software, like session, calendar, instructor; or large-grained software components
like a course-qualifier, room-allocator, and scheduler.

But the idea applies to
more abstract objects and
services.

For a business entity like a seminar company, the operations it
provides as services to outside objects include: schedule-
Course, courseEnquiry, etc. A much smaller object within one
of its software systems, a Calendar, provides its own opera-
tions like: addEvent and removeEvent. The operations cause
state changes in, and outputs from, the object of interest. In
both cases, the operations are part of the type specification for
that object type. This is the subject of the current chapter.

A joint action involves
multiple objects

Joint Action. To describe behavior and interactions of a group of objects, we focus on
what the interactions between multiple objects achieves, and how to specify the effect
of those higher-level actions on all objects involved. A joint action is written:

action (party1: Type1, party2: Type2, ...) :: actionName (...)

Notice that the joint action is not centered on a single distinguished object type. There
are directed variations of joint actions in which a sender and receiver are designated,
but the action effect is still described in terms of all participants.

A joint action, or ‘use-
case’, involves multiple
participants

At the business level, it takes a sequence of interactions
between client and seminar company, including enquire,
schedule, deliver, follow-up, and pay, to together comprise
an abstract purchaseCourse action. This has a net effect on
both client and seminar company: not only has the seminar
company delivered a service and gained some revenue, but
the client has paid some fees and gained knowledge. In soft-
ware, it may take a sequence of low-level operations via the

UIs of multiple applications and databases, to complete a scheduleCourse operation.
Such an action is called a joint action or use-case. We describe its effect on all participat-

a:A b: T c:C
op 1

op 4
op 3

op 2

T

op 1
op 2

1 *
b: T

joint actions
effect on all parties

B

C

4-142 Types in business and software

ing objects, abstracting individual interactions. All joint actions must be refined even-
tually into operations to be implemented in any popular OO programming language.
This is the subject of the next chapter.

Each occurrence of such an abstracted action is shown as a
horizontal bar with ellipses in a sequence diagram, whereas
the finer grained operations were depicted as simple
arrows. Note that each action occurrence could be realized
by many different finer-grained interactions, eventually
reducing to a sequence of operations.

b: B c:C

a 1

a 1

a 2
Types in business and software 4-143

4.4 Example: two implementations

Two implementations of
a calendar ...

This chapter is about specifying types: what a component does as seen from the out-
side, and ignoring what goes on inside. But ‘brains work bottom up’: it will be easier
to understand what the specification means, if we can see the kinds of implementa-
tion that it can have. So let’s start the time-honored way: we’ll hack the code first, and
write up the spec afterwards!1

Our seminar scheduling application will have many classes in its implementation.
One likely class is a calendar, which tracks different scheduled events for different
instructors. We start with two different Java implementations of the calendar, then
will show how the external behaviors can be specified independent of implementa-
tion choices; and independent even of implementation language and technology. We
will ignore any UI aspects for now.

Both support the same
interface

Both implementations support just four external operations on a calendar; they may
introduce other internal operations and objects as needed:

addEvent: add a new event to the current calendar schedule

isFree: determine if an instructor is free on given dates

removeEvent: delete an existing event from the schedule

calendarFor: return the scheduled events for a particular instructor. It is
returned as an Enumeration i.e. a small object that has operations
to step through the collection until the end.

4.4.1 Calendar Implementation A

The first implementation
maintains events by
instructor

This implementation keeps a separate un-ordered vector of events for each instructor
in a hashtable, keyed by the instructor. Its internal interactions are described in the
sequence diagram in Figure 61, with each arrow indicating an operation request.
Upon receiving an addEvent request, the calendar first creates a new event object. It
then looks up the event vector for the current instructor in its hashtable, creating a
new vector if none existed. The new event is added to this vector, and the hashtable
updated. The Java code for this design is listed below.

1. If this offends your sense of decency, please skip straight on to the next section. Should you
wish to avert your eyes from the bare code on display, it’s three page-turns ahead.
4-144 Example: two implementations

Figure 61: Internal Design interactions of Calendar A

:Calendar_A
:Hashtable

v: Vector

e: Event
 addEvent (d1, d2, p, i)

 new()

v := get(p)

[v = null] v = new Vector()

addElement (e)
put (p, v)

create new event

lookup the instructor vector

if none, create one
add new event to the vector
put it back on the hashtable

message, or operation invocation with arguments

object

duration of response to the addEvent message
Example: two implementations 4-145

Figure 62: Java code for Calendar implementation A

import java.util.*;

// This calendar organizes eventsby instructor in a hashtable keyed by instructor
class Calendar_A {

privateHashtable instructorSchedule = new Hashtable();

// provided no schedule conflict, this creates and records new event
public Event addEvent (Dated1,Date d2, Instructorp, Object info){

if (! isFree (p, d1, d2)) return null;

Event e= new Event (d1, d2, p,info);
Vector v = (Vector) instructorSchedule.get (p);
if (v == null) v = new Vector ();
v.addElement (e);
instructorSchedule.put (p,v);
return e;

}

// Answer if the instructor free between thesedates
// i.e.does any of the instructor’s events overlap d1-d2?
public boolean isFree (Instructor p, Date d1, Date d2) {

Vector events =(Vector) instructorSchedule.get (p);
for (Enumeration e = events.elements(); e.hasMoreElements ();) {

Event ev = (Event) e.nextElement ();
if (ev.overlaps (d1,d2)) return false;

}
return true;

}

// remove this event from the calendar
public void removeEvent (Event e) {

Vector v = (Vector) instructorSchedule.get (e.who);
v.removeElement (e);

}

// return the events for the instructor(asan enumeration)
public Enumeration calendarFor (Instructor i) {

return ((Vector) instructorSchedule.get(i)).elements();
}

}

// internal details irrelevant here
class Instructor { }

// represents one session
// Just two public operation: delete() and overlaps()
class Event {

Date from;
Date to;
Instructor who;
Object info; //additional info, e.g. Session
Calendar_A container; // for correct deletion
Event (Dated1,Date d2, Instructorw, Object i) {

from = d1;
to = d2;
who = w;
info = i;

}

// doesthis event overlap the given dates?
boolean overlaps (Date d1, Dated2){

return false;
}

public void delete() { /* details not shown*/ }
}

4-146 Example: two implementations

4.4.2 Calendar Implementation B

The second implementa-
tion maintains events by
date range

This version uses a more complex representation, not detailed here, to maintain the
events so that they are indexed directly by their date-ranges. This data-structure is
encapsulated behind an interface called

EventContainer

. (The art of object oriented

programming is to delegate as much as possible to another designer:-) The internal
interactions for this calendar implementation are shown in Figure 63, and the Java
code is listed below.

Figure 63: Internal Design interactions of Calendar B

:Calendar_B :Event
Container

e: Event
 addEvent (d1, d2, p, i)

new()

v = addEvent(e, d1, d2)

just add the new event to
the event container,
indexed by dates
Example: two implementations 4-147

Figure 64: Java code for Calendar implementation B

import java.util.*;

// Organizes eventsby their dates using a fancy event-container
class Calendar_B {

privateEventContainer schedule;

// create the event and add to schedule
public Event addEvent (Date d1,Date d2, Instructor p, Object info){

Event e= new Event (p,info, schedule);
schedule.addEvent (e, d1, d2);
return e;

}

// is instructor free between thosedates?
// i.e. are any of the events between d1-d2 for this instructor
public boolean isFree (Instructor p, Date d1, Date d2) {

for (Enumeration e = schedule.eventsBetween (d1, d2);
e.hasMoreElements ();)

if (((Event) e.nextElement()).who ==p) return false;
return true;

}

// remove the event from the schedule
public voidremoveEvent (Event e) {

schedule.removeEvent(e);
}

// return the events for the instructor(asan enumeration)
public Enumeration calendarFor (Instructor i) {

// implementation not shown
// presumably less efficient, sincetuned for date-based lookup
// e.g. get all eventsBetween (-INF, +INF)
// select only those for instructor i
return null;

}

}

// internal details of instructor irrelevant here
class Instructor { }

// Just one public operation: delete() shown
// dates not explicitlyrecorded; containermaintains date index
class Event{

Instructor who;
Object info;
EventContainer container; // for correct deletion
Event (Instructor w, Object i, EventContainer c) {

who = w;
info = i;

}

public void delete

() { /* details not shown*/ }
}

// event container: a fancy range-indexed structure

interface

EventContainer

 {

// return the events that overlap with the d1-d2 range

Enumeration

eventsBetween

 (Date d1,Date d2);

// add, remove an event

void

addEvent

 (Event e,Date d1, Date d2);
void

removeEvent

 (Event e);
}

4-148 Example: two implementations

4.5

Example: Specification covering all Implementations

Both implementations
meet client needs

A client could use either implementation of calendar: both implement the same

type

.
We need to describe this type so that a client can use either implementation based
solely on the type specification, admitting both implementations as correct implemen-
tations of that type, yet ruling out incorrect implementations.

Ordinarily, we wouldn’t bother with a very precise specification of such a trivial
thing: but specification

is

 important for the cases where there are several potential

implementations: for example where many components can be ‘plugged in’ to
another. Specification is important in the world of reusable pieces, even for small
ones.

4.5.1 What a Client should (and should not) know

Client must understand
inputs, outputs, assump-
tions, and guarantees

We first document this type by listing the operations it provides. Naturally, the client
needs to understand a good bit more than just the list of operation names and signa-
tures: they need a specification of the provided behavior.

• What are the inputs and outputs?

Calendar operations expect inputs of type

Date, Object

,

Instructor,

and

Event

. The client must provide arguments
of the appropriate type i.e. objects that implement the
stated types.

The

addEvent

 operation returns an

Event

 object, which
provides just one public operation to the client:

delete()

.
There are no other externally visible outputs.

• What assumptions is the implementer permitted to make?

These could be many. He expects specific input parameter types; in the case of
Java, these assumptions happen to be checked by the compiler. The

add

and

isFree

 operations could assume that

d1 < d2

; they may not check this explicitly,
and may behave incorrectly if the dates are improper. For a

removeEvent

 opera-
tion, the calendar may assume that the input event is one that already exists
within this calendar. A implementation may or may not support overlapping
events for an instructor.

• What else can the client rely upon for the outcome of the operation?

Are the events returned by

calendarFor

 ordered by increasing dates? What does a

delete()

 on an event object do? Is a separate call to

removeEvent

 on the corre-
sponding calendar required? If so, which one should be done first?

Client needs an abstract
model of calendar state
— attributes

Besides inputs and outputs, the client needs an abstract model of the “state” of the cal-
endar independent of a specific implementation, even if that state is not directly acces-
sible. Whenever

addEvent

 has been called, there is indisputably a new event in the
calendar, even though the way in which it is represented differs from one to the other.

isFree

 must be based on the events currently in that calendar; and

delete

removes it
from the calendar — even though the implementations differ. We already know how
to build such a model using attributes.

Calendar

addEvent (....)
isFree (....)
removeEvent (....)
calendarFor (....)
Example: Specification covering all Implementations 4-149

Internal details should be
hidden

Figure 61 and Figure 63 illustrate that the internal representation and interactions dif-
fer widely between the two implementations. Our description of object behavior must
adequately specify operations, input parameters, change of state of the object, and
returned values or other outputs produced, without getting into irrelevant “internal”
interactions.

Omit objects the client
should not be aware of.

In a specification, we only include interactions with objects that

the client should be
aware of

1

. In this case, the vector, hashtable, and event container are entirely internal to
the calendar, and a client need not even know they exist; so we summarize interac-
tions with them into a net change on abstract attributes that characterize either imple-
mentation. What we are really describing is not just the single calendar instance, but
its grouping with its internal supporting objects, as shown in Figure 66. The same rea-

soning applies at the business level; the seminar company can be considered a single
object from the outside, and all its internal roles and interactions are only visible in an
internal view.

4.5.2 From Attributes to Operation Specification

A simple sequence of
steps to write a type spec

Here is a sequence of steps to arrive at a precise type specification of the Calendar.

2

We will assume that the calendar may return output values to the client, and that all
other interactions are internal details that should not be known to the client.

1.

List operations

 — addEvent, isFree, removeEvent, calendarFor

Figure 65: Object behavior description needs a clear boundary

1. what operations does the object support?

2. what is required of the inputs?

3a. what state change does the object undergo...?

4. what outputs does it produce? to whom?

3b. ...ignoring “internal” interactions

A

B

C

X

1. Although intuitively reasonably, this can be tricky due to

“aliasing”

 i.e. two different paths
in an object graph leading to a shared object.

Figure 66: External view hides internal objects and interactions

:Calendar_A

:Hashtable

v1: Vector

2 Implementations of “Calendar”

:Calendar_B

:Event
Container

v2: Vector
v3: Vector

2. Thanks to Larry Wall for pulling apart the steps involved
4-150 Example: Specification covering all Implementations

Start informal

2.

Informal operation descriptions

 of each one:

addEvent a new event is created with the properties provided, and added
to the calendar schedule

isFree returns true if the instructor is free in the date-range provided

removeEvent the event is removed from the calendar

calendarFor returns the set of events scheduled for the instructor

At this stage, it’s usual to start sketching a static type diagram (Figure 68 on page 152),
even though completing it is the focus of a later step. Draw a diagram that includes
the nouns mentioned in the action specs, and their associations and attributes.

Identify information
exchanged

3.

Identify inputs and outputs.

 At the level of individual operations in code these
are usually straightforward, perhaps already known.

addEvent (date1, date2, instructor, info): Event

isFree (instructor): Boolean

removeEvent (event)

calendarFor (instructor): Enumeration

Find underlying
attribute terms

4.

Snapshots.

 Working from your initial type diagram, sketch a pair of snapshots
before and after each operation. Draw them on one diagram, using highlights to
show newly created objects and links, for objects or links that do not exist in
the “after” snapshot, and name the input and output parameters to the action
occurrence consistently with the snapshots.

After an

addEvent

, the highlighted objects and links are created; the output is

e3

:

On the same snapshot, after a

calendarFor (i1)

, the snapshot is not changed, and
the output enumeration will list

{e1, e2}

. For read-only functions like

isFree

,
check there is some way the information could be extracted from every snapshot.

Attributes form the basis
for specifying multiple
operations

5.

Static type diagram

of the object being specified. Draw a type diagram that gen-
eralises all the snapshots you have drawn. (That is, they are all valid instances of
it.) The attributes mentioned by each operation are listed below, and summarized
in Figure 68.

1

Figure 67: A snapshot-pair for an action occurrence

e1:
start = 6/2/97
end = 6/6/97 instructor

e2:
start = 7/23/97
end = 7/27/97

instructor
i1:

calendar:

schedule

i2:

instructor

addEvent (d1, d2, i2, x): e3

e3:
start = d1
end = d2

highlight newly created object/links

schedule

schedule

action name with named in/out
Example: Specification covering all Implementations 4-151

addEvent Calendar

schedule

 represents events currently in the calendar.
Each event has attributes

instructor

 and

start, end

 dates, the

overlaps

 attribute will be convenient.

isFree Instructor has an attribute

free

 on a given date, constrained by
the events scheduled for that instructor as described by the
instructor’s

schedule

.

removeEvent No new attributes needed;

schedule

 on calendar suffices.

calendarFor Use a

schedule

 attribute on instructor; note that the externally
provided operation is different from the attribute that models
the necessary state.

Write attribute types and
invariants

6.

Invariants.

 Consider whether any invariants should be written with the model.
More will become apparent as you work through it. The choice of attributes and
associations may change too, because their purpose is to make the actions easy to
specify.

-- the start of any event must be before (or at) its end

inv Event:: start <= end

-- instructor free on any date means “no event on his schedule overlaps that date”

inv Instructor:: free(d: Date) = (self.schedule [overlaps(d)] ->isEmpty)

This requires an

overlaps

 attribute on event.

-- event overlaps (d) means same as “d between start and end, inclusive”

inv Event:: overlaps(d: Date) = (start <= d & end >= d)

Formalize the operation
specs

7.

Specify operations.

 Make the operation specs more precise. This step may be fol-
lowed to a greater or lesser extent in different situations, depending on the
project. The precision helps uncover gaps in the model, and also defines test specs
for the implementation; it does take some effort, and is greatly aided by a decent

1. Not every tool can draw one type inside another. An alternative is given in §4.13, p.192

Figure 68: Type model attributes will be used to specify operations

Calendar

addEvent (....)
removeEvent (....)
isFree (....)
calendarFor (....)

Event

start, end: Date
overlaps(Date): Boolean
info: Object

delete ()

instructor 1

schedule

schedule

1
Instructor

free(Date): Boolean *calendar

*

4-152 Example: Specification covering all Implementations

tool. At the very least we should improve the informal specifications, as in step §9,
p.154.

The notation for referring to attributes was introduced in the last chapter; addi-
tional constructs for operation specifications are used here and will be explained
in detail in the following section.

-- the addEvent operation on a calendar

action Calendar::addEvent (d1: Date, d2: Date, i: Instructor, o: Object): Event
pre

:

-- provided dates are ordered, and instructor is free for the range of dates

d1 < d2 & {d1..d2}->forAll (d | i.free (d))
post

:

-- a new event is on the calendar schedule for those dates and that instructor

result = Event.new [info = o &
start = d1 & end = d2 & instructor = i & calendar = self]

A

function

 is an operation that may return a result.

 -- is a given instructor free for a certain range of dates?
function

Calendar::isFree (i: Instructor, d1: Date, d2: Date) : Boolean

pre

:

-- provided the dates are ordered

d1 < d2
post

:

-- the result is true if that instructor is free for all dates between d1 and d2

result = {d1..d2}->forAll (d | i.free (d))

-- remove the given event

action Calendar::removeEvent (e: Event)
pre

:

-- provided the event is on this calendar

schedule->includes (e)
post

:

-- that event has been removed from the calendar and instructor schedules

not

schedule->includes (e) and
not e.instructor.schedule@pre->includes (e)

-- return the calendar for the instructor; also a function, or side-effect free operation

function

Calendar::calendarFor (i: Instructor): Enumeration
pre

:

-- none; returns an empty enumeration if no scheduled events

true
post

:

-- returns a new enumeration on the events on that instructor’s schedule

result

= Enumeration.new [unvisited = i.schedule]

Also describe other
related types

8.

Parameter models.

 Describe (by a type model) any input and output parameter
types as well, and their attributes and operations, to the extent the client and
implementor need to understand and agree on these.

The

Enumeration

 returned by

calendarFor

 could also be mod-
eled explicitly. It provides two operations, informally specified
below. These could be made more precise by using the two
attributes on the enumeration.

action Enumeration::nextElement() : Event
pre

:

-- provided the enumeration is not empty

post

:

-- returns (and visits) an unvisited event, in no particular
order

function

Enumeration::hasMoreElements() : Boolean

Event

Enumeration

nextElement()
hasMoreElements()

 unvisited * * visited
Example: Specification covering all Implementations 4-153

post

:

-- true if all events have been visited

Event

 has a

delete()

 operation that is visible to the client. The client clearly needs
to know the effect of this operation e.g. does delete also remove it from the calen-
dar? They can be specified directly using the same type model:

-- deletion of an event

action Event::delete ()
pre

:

 true
post

:

-- the event is no longer on the calendar’s or instructor’s schedule

not

(calendar.schedule)@pre->includes (e) and
not (instructor.schedule)@pre->includes (e)

Because this is equivalent to

removeEvent

 which we have already specified, we
could also have written it more concisely, as discussed in Section 4.7.6:

-- deletion of an event

action Event::delete ()
pre

:

 true
post

:

-- the same effect as removing the event from the calendar
-- (though not necessarily by calling the removeEvent method)

calendar@pre.removeEvent (self)

Note that an adequate specification of

Calendar

 requires a sufficient specification
of other object types that are client accessible, like

Event

 and

Enumeration

.

Don’t forget the comple-
mentary narrative!

9.

Write a Dictionary

 and improve your informal specifications. Even if the invari-
ants and operation specifications will not be formalized, you can now concisely
define the terminology of types and attributes, and consequently the operation
requirements. Contrast the updated informal operation specifications below with
the ones we started out with.

-- add an event to a calendar

action Calendar::addEvent (d1: Date, d2: Date, i: Instructor, o: Object)
pre

:

-- provided dates are ordered, and instructor is free for the range of dates

post

:

-- a new event is on the calendar schedule for those dates and that instructor

 Figure 69: A Dictionary of Terms

Instructor the person assigned to a scheduled event

schedule the set of events the instructor is currently scheduled
for

free an instructor is free on a date means that no event on
his schedule overlaps that date

Calendar the collection of scheduled events

schedule the set of events currently “on” the calendar

Event a scheduled commitment (meeting, session, etc.)

when the range of dates for this event

instructor the instructor assigned to this event

overlaps an event overlaps a date means that date lies within
(inclusive) the range of dates of the event
4-154 Example: Specification covering all Implementations

-- is a given instructor free for a certain range of dates?

function

Calendar::isFree (i: Instructor, d1: Date, d2: Date) : Boolean
pre

:

-- provided the dates are ordered

post

:

-- the return is true if that instructor is free for all dates between d1 and d2

-- return the calendar for the instructor

function

Calendar::calendarFor (i: Instructor): Enumeration
pre

:

-- no assumptions; could return an empty set enumeration if no scheduled events

post

:

-- returns an enumeration on the events on that instructor’s schedule

-- deletion of an event

action Event::delete ()
pre

:

-- no assumptions

post

:

-- the same effect as removing the event from the calendar
-- (though not necessarily by calling the removeEvent method)

Re-factor to improve
things.

10. Improve the model or design by some re-factoring e.g. we can remove the redun-
dant constraint of

d1<d2

 by introducing a

DateRange

 type, with attributes

start,end

 dates,

overlaps(date),

and an invariant on these attributes. Multiple
places in our design will become simplified as a result.

4.5.3 The resulting object type specification

So we have specified our Calendar requirements in such a way that it can be fulfilled
by either implementation — or indeed any other that behaves suitably. The actions
have been listed and we have described the effect of each on our model of the state of
the Calendar. The main products of the specification task are shown in Figure 70.

The next section details how actions are defined.
Example: Specification covering all Implementations 4-155

Figure 70: The product of Behavior Modeling is an object Type Spec

Specification of component
in form of type model Calendar

Event

start, end: Date
overlaps(Date): Boolean
info: Object

delete ()

schedule

schedule *

Instructor

free(Date): Boolean

 *

* calendar

1 instructor

action

 removeEvent (e: Event)

pre

:

-- provided the event is on this calendar

schedule->includes (e)

post

:

-- that event has been removed from the
calendar and instructor schedules

not

schedule->includes (e) and
not e.instructor

@pre

.
 schedule->includes (e)

action

 ...

etc

Static model

with invariants

and
Dictionary

Required behavior
= a list of effects specs

each defined in

(In practice, bulk of text
written outside — and

inv

 Event:: start <= end

An Event is a piece
of work engaging an
Instructor for a number
of days.

terms of static model

diagrams split up manageably)

Type specification models object behavior
4-156 Example: Specification covering all Implementations

4.6

Specifying actions

Attributes have different
values at different times

If you imagine objects and their links as a diagram on a two-dimensional surface, then
you have to extend it to three dimensions to understand what an operation specifica-
tion is about. Every object has any number of previous states, as we saw in Figure 60.
Each operation request to a “receiver” object starts with an initial snapshot of the

receiver and of all the input parameters to that request, and ends with a final snapshot
with changed attributes, newly created objects, and some generated outputs. Each
attribute has a

initial

and

final

value. The operation specification is a relation between
the inputs, initial values, final values, and outputs, written as a boolean expression i.e.
an operation specification specifies is a

 test

condition

;

any implementation will either
pass or fail that test.

An operation spec
focuses on

before

 and

after

An operation specification describes the effect of invoking that operation, using a pair
of

pre-condition/post-condition

 expressions called an

effect spec

. Within a single effect
spec, two moments are singled out — immediately

before

 the operation, and immedi-
ately after.

action Calendar::addEvent (d1: Date, d2: Date, i: Instructor, o: Object) : Event
pre: -- provided dates are ordered, and there is no overlap caused by the new event

d1 < d2 & {d1..d2}->forAll (d | i.free (d))
post: -- a new event is on the calendar schedule for those dates and that instructor

result = Event.new [info = o &
start = d1 & end = d2 & instructor = i & calendar = self]

An alternate syntax puts the receiver type name with the signature; it is more consis-
tent withthe more general ideas we’ll meet later, but less conventional:

action addEvent <=
-- the action ‘addEvent” is specified, among other things, by the following effects clause:

effect
Calendar:: (d1: Date, d2:Date, i:Instructor, o:Object)

-- for any combination of a calendar, called “self” in the assertions,
-- together with two Dates and an instructor and something else ;

pre: -- and provided they all meet the conditions here stipulated ;
-- then we reckon that when an action conformig to this spec happens,

post: ... -- this should be the outcome.

Figure 71: Operation spec relates parameters and initial/final attributes

snapshot pair

initial

final

op spec:
action b (in x, in y, out z)

x (final)

input y (initial)input x (initial)

output z
Specifying actions 4-157

Figure 72: Effect spec clauses

Action specs

Defines a requirement on one or more actions. There are five constituents
which may be part of an effect spec:

ReceiverType :: (parameter1 : Type1, parameter2 :Type2) : ResultType
Signature: a list of parameters — named values (refer-
ences to objects) that may be different between different
occurrences of the action(s) the spec governs.

• Some parameters may be marked out, denoting names
bound only by the end of the operation.

• May also define a result type and a receiver type.

pre: condition Precondition defines the situations in which this effects
spec is applicable. If the precondition is not true when
an action starts, this spec doesn’t apply to it: so we can’t
tell from here what the outcome will be. There might be
another applicable spec defined somewhere else.

The parameter type constraints are effectively terms in
the precondition: d1>3 and d2:Date and d1<d2 ...

May refer to the parameters, to a receiver self, and to
their attributes; but not out parameters or any result.

post: postcond Postcondition specifies the outcome of the action (pro-
vided the precondition was true to begin with). The
postcondition relates two states, before and after: so the
prior state of any attribute or subexpression can be
refered to using @pre.

A postcondition may refer to self, all the parameters,
and any result; and their attributes.

rely: condition If the rely clause ever becomes false during the execu-
tion of the action, the specification no longer applies.

guarantee: cond The action will maintain this true while executing.

Pre, post, rely and guarantee conditions are called ‘assertions’. A further two
assertions appear as part of a type specification, outside any one action spec:

inv condition True before and after every action in the model. Effec-
tively ANDed to each pre and postcondition.

inv effect effect A ‘global’ effects spec that applies to all actions con-
forming to its signature, pre, and rely conditions.
4-158 Specifying actions

Figure 73: Postconditions

Special terms in a postcondition

A postcondition relates together two moments in time. By default, every
expression denotes its value once the action is complete.

x@pre The value of x’s prior state. (There is no need to use
them in a pre-condition.) E.g. moving rooms:

jo.room@pre — jo’s old room
jo.room@pre.isDirty@pre

— previous state of jo’s old room
jo.room@pre.isEmpty

— current state of jo’s old room
jo.room.isEmpty@pre

—previous state of jo’s new room

new The set of all objects that exist in the later state that did
not exist in the earlier. T*new=(T – T@pre). Common
usages with new:

Egg*new — all new Eggs
Egg*new [size>5] — all new Eggs satisfying the filter
Egg.new — the only new Egg
Egg.new [size>5] — the only new Egg, and its size>5
Egg[size>5].new — the only new (Egg whose size>5)
(The .new notation denotes the new object; but as a side
condition, specifies that there are no new others.)

[[an action]] Action quoting, equivalent to copying its specification
into the present postcondition. It does not imply a nec-
essary actual invocation of the action — just that the
same effect is achieved. If there are several effects-specs
applying to the quoted action, they are all implied.

[[->an action]] The quoted action will definitely be invoked in an
implementation.

result Reserved names for the value denoted by an operation
that a programmer can invoke as an expression. E.g.:
action square_root (x : int) post: x = result * result
... y = square_root (64); // y == 8
Specifying actions 4-159

4.7 Interpreting an Action Specification

Op-spec generalizes
snapshot-pairs

An operation specification generalizes all occurrences of that operation i.e. it should
hold true of every snapshot pair (Figure 74), much like a type model generalizes all
snapshots in Figure 68 on page 152.

An op-spec prohibits cer-
tain snapshot-pairs

Given a type T with operation M whose operation spec has a pre-condition P and
post-condition Q, we interpret this operation spec as follows:

If you examine the history of any object that correctly implements T, and find in
that history any occurrence of the operation M, then, if P was true of the invoca-
tion parameters and attribute values before that occurrence, then Q should have
become true after that invocation.

4.7.1 An Action Spec is not an Implementation

Op-spec is a boolean, not
an algorithm

Writing a specification for an operation is very different from writing an implementa-
tion. The spec is simply a boolean expression — a relation between the inputs, initial
state, final state, and outputs. An implementation would choose a particular algorith-
mic sequence of steps, select a data representation or specific internal access functions,
and work through iterations, branches, and many intermediate states before achiev-
ing the “final” state.

Consider the specifications of these operations, in contrast to their possible implemen-
tations:

function Calculator::squareRoot (in x: Real, out y: Real)
pre: not (x < 0)
post: y > 0 and y * y = x -- more realistically, allow rounding errors

Figure 74: Operation specification generalizes snapshot pairs

Action Specification
 action occurrences (snapshot pairs)

a1 [1] a1 [2] a1 [3]

-- the action a1 on objects of type T1

action

T1::a1 (parm1, parm2, ...) : Out
pre:

pre-condition expression
what was initially true of attributes and inputs

post

:

post-condition expression
what will become true of attributes, inputs, and outputs
4-160 Interpreting an Action Specification

action Scheduler::schedule_course (reqCourse: Course, reqStart: Date)
pre:

Provided there is an instructor qualified for this course
who is free on this date, for the length of the course.

post:

A new Session has been created, with course = reqCourse,
startDate = reqStart, and endDate – startDate = reqCourse.length,
and with one of the qualified free instructors assigned

action FlightRouter::takeShortestPath (f: Flight)
pre:

provided there is some path between the source and destination of f

post:

f has been assigned a path from its source to its destination
there is no other path between f.source and f.destination shorter than f.path
(with a supporting definition of path, and of the length of a path)

Any implementation
must meet the spec

These operations, and their corresponding type model attributes, have many possible
implementations. Instructor qualification and schedules can be represented and calcu-
lated in many ways; as can flight paths, and square roots. No matter how we imple-
ment these operations, they must conform to this specification. If we were to run any
test data through an implementation, where the test data met the pre-conditions of the
specification, we would expect the post-condition to be satisfied; if not, we have
found some bug either in the implementation or the specification.

The spec is like a test

A good operation specification is much like a test specification. With a little infrastruc-
ture support — e.g. query functions to map from concrete data representations to the
abstract attributes used in the specifications, and some means to capture initial values
of attributes — these operation specifications can often be mapped to test code that is
executable at run-time, at least during testing and/or debugging.

Though some specs are
easier to test than others!

The operation specs will often map directly to tests. Thus, the spec for

squareRoot

above easily translates into test code; so does

schedule_course

, once we write some
query functions to determine attributes related to instructor qualification and avail-
ability in terms of the concrete implementation. Other specifications may need to be
re-factored a bit to be tested effectively. A naive usage of

takeShortestPath

 as a test
specification would require generating all possible paths to show that the computed
path is the shortest; not a very practical test strategy!

4.7.2 Parameter types

Parameter types are part
of pre/post

Parameter types are an implicit part of pre/post-conditions. Our spec of

squareRoot

could be re-written so as to make this explicit, although this is not the normal style:

action squareRoot (in x, out y)
pre: x: Real & not (x < 0)
post: y: Real & y*y = x

A shorthand for parame-
ter types

We permit a shorthand for parameter types. A parameter which is not explicitly typed
has a name which is a lower-case version of its type name. The spec below implicitly
types all three parameters:

action Scheduler::schedule_course (course, client, date)
Interpreting an Action Specification 4-161

The effect of an operation can be specified with an explicit pre/post pair of conditions,
or with a single postcondition. The main difference is that within the expression start-
ing with

pre:

all references are implicitly to the initial values of attributes; within an
effect clause we have to explicitly indicate initial values using

x@pre

. These two are
equivalent:

action Scheduler::schedule_course (reqCourse: Course, reqStart: Date)
pre: a qualified instructor available for those dates
post: a new confirmed session with

action Scheduler::schedule_course (reqCourse: Course, reqStart: Date)
post: (qualified instructor available for those dates)@pre

 => (a new confirmed session with)

Notice the “=>”, also written

implies

 or

if...then...

: if the precondition is not met, we
simply have nothing to say about the outcome.

Each is useful in different
situations

The

pre/post

 style is well suited to documenting an operation at the implementation
level as a single pre/post specification in the form of a “contract”: the caller is respon-
sible for only invoking this operation when the pre-condition is true; the implementor
can assume the pre-condition is satisfied, and must then guarantee the post-condition.
If a pre/post pair is written, the post-condition should cover all those cases that are
permitted by the pre-condition, otherwise the specification is not well formed. By con-
vention, if only the post-condition is written, we treat it like an implicit pre-condition
that is derived (not always easily) from the post-condition.

The single

post

form is sometimes more convenient. It also lets us write specifications
that do not have to be of the form

P@pre implies Q

. Chapter 13 will describe how this
is useful to factor out parts of the specification of a complex action; however, it then
takes more effort to extract an explicit pre-condition.

4.7.3 Partial action specs

Pre and post-conditions
are always paired

An operation post-condition is always paired with a corresponding pre-condition.
Thus, the stated post-condition of

squareRoot

 should be guaranteed provided the cor-
responding pre-condition was true when it was invoked. Similarly, the stated out-
come of

schedule_course

 is guaranteed provided that there was an available and
qualified instructor for this request.

Some conditions may be
left unspecified in a spec

What should

squareRoot

 do in the case of a negative input? Or

schedule_course

 in
the case when a qualified instructor was not available? Our specs, as written, do not
cover those other conditions; we leave those behaviors unspecified. If we said nothing
further about these operations, then the implementations could ignore those other
conditions completely.

But, an operation may be
constrained by multiple
specs

But, an operation can have multiple specifications; this is very common in higher-
level requirements where we want to separately specify different aspects of an opera-
tion. Different aspects of an operation like

schedule_course

— scheduling policies,
qualification criteria, associated production of course materials, performance require-
ments — can be specified separately. At the very least, these may appear in separate
sections of a document. This allows us to factor a specification into more coherent bits,
and makes it easier to separate exceptions and variations. The implementor of an
4-162 Interpreting an Action Specification

operation must meet the conjunction of all specifications for that operation

1

 — every
one of the individual guarantees must hold independently of the others. Thus, we
could add the following specification to the

squareRoot

 operation:

action squareRoot (in x: Real, out y: Real)
pre: x < 0
post: y = -1.0

A spec may also con-
strain outcomes, with-
out fully determining
them

Some specifications fully determine the outcome of an operation. Our specification of

squareRoot

, allows many implementations — and even more than one result: 2* 2 are
4; but so are –2 * –2. If we want to exclued one result, we only have to add ‘y>0’. Simi-
larly,

schedule_course

 constrains the new session to be assigned a qualified, available
instructor, but does not specify which one be assigned. And

takeShortestPath

 does
not say which path should be selected in the event there were multiple paths with the
same length, just that there should be no other path with a shorter length.

Multiple specs vs. a sin-
gle — example

A operation may be constrained by multiple specifications, each with its own pre/
post pair (or, its own effects clause). Alternately, the multiple specs can be combined
into a single specification with a more complex pre-condition and post-condition.
Here, first, is an operation constrained by multiple partial specifications:

-- this spec deals with scheduling a confirmed course

action Scheduler::schedule_course (client, course, date)
pre:

Provided there is an instructor qualified for this course
who is free on this date, for the length of the course.

post:

A single new Session has been created for that course, client, dates
and confirmed with one of the qualified free instructors assigned to it

-- this spec deals with a “loyalty-program” for frequent course schedulers

action Scheduler::schedule_course (client, course, date)
pre:

Provided the client is above some loyalty threshold

post:

The client is sent a certificate for a free course

Any reasonable tool should related multiple specifications for an operation, and be
able to present some combined form. Here is the same operation, written with a single
specification.

-- this spec deals with combined aspects of a request to schedule a course

action Scheduler::schedule_course (client, course, date)
pre:

instructor available or client is above loyalty threshold

post:

(instructor available)@pre implies single new session for that course, ...
and (client above threshold)@pre

 implies client is sent free certificate ...

The single pre/post form becomes a bit awkward and redundant in the combined
specification. It must deal with multiple conditional outcomes with overlapping con-
ditions, which is done by and’ed clauses in the post-condition. In addition, the pre-
condition has to specify under what conditions the post-condition is applicable. It is
simpler to instead write out the multiple pre/post pairs in one action spec:

action Scheduler::schedule_course (client, course, date)
(pre: instructor available

1. Chapter 13 describes other ways to join two operation specifications
Interpreting an Action Specification 4-163

post: single new session for that course, ...
) and
(pre: client is above loyalty threshold

post: single is sent free certificate ...
)

The equivalent effect form is very similar, except it requires explicit @pre:

action Scheduler::schedule_course (client, course, date)
post: (instructor available)@pre implies single new session for that course, ... and

(client above threshold)@pre implies client is sent certificate ...

Pre/post only constrains
occurrences where pre
was true.

When we write a pre/post pair, the interpretation is simply that any occurrence of the
action in which the pre-condition was true must result in the post-condition becoming
true. That particular spec does not state the outcome if the pre-condition was not true,
hence it does not constrain such occurrences. When we write an effect clause, every
occurrence of the operation must satisfy the effects clause; which, so far, has simply
reflected the pre/post form.

4.7.4 “Convenience” attributes simplify specs

Introduce new attributes
to simplify specs

Since invariants can simplify action specifications, and attributes themselves simply
represent a precise terminology for use in action specs, we can sometimes greatly sim-
plify the specs by introducing suitable attributes and defining them using invariants.

-- cancellation of a session: might need to re-assign the instructor to something else
action Scheduler::cancelCourse (s: Session)
pre: -- if there was a tentative session within those dates waiting for confirmation

(sessions->exist (s1 | s1.tentative s1.datesWithin (s)
-- and the instructor who was assigned is qualified for it’s course

and s.confirmed and s.instructor.qualifiedFor (s1.course)
post: -- then the instructor is assigned to one such session

....

Finding this specification somewhat complex, we seek
underlying terms to simplify it. The pre-condition seems
to refer to a set of sessions which need an instructor for a
particular range of dates — in this case, the dates of the
session being cancelled. Why not introduce a parameter-
ized attribute qualWaitingSessions(dates) and simplify

the operation spec?

inv Instructor:: qualWaitingSessions (d: DateRange) =
-- all tentative sessions within that date range (assuming necessary attributes!)
sessions->select (s | s.tentative & s.dates.within (d)

-- and that the instructor would be qualified to teach
& self.qualifiedFor (s.course))

action Scheduler::cancelCourse (s: Session)
pre: -- if there were any sessions waiting for that instructor on those dates

s.instructor.qualWaitingSessions (s.dates)->notEmpty & s.confirmed
post: -- then the instructor is assigned to one such session

....

Instructor

Session

qualwaitingSessions (Date)

*

4-164 Interpreting an Action Specification

Judiciously chosen auxiliary attributes such as this can be very effective in simplifying
specs, by introducing precisely defined terms that express the requirement in a natu-
ral way, in terms close to what a client might use (despite the formal syntax).

4.7.5 Effects

Effect: local function
with @pre

Another kind of convenience function is called an “effect”: this is a function that can
use @pre, and so can be used to factor out the parts that are common between differ-
ent action specs.

We want to define effects
regardless of the action

For example, schedule_course is an action; we have decided there will be some inter-
action for a client to schedule a course. Two possible outcomes of this action are
schedule_confirmed_course and schedule_unconfirmed_course; however, we would
not list these as actions. Instead, we define these as named effects; referring to them by
name is exactly equivalent to writing out their specifications directly.

-- saying that a schedule_confirmed_course has happened is exactly the same as saying...
effect Scheduler::schedule_confirmed_course (course, date)

-- that there was some available instructor initially
post instructorAvailable@pre (course, date)

-- and a confirmed session is created
and Session.new [confirmed]

-- saying that a schedule_unfirmed_course has happened is exactly the same as saying...
effect Scheduler:: schedule_unconfirmed_course (course, date)

-- that there was no available instructor initially
post not (instructorAvailable@pre (course, date))

-- and an unconfirmed session is created
and Session.new [unconfirmed]

Named effects can be
used to specify actions

We can now simply use these two effects to specify the action schedule_course. The
resulting spec means exactly the same as though we had written the full specifications
of the two effects.

-- when a scheduler schedules a course
action Scheduler::schedule_course (course, date)

pre: true -- no precondition, since the postcondition covers all cases
post: -- either a confirmed course has been scheduled

schedule_confirmed_course (course, date)
-- or a unconfirmed course has been scheduled

or schedule_unconfirmed_course (course, date)

Esoteric topicPre=>post vs pre&post

In the example above, the two alternative situations and the associated outcomes are
represented in two different effects. Within the effect, the @pre part is ANDed with the
post. That means that when we bring the two effects together in the eventual action
spec, we can say “either this happens, or that”.
Interpreting an Action Specification 4-165

An alternative style is to write the effects in a style that each of them is a self contained
specification: “in this case => always do this” and “in that case => always do that”.
This style means that the two specifications are ANDed, because they are both instruc-
tions that we want the implementor always to observe:

-- If an instructor is available, the course must be confirmed
effect Scheduler::when_instructor_available_confirm (course, date)

-- if the instructor is available:
post instructorAvailable@pre (course, date)

-- then a confirmed session is created
=> Session.new [confirmed]

-- If an instructor is not available, the course must be unconfirmed:
effect Scheduler:: when_no_instructor_reject (course, date)

-- if was no available instructor initially ...
post not (instructorAvailable@pre (course, date))

-- then an unconfirmed session is created
=> Session.new [unconfirmed]

And the composition:

-- You must always confirm or unconfirm a course depending on instructor availability:
action Scheduler::schedule_course (course, date)

pre: true -- no precondition, since the postcondition covers all cases
post: -- either a confirmed course has been scheduled

when_instructor_available_confirm (course, date)
-- or a unconfirmed course has been scheduled

and when_no_instructor_reject (course, date)

Which style should you choose? Nice examples can be found to support either style.1
Experience suggests:

• Write effects in a (pre => post) style when you wish to ensure that there is no get-
ting out of the contract, that if the precondition is true, then the postcondition will
be met. Then combine them into actions using AND.

This is generally better when combining several separately-defined requirements
— for example when building an component that conforms to the interfaces
expected by several different clients.

• Write effects in a (pre & post) style when you wish each to describe one of many
possible outcomes. Then combine them into actions using OR.

This style is generally better when building a specification model from different
parts within the same document. These effects have to be combined with open
eyes: none of them makes any guarantees that the outcome it describes will be
met.

1. This was the biggest difference between the formal specification languages Z and VDM.
4-166 Interpreting an Action Specification

4.7.6 Quoting Action Specs within effects clauses

Each action introduces a
named effect

Whenever any action is specified, it implicitly defines an effect. That effect can be
referred to from another action. Sometimes you want to say “this operation does the
same as that, but also...” i.e. re-use the effect specification of another action. Specifica-
tions can be quoted within others’ postconditions (like calling subroutines in code).
Suppose you want to say “if I am told about a phone number change, I alter my
address book”:

action Person::notify_phone_change (who:Person, n:PhoneNum)
pre: who : friends — this spec only about people I know
post: addressBook[who].number = n

[[action]] uses the effect
of one action inside
another

Now “if I move house, I move my furniture to the new address, and get my new
phone number entered in each of my friends’ address books”.

action Person::moveHouse (newAddr, newNum:PhoneNum)
post: furniture.location = newAddr — shift my chattels

& (f:friends, — for each of my friends, call it f,
[[f.notify_phone_change(self, newNum)]]

— get f to do whatever they do with phone changes
)

It does not require the
action to be invoked; just
its effect to be achieved

The ‘quoting’ syntax [[...]] is a predicate, possibly involving initial and final states,
that says “this action achieves whatever notify_phone_change would have achieved,
with these parameters”, but not necessarily by invoking that action. It doesn’t say
how this must be achieved. The obvious thing, of course, is invoke the
notify_phone_change operation on each friend; but we leave the decision open to our
designer, who might know of another way to achieve the same effect.

If you want to go into the semantics a little more, the quotation is the same as rewrit-
ing ‘[[...]]’ with all the ‘((pre)@pre ⇒ post)’ of the quoted operation, with appropriate
parameter & self substitutions. These two variations mean the same:

action Person ::moveHouse (newAddr, newNum:PhoneNum)
post: furniture.location = newAddr

& (f : friends, — for each of my friends,
self : f.friends — if I am one of their friends,...
⇒ f.addressBook[self].number = newNum)

action Person::moveHouse (newAddr, newNum:PhoneNum)
post: furniture.location = newAddr — shift my chattels

& (f: friends, — for each of my friends, call it f,
[[f.notify_phone_change(self, newNum)]]

— get the effect of f’s notify phone change
)

[[–> action]] actually
invokes the action

If you decide that a part of this action must do is to actually invoke a specific opera-
tion, you can record that decision by inserting an arrow in front of the operation:
[[–> f.notify_phone_change(...)]]. This alters the postcondition to mean “the
notify_phone_change operation has been performed on each friend”. The end result is
no different, but we’re now pinning down how to achieve it.
Interpreting an Action Specification 4-167

4.8 Specifying component types

Now let’s put together the actions and the static model. We are writing a type to spec-
ify an interface to an object; it may cover all the operations that object can perform, or
just the ones used by a particular client.

A type is a specification of the response an object has to a set of operations. The opera-
tion specs are therefore the primary purpose of the spec: without them, it doesn’t
mean much. The operation specs share a single static model. A simple object has just
one or two attributes; a complex one has a whole diagram full of them (Figure 75). (Of
course, it is usually too big to fit in one box like this! See Chapter 6 Effective Documen-
tation, p 237.)

4.8.1 Variables an action spec may use

An action spec tells about the outcome of a named action happening to a set of param-
eter-objects and (for localised actions) a receiver.

The spec of an action may use:

• self, refering to the receiver object, whose type is written

• the parameter names, refering to those objects

• a result object

• the attributes of the type of self, drawn as associations inside or outside the box

• the attributes of the parameters and the result

4.8.2 Actions need not duplicate Invariants

An example type model
with invariants

Operation specifications can be simplified by taking advantage of constraints in the
type model. Consider the type model of Scheduler in Figure 75 with these invariants:

inv Instructor:: -- only assigned to sessions I am qualified to teach
qualifiedFor -> includesAll (sessions.course)

-- never double-booked; no 2 assigned sessions that overlap
sessions ->forAll (s1, s2 | s <> s1 implies not s1.overlaps(s2))

inv Session:: -- only confirmed with assigned instructor
confirmed => instructor <> null and
-- session dates cover course duration
end = start + course.duration -- assume suitable “Date+Duration: Date”
4-168 Specifying component types

We can write lots of
details in a spec

Let us try to define some operations against this model.

-- change the dates of a session
action Scheduler::change_dates (s: Session, d: Date)

pre: s.start > now and -- (1) not from the past
s.course <> nil and -- (2) has a valid course
s.course.duration : Days -- (3) course has a valid duration

post: s.start = d and -- (4) start date updated
s.end = d + course.duration -- (5) end date updated

Some of these are
implied by param types
and invariants

Which parts of the specification are necessary, and which unnecessary?

1. One cannot change the dates of a session from the past. Necessary.

2. It would not make sense to change the dates of a session that did not have a
course. However, the type model already uses a multiplicity of 1 to state that any
session object must have a corresponding course. The operation parameter
already requires s to be of type session, so we do not need to repeat (2); using the
type name Session implies all required properties of session objects. Unnecessary.

3. The post-condition refers to start + course.duration, which only makes sense if
duration was a valid Duration. Once again, the type model already stipulates that
every course has a duration attribute which is a valid Duration. Unnecessary.

4. This is the essential part of the post-condition. Necessary.

5. It seems reasonable that the end-date of the course is also changed. However, the
relationship between the start/end dates and is course duration is not unique to
this operation, so it has been captured in the type model as an invariant. It is suffi-
cient to state that the start-date has changed; the invariant implies that the end
date is also changed. Unnecessary.

Invariants simplifies the
spec

Each of the unnecessary items is already implied by an invariant. The definitions of
types themselves introduce invariants, such as the multiplicity or types of attributes.
The unnecessary parts would not be incorrect, just redundant. This leaves us with a
much simpler operation specification:

action Scheduler::change_dates (s: Session, d: Date)

Figure 75: Scheduler type model with invariants

Scheduler

schedule_course (...) pre ... post ...
cancel_course (...) pre ... post ...
change_dates (...) pre ... post ...

Instructor Session Course

* instructors

*

start: Date
end: Date

*

*0..1

confirmed: Boolean

duration: Duration

1

overlaps(Session)qualifiedInstructors

free (Date,Date)

client: Client

* sessions * courses

qualifiedFor
Specifying component types 4-169

pre: s.start > now -- not from the past
post: s.start = d -- start date updated

A more interesting example is schedule_course.

-- this spec deals with scheduling a confirmed course
action Scheduler::schedule_course (who: Client, c: Course, d: Date)

pre: -- Provided there is an instructor qualified and free for these dates
c.qualifiedInstructors ->includes (i | i.free (d, d+c.duration))

post: -- A new confirmed Session has been created for that course, client, dates
Session.new [confirmed & client = who & course = c & date = d
-- assigned one of the course qualified instructors who was free
instructor : c.qualifiedInstructors [free(d, d+c.duration)@pre]

It is already an invariant that any confirmed course must have a qualified instructor,
and that instructors cannot be double-booked. Hence, the italicized parts of the post-
condition are redundant, and the last line in this specification can be omitted. Other
than that, we don’t bother to give any further requirement here: so at present we’re
allowing different implementations to choose among the available qualified instruc-
tors in different ways.

Advanced Topic 4.8.3 Redundant specifications can be useful

It can be useful to write
redundant specifications

We have seen how certain elements of an operation specification are implied by the
invariants, hence become redundant in the op-specs themselves. Writing them would
not be incorrect; just redundant. It can still be useful to write them down; note the
change_dates example above. However, it is worth distinguishing those parts of the
specification the designer should explicitly pay attention to — the invariants and nec-
essary parts of operation specs — from those parts that would automatically be satis-
fied as a result.

Distinguished from nec-
essary specs using /pre,
/post, /inv

Just as we can introduce derived attributes — those marked with a “/” that could be
omitted since they defined entirely in terms of other attributes — we can also have
introduce derived specifications — significant properties which we claim would auto-
matically be true of any correct implementation of the non-derived specifications.
Using /pre: /post:, we can more explicitly define the change_dates operation:

action Scheduler::change_dates (s: Session, d: Date)
pre: s.start > now -- necessary

/pre: s.course <> nil and -- derived: multiplicity 1
s.course.duration : Days -- derived: atttribute definition

post: s.start = d -- necessary
/post: s.end = d + course.duration -- derived: session invariant

The same holds for derived invariants. Of course, we would only write those claims
we consider important to explicitly point out.

inv Session:: end = start + course.duration
/inv Session:: start = end - course.duration -- derived: definition of +, -
4-170 Specifying component types

4.8.4 Meaning of invariants

Invariants have a special
meaning with actions

We introduced invariants as constraints on legal snapshots, in Section 3.5, “Static
Invariants,” on page 115. We have described actions in terms of the relationship
between two snapshots, before and after the action; and now understand an object in
terms of its history of action occurrences and snapshots. What do invariants mean in
this temporal view of changing objects?

Invariant holds before
and after every action in
some range

An invariant is implicitly conjoined (and’ed) to both the precondition and the post-
condition of every action within a defined range of actions. In the simplest case, the
range of an invariant means all operations on members of the type it is defined for.

Thus,

action FlightMaster:: assign_pilot (p:Pilot, f.Flight)
pre: -- the pilot must be at the departure location on the flight date

p.locationOn (f.date) = f.departureLocation
post: f.pilot = p -- pilot has been assigned to flight

combines with inv Flight:: pilot <> copilot (pilot and co-pilot cannot be the same) to
form a complete operation specification:

action FlightMaster:: assign_pilot (p:Pilot, f.Flight)
pre: f.pilot <> f.copilot -- true of all flights, one of which we focus on

& p.locationOn (f.date) = f.departureLocation
post: f.pilot <> f.copilot

& f.pilot = p

There may be actions
outside its range where
invariants are “bent”

However, the private operations of any implementation may see situations in which
the invariant is ‘untrue’. For example, suppose the user assigns a pilot to a flight for
which she is already copilot. One acceptable implementation would be to deallocate
the copilot duty — but in the actual code, this might happen after assigning as pilot.
Thus the invariant is temporarily broken between internal actions in the code.

Advanced Topic4.8.5 Effect Invariants

Some effects are invari-
ant across all actions

If some actions share common effects — i.e. changes between before and after states
— we can specify a named effect and refer to it by name in the post-conditions of
those actions. In contrast, an ordinary invariant is required to hold before and after
the actions in its range; i.e. it is a static invariant, true of every applicable snapshot.

Figure 76: Invariants hold before and after a range of actions

i

j

k

l

schedule_course
invariants hold @i, j, k, l

invariants need not hold elsewhere

cancel_course

schedule_course
Specifying component types 4-171

Sometimes, an effect is required to be true of all the actions in its range. For example,
suppose we want to count every operation invocation on our calendar. We could write
a named effect, but we would have to explicitly reference it in every operation:

effect invoke () post: count += 1

These are effect invari-
ants

Recalling that static invariants are implicitly applied to all specs, we introduce an
effect invariant — an effect that is invariant across all actions in its range, and is implic-
itly and’ed to the post-conditions of those actions. Unlike a static invariant, it can refer
to before and after states. An invariant effect does not need to be named, and cannot
use parameters.

inv effect invoke post: count += 1

An effect invariant is and’ed to the post-condition of all actions in its range; it implic-
itly adds the last clause to this spec:

-- remove the given event
action Calendar::removeEvent (e: Event)

pre: -- provided the event is on this calendar
schedule->includes (e)

post: -- that event has been removed from the calendar and instructor schedules
not schedule->includes (e) and
not e.instructor@pre.schedule->includes (e)
-- and the effect invariant is implicitly applied
and count += 1

We can define rules that
span all actions

By using conditions in the post-conditions of an effect invariant, we can describe
effects that apply selectively to any action that meets the condition. For example, to
keep a count of all actions that either create or delete an event on the schedule:

inv effect create_or_delete
post: -- if the set of Events before and after differ, count this action occurrence

schedule@pre <> schedule implies count += 1

Advanced Topic 4.8.6 Context of an invariant

Context of invariant can
be type, class, collabora-
tion

The type in which an invariant is written is called its context. It applies only to the
operations of that type. (In the next chapter we will also see contexts of groups of col-
laborating objects.)

Invariants are only true
outside the interface

Any object claimed to conform to the type should always make it look to clients as if
the invariant is always true. While the client is waiting for any operation to be accom-
plished, the invariant can be broken behind the interface that the type describes; but it
must always be true again once the operation is complete. Behind that interface, are
components of the design that have their own nested contexts, and invariants that
govern them.
4-172 Specifying component types

Invariants should refer to
the attributes of the type
in hand

It is possible to write invariants that cannot be satisfied by an implementor — just like
any specification. In your spec of a Sludge vending machine, you may write an invari-
ant that the weather is always clement in Northern England; but I cannot deliver such
a device.1 But if you write an effect invariant that the machine’s cashbox will always
fill as the can stack decreases, then I believe I can do that.

Invariants need encapsu-
lation

In order to achieve it, I must employ certain techniques in my design. For example, if I
forget to include a stout metal case around the outside, then your assets will mono-
tonically decrease: people can get directly at the cans (and any cash that others may
have been foolish enough to insert).

Similarly in software: the developer of an alphabetically sorted list of customers can-
not guarantee that the list will remain sorted, if other designers’ code is able directly
to update the customers’ names. You can only guarantee what you have control over.

Collaborations are fun-
damental to design

In designing to meet an invariant, then, you have to think not only of your own imme-
diate object, but all the objects it uses; and to be aware of any behavior they have that
might affect the specs you are trying to meet. Fundamentally, objects have to be
designed in collaborating groups — the subject of the next chapter.

Figure 77: Invariants outside their contexts

software
component

Type 1
inv A ...

software

component
using this
interface
sees
invariant A

invariant A
not always
true inside
this boundary

software

software component C

Type 3

Type 2

invariant C
implementation
of component
A sees
invariant C
always true

always true

inv C ... not always
true inside
here

component B
component A

1. Although, now I come to think of it, it depends what’s in the cans
Specifying component types 4-173

4.9 State Charts

State charts, and their simpler cousins, ‘flat’ state-diagrams, can be useful modeling
tools. In Catalysis, states and transitions that appear in a state chart are directly
related to the attributes and actions in a type specification. The state chart merely pro-
vides an alternate view of the spec.

4.9.1 States as Attributes and Invariants

Some objects progress
through distinct states

Sometimes it is easy to see distinct states that an object progresses through over its
lifetime. A Session may go through tentative, confirmed, or delivered; if either con-
firmed or delivered it is considered sold. From another perspective, the session may be
pendingInvoice, invoiced, or paid.

A state-chart defines
boolean attributes and
invariants

States are often drawn in a state chart, showing the states and relationships between
them, as in Figure 78. Each state is a boolean attribute1: an object either is, or is not, in
that state at any time. The structure of states in the state chart defines invariants across
these attributes.

State can be exclusive, • States in a simple state chart are mutually exclusive, with exactly one state true at
a time e.g. within sold; this is what the xor invariants mean.

inclusive, • A state chart may be nested inside a state. While the containing state is false, none
of the nested states is true; while it is true, the nested state chart is live, meaning
one of its states (or one from each of its concurrent sections) must be true. This is
the or invariant defining sold.

or independent. • A state chart may be divided into concurrent sections by a dashed line. Each of
these is a separate simple state chart. The object is simultaneously in one state

1. We qualify the attribute name with superstates names to deal with nested states

Figure 78: A state-chart defines state attributes and invariants

Session

tentative, sold :Boolean
-- always in exactly one of these states
inv xor (tentative, sold)

-- sold is a superstate of 2 others
sold: Boolean
inv sold = confirmed or delivered
inv xor (confirmed, delivered)

pendingInvoice, invoiced, paid: Boolean
inv xor (pendingInvoice, invoiced, paid)

tentative

confirmed

delivered

sold

pending
Invoice

invoiced

paid

state structure implicitly defines invariants

states implicitly define attributes

super

“concurrent” states

State Chart Attributes and invariants

-- always in one of each

Session

state
4-174 State Charts

from each of the sections. No explicit invariants are needed, since the two sets of
states are independent.

We can also define
explicit state constraints

There is no paradox in this, nor necessarily any concurrent processing in the usual
sense: it’s just that a state simply represents a boolean expression, and there is no
reason why two such statements should not be true at the same time. We can sep-
arately introduce invariants that eliminate certain combinations, to represent
business rules. For example,

inv Session:: invoiced => sold
-- A session can be invoiced only if it is sold

and relate states to other
attributes.

Since states simply define boolean attributes, it is easy for states to be tied to the val-
ues of other attributes and associations via invariants. So for example, we can write

inv Session :: -- an invoiced or paid Session always has an attached invoice
(invoiced or paid) = (invoice <> null)

thereby tying the state to the existence or not of a link to another object.

4.9.2 State-Transitions as Actions

Transitions are partial
action specs

In addition to defining state attributes and their invariants, state charts also depict
transitions between states. An example state chart for Session is shown in Figure 79.

The translation is simpleThe change_dates action has multiple transitions, which translate into multiple partial
action specifications. The transition out of the confirmed state is translated below. For
brevity, the state chart omitted the parameters used in pre- and post-conditions, but
we fill these in the textual action specs.

action change_dates (s: Session, d: date)
-- if s was confirmed i.e. transition coming out of the confirmed state
pre: s.confirmed
post: unAssignInstructor(s) & -- assuming an effect with that name

setDates (s, d) & -- assuming effect is defined

Figure 79: Session state-chart with transitions

Session

tentative

confirmed

delivereddeliver (self)

change_dates (self,d)

change_dates (self,d)

[confirmable]

[confirmable]

/assignInstructor

/assignInstructor

/unAssignInstructor,

transition
divergence

pre-condition

action

post-condition

setDates

[not confirmable]

[not confirmable]

/unAssignInstructor,
setDates
State Charts 4-175

confirmable (d) => s.confirmed & assignInstructor (s, d) &
not confirmable (d) => s.tentative

The elements of state chart notation is described below:

A state chart is part of the model of a type. A round-cornered box represents a state —
the truth of a predicate. Each state implicitly defines an attribute of the type. The
states in simple state chart are mutually exclusive; nested and concurrent super-states
have different rules. Normally, the states in one diagram focus on one object.

Start and end are distin-
guished ‘pseudo’-states

The arrows indicate what sequences of transitions are possible. “ ” indicates which
state is first entered when the state predicates first become well-defined; this can mean

when the object is first created; or when this nested state chart is entered). “ ” indi-
cates where they become undefined i.e. when the nested state chart is exited, or the
object is no longer of any interest. Until reaching the “black hole”, all the predicates
for the states in the diagram should be well-defined, either true or false.

is exactly the same as

The divergence is not a branch point in the programming sense, but just says there are
two possible outcomes from this action: its postcondition includes (s1 or s2). Without
the preconditions, either outcome would satisfy this spec.

Transitions specify pre/
post conditions

State transitions share most of the machinery of effect clauses, described in Section
4.3.4. State transitions can be used to specify actions as well as named effects.

“[pre]” is a precondition: the transition is guaranteed to occur only if pre was true
before the action commenced. Notice that this does not say that this transition defi-
nitely does not occur if the precondition is false; to say that, make sure you show tran-
sitions going elsewhere when it’s false.

“/post” — some effect achieved as part of executing this transition.

“↑action” — a (more abstract) action completed as part of executing this transition.
We’ll have more to say about this in the Chapter 14, Refinement.

[[receiver.action]] — part of the effect of this transition is the same as the docu-
mented effect of action on receiver (which is self, the state chart object, by default).

[[–>receiver.action]] — part of the effect of this transition is that action is actually
performed by an invocation on receiver.

s0
[pre1]

[pre2]

[precond] action ↑ r1

↑ r2

s1

s2

/post

SomeType

/post2

a [b]

[c]

s1

s2

a [b]

a [c]

s1

s2
4-176 State Charts

Translating State Transitions to Actions

A transition illustrates part of the spec of an action.

action Type::a1
pre: s1 && precond
post: s2 && postcond

Multiple transitions
define conjoined specs

If there are several transitions involving one event, the effects are conjoined. State-
charts give a different way of factoring the description of an action, and a good tool
would move readily between two views: state chart and textual action specification.
Each state must have a definition in terms of the other attributes and associations of
the type.

Superstates work as
expected

When using superstates, being in any substate implies being in the superstate. So any
arrow leaving the superstate means that it is effective for any of the substates.

Transitions define action
completions

Transitions indicate the completion of the actions with which they are labelled.
Although the actions may take time to accomplish, the transitions themselves are
instantaneous; this will become more significant in Chapter 14, Refinement.

4.9.3 State Charts of Specification Types

A single state chart can
describe only the sim-
plest behaviors graphi-
cally

When drawing state charts, be aware of the primary type
that is being modeled. In simple cases the states and tran-
sitions are directly of the primary type being modeled. If
we are trying to specify the behavior of a gas-pump, the
states and actions labeling the transitions are those of the
pump itself. It translates directly into actions specs like:

action Pump::hangup pre: ready post: idle
action Pump::pickup pre: idle post: ready

Complex objects have
many state components

But when the primary type being modeled is complex, its states cannot necessarily be
enumerated in the simple form required for representing it as a single state chart. The
behavior of a Scheduler component like Figure 75 cannot be described on a single
state chart, except with the most trivial states (e.g. “exists”), with all the interesting
effects described in text on the transitions. This is because the state of the scheduler is
defined by the states of its multiple sessions, instructors, and courses.

Describe their states via
multiple state charts

The technique we use here is to draw separate state charts for the specification types
that constitute the type-model of scheduler. In reality, we are defining the states of the
scheduler in terms of the states of its specification types. The transitions in the indi-
vidual state charts show what happens to those objects for each of the scheduler’s oper-
ations.

s1 s1
a1 [precond]

Type

/postcond

idle

ready

pumping

GasPump

pickup

squeeze

hangup

release
State Charts 4-177

The states and transi-
tions are projections of
the primary type and its
actions

Each individual state chart effectively specifies that part of every action on the pri-
mary type that has a local effect on that specification type. In contrast, a complete
action specification defines how one action on the primary type affects any of the
specification type members. The composition of all change_dates transitions, on any
and all specification types, constitutes the change_dates operation specification for the
scheduler. Do not confuse this state chart view with internal design, where we will
actually be deciding internal interactions between objects within the scheduler, and
the primary types whose behavior we will describe will be these internal objects.

This is a useful and gen-
eral technique

A useful technique in specifying a
large component is to draw a state
chart that focuses on all the elements
of a particular type within a larger
model —for example, showing what
happens to the shapes in a drawing
editor for each of the editor’s opera-
tions. select(self) is a shorthand for
select(s) [s=self]. It’s important to
realize that this is really a state chart
for the editor, in which the states are
defined in terms of the states of its
shapes.

We can translate this to text form like this; it is slightly more convenient to use a single
effect clause than separate the pre/post style here:

action Drawing_Editor::select (shape:Shape)
post: -- every shape in the current document is affected as follows

current_doc_contents ->forAll (s |
-- if it’s the target and was selected, unselect it
((s.selected && s=shape)@pre ⇒ unselected)
-- if it’s the target and was not selected, select it

& ((s.unselected && s=shape)@pre ⇒ selected)
)

Figure 80: State Charts of Specification Types

Scheduler

schedule_course (...)
cancel_course (...)
change_dates (...)

Instructor

Session Course
change_dates

cancel_course
change_dates

cancel_course

specification or model typeprimary type

Session Instructor

Drawing_Editor

Shape
* current_doc_contents

selected

unselected

select(self)

select(self)

select(Shape)
4-178 State Charts

Advanced Topic4.9.4 Underdetermined transitions

Transitions need not be
fully deterministic

Sometimes a state chart will be deliberately vague about the outcome of an action. The
reason is usually to allow subtypes to make different choices, while the supertype
gives the broad constraints, or to simply define a minimal partial constraint.

What does it mean to be
under-determined?

At any moment, a transition is said to be ‘feasible’ if, before the current action began,
the system was in the state at the arrow’s source end and any precondition it is
labelled with was true. You are allowed to write a state chart for which there are sev-
eral feasible transitions at any moment, called an underdetermined set of transitions.
When this is the case, what state will we end up in?

Based on this spec you
cannot assume a unique
outcome

The answer is that we will end up in one of them, but as a client you can’t make any
assumptions about which one it might be. This doesn’t mean it’s random — just that
there are forces at work of which you, based solely on the current spec, are unaware.
As a designer you might be able to choose whichever you like; but you will probably
be constrained by the requirements from another view or a particular subtype.

Dialling a phone has
many outcomes

For example, dialling a phone number — dial_number — has several possible out-
comes. As users we are unaware of the factors that will influence the outcome.

At some level all out-
comes are determined

There is an engineer’s view in which you can describe what the outcome will be in
terms of the capacity of the lines and whether the other end is engaged on a call; but
from the point of view of the phone user at one phone, these factors are unknown.

So why leave them
under-specified?

Isn’t it a bit pedantic to insist on drawing the picture that doesn’t show the precondi-
tions on dial_number? After all, moderately educated phone-users know what really
cause these outcomes, and even when they don’t, there is always a cause that we, the
designers of the phone system, know about.

Because the precise
causes may differ in a
different context

Well, in this case, perhaps. But indeterminate state charts will be important when we
discuss components. This component may be combined with a wide variety of others,
including ones not yet known of: so we actually don’t know what the causes are, just
what the possible outcomes can be. This might happen if we allowed our phone
instrument to be connected to a new kind of switching system. As long we have a way
of re-using this under-specified model, and adding to it in another context, this is a
worthwhile separation to make.

idle dialTone

lines_busy

offhook

dial_number

dial_number

party_busy

dial_number

ring

connect

onhook

Phone

complete

Figure 81: Underdetermined transitions
State Charts 4-179

Advanced Topic Silent transitions

A transition may even
have an unknown trigger

The phone example shows one other way in which state charts can show nondetermi-
nate behavior. It is possible for a system to change state without you knowing why or
when, and without you doing anything to it. Again, this does not necessarily imply
pure randomness, just that either we don’t know what might cause the change (as
when waiting for public transport, which no mortal understands) or that if we do
know, we don’t know whether or when that cause will happen (as when hanging on
to see if the phone will be answered).

Silent transitions also let us describe systems that are not purely re-active, since the
partial descriptions permit transitions with unknown causes.

4.9.5 Ancillary Tables

Two tables make the
state view a better com-
plement

State charts themselves provide a useful and different view of behavior from action
specifications. They focus on how all actions affect one specification type, highlighting
sequences of transitions, as opposed to focusing on the complete effect of one action
on all affected types. There are two related tables that can be very helpful in conjunc-
tion with state charts, to check for completeness and consistency.

State transition matrix

A state chart can be represented by a matrix:

Writing the matrix is a valuable cross-check to ensure
that each action has been considered in each state. This matrix can be automatically
generated from the state charts themselves; it better highlights combinations that may
have been overlooked.

State Definition Matrix

Each state should be defined in terms of attributes and associations in the model. Fre-
quently these boil down to simple conjunctions of assertions about them, so are easy
to show in a table. Even if this table is never written, it is always useful to define each
state as a function of the existing attributes and associations.

State e1 e2 e3

S1 [g1] S2 X I

S2 X S3 / pp X

S3 S2 [] S1

State attr1 assn1 assn2 Full Definition of State

S1 >30 null <> null attr1>30 & assn1=null & assn2 <> null

S2 >2, < 3 null <> null 2 < attr1 < 3 & assn1=null & assn2 <> null

S3 > 0, < 2 <> null 0 < attr1 < 2 & assn1 <> null

S1 S2

S3

e1 e2e3

X = shouldn’t happen
I = nothing happens
[] = determined in subtypes

/pp

e1 [g1]
4-180 State Charts

4.10

Specification Types vs. Design Types

Advanced Topic

The reason we are interested in specifications is to describe how a client should use a
component (whether a software component or part of an organization; and no matter
whether a complete software system or a large or small part of one). And what we
really want to say about a component is

what it does

 — its behavior, the actions it takes
part in.

An implementation can
look different internally
from the external spec

We have seen how to specify the externally visible behavior of a
type by specifying actions in terms of a type model of attributes.
Since a type doesn’t necessarily have to be designed along the same
lines as its model, it may be that the implementation does not
explicitly represent distinct and separate objects that belong to the
types used within that model. When designing, some people like to
distinguish those types they have decided to implement — “design
types” — from those that are just there to help write a specification
— “spec types”. Design types are drawn with a heavier border.

Clients only need to
know external behavior

Now, clients are not interested in how it works inside: only the designer is interested
in that, and he ought to be in a considerable minority. But in order to describe the
actions clearly, we need to write a model of the component’s state. Here is a typical
dialog or thinking process involved:

“This command generates a print job”

— what’s a job?

 “It’s a thing with pointers to
a user and a file”

— what can I do with it?

 “Oh, you can’t get hold of one yourself,
but you can list all the jobs there are, and cancel any of your own”

— so there is one
big list of jobs in there?

 “Yup.”

— isn’t that a bit inefficient, considering there are so
many different printers all over the Department? Wouldn’t it be better to send each job to
its own printer?

 “Uh, well yes, that’s how it’s really done of course; and actually,
there’s really no such thing as a job, we just append the user name to the file. And
actually, there’s this hash table,...”

— But if I think of it as a big list of jobs, I’ll under-
stand how to use the system?

 “Yes”

— thanks, that’s what I need

.

Some terms and concepts
are hypothesized

In this scenario, not only the attributes of the printing system — the list of jobs — but
also the type of objects they contain (Job) is a convenient fiction hypothesized to
describe its behavior aside from all the implementation complexities. Job’s attributes
also might or might not be directly implemented. Job is called a

specification type

, or a

model type

 — it is only there for the purpose of modeling.

Others must be explic-
itly implemented

Types that are ‘really’ there (in the sense that they are separable and take part in
actions and we intend to implement them) are called

design types.

 Many types are
used for both purposes — for example, Date is often used in specifications and also
has many implementations. Also, in some situations the specification requires an
implementation not just of a primary type, but also of related types as required for
input and output parameters e.g. §8, p.153.

The key distinction is
who participates in
actions

Typically, a design type will be specified with a model drawn inside it, using model-
ing types. Only a design type can participate in an action, and every type that is spec-
ified as participating in an action is a design type. Specification types do not really
have actions of their own; but partial specifications (“effects”) can be attached to them
for convenience, as shown in Section 4.10.1.

Spec Type

Design Type

...

*

Specification Types vs. Design Types 4-181

However, there is nothing to stop a type that happens to have an implementation
somewhere also being used in a model. The more important design decision is how
the types in an implementation will be used, and those decisions are recorded in col-
laboration diagrams.

4.10.1 Factoring to Specification Types

Action effects may
depend on spec types

There are many cases when the outcome of an action depends on the type of the object
or objects to which it is applied; indeed, this is one of the mainstays of the object-ori-
ented approach.

e.g. different financial
instruments

For example, if a financial institution keeps a variety of instruments under your name
— life-insurance, mortgage, savings account, pension, etc. — what happens when you
notify their system that you have died? (Well — perhaps someone does it for you!)

But the action is still on a
containing type

The outcome is different for each different type of Account: the life insurance pays out
and stops expecting regular pay-ins, the mortgage demands immediate repayment of
its outstanding balance, the savings account does nothing, and the pension stops reg-
ular payouts. Yet the action itself is simply on the financial system itself; committing
to more would be internal design decisions.

We can factor the effects
onto spec types

The easiest way to deal with this is to factor the action spec as effects into the model’s
types (the short

 (pre:–post)

 here is just for brevity):

This is not design; just
factoring of a spec

Does this mean we are doing some design — assigning responsibilities and deciding
internal interactions to the modeling types? Not really — we’re just distributing the
action spec among the concepts with which it deals, much as we did with state charts
in Section 4.9.3. If there happens to be an implementation of, say, Mortgage, we are
not referring to that implementation and the particular properties of its code: just the
specification.

Yes, we could decide to design an object that is a member of the LifeInsurance type of
our model; and yes, in that case it could very likely have a ‘die’ operation conforming
to spec as given in the LifeInsurance type-box. But it’s likely that the only design deci-

Account
payment history
regular payment

Financial System

Customer
*

action die(c: Customer)
post: (ac : c.accounts, ac.die())

* (c.departure = today)

LifeInsurance

effect die()

attributes

Mortgage

effect die()

Savings

effect die()

Pension

effect die()

 -- every account does its own thing
 -- and we record customer’s death

(pre :– post) (pre :– post) (pre :– post) (pre :– post)

attributes attributes attributes

Figure 82: Factoring the effects of an action to spec types
4-182 Specification Types vs. Design Types

sion we’ve really taken so far is to implement FinancialSystem; and perhaps not even
that — this model may be just a factored part of some larger one. It would still be pos-
sible to represent the information about a Customer’s various policies in some spread-
around way, with no single item corresponding entirely to any one type of account.

Design decisions will be
recorded in refinements

Design decisions are recorded separately, as refinements and ultimately as code. In a
support tool, you know that a type is (to be) implemented if it has a link to one or
more refinements (even if they aren’t fully filled in yet). Some people like to draw
with a bolder outline a type which has been, or is intended to be, implemented.

Not all types will be used in the design. If a collaboration documents messages being
sent to members of a given type, then clearly that type will have to be implemented in
some way.

4.10.2 Factoring — specify effects abstractly

Even if action effects
vary across subtypes,
find abstract attributes
and common spec

The ‘die’ example placed very different outcomes
in each type. But where possible, it pays to look for
something common between the supertypes. For
example, moving a Shape in a graphical editor is
very different in terms of the attributes of each
subtype; but we can express the required effect in
common terms, of what happens to the points con-
tained within each Shape.

Although the most natural attribute models for
circle, rectangle, triangle would be quite different,
we can abstract them into a single parameterized
query, contains (Point); any shape is defined by
which points it contains. We define move in terms
of this abstract attribute, and then simply relate the different shapes to this attribute.

Shape
contains (Point): Boolean
move (v: Vector)
post: (p: Point, -- any point, p

contains(p)@pre

Circle
radius: Length
centre:Point
inv contains (p: Point)
⇔ p–centre < radius

// move needs no further spec

 ⇔ contains(p+v))
Specification Types vs. Design Types 4-183

4.11

Outputs of Actions

Modeling outputs is a
conscious abstraction

Much of the focus of a typical postcondition is on the effect of an action on an object’s
internal state. But we also need to describe the information that comes out of an action
back to the invoker, or any output signals or requests that are generated to other
objects. There are several approaches to this.

4.11.1 Return values

return values

An action can have a return type, the return value being the identity of some new or
pre-existing object, used by the sender. Within the postcondition,

result

 or

return

 is
the conventional name given to this value. Actions with return values are usually
functions i.e. they have no other side effects.

function square_root (x:float)
post

:

 abs (result * result – x) < x/1e6

4.11.2 Out parameters

 Out parameters bind to
attributes; ordinary ones
bind to objects.

 Input parameters represent object references that are provided by the caller; return
values represent object references returned to the caller, to deal with as needed. While
out parameters can be broadly considered similar to return values, the details are
somewhat different. The post-condition of the operation will determine the value of
the out parameter and its attributes; however, the client will call this operation with
these out parameters bound to some attribute selected by the client.

action Scheduler::schedule_course (course, dates, out contract)
post: & contract = Contract.new [...]

action Client::order_course
post: scheduler.schedule_course (c1, 11/9, self.purchase_order.contract)

An ordinary parameter refers to an object; an

out

 parameter refers to an attribute,
which might be as simple as a local variable of the caller. An out parameter can there-
fore be used to specify that a different object is now referred to by the bound attribute;
an ordinary parameter can only change the state of the object it refers to.

out

 is like a C++ reference parameter. Other programming languages, like Java and
Eiffel, do not have these features, which shows that it is possible to do without them
in an implementation language. However, the idea of having multiple return values is
itself very convenient in both specification and implementation.

4.11.3 Raised actions

A post-condition can
specify invocations

It is also possible to state as part of a postcondition that another action has been
invoked, either:

Synchronous

• Synchronously — the sent action will be completed as part of the sender. Its post-
condition can be considered part of this one. Written:
4-184 Outputs of Actions

[[r := –> receiver.anAction(x,y)]]
r is a value returned from the message.

Asynchronous

• Asynchronously — the request has been sent; the action will be scheduled for exe-
cution later, and its completion may be awaited separately.

• Request sent to a specific receiver, and the action has been scheduled:

[[sent m –> receiver.anAction(x,y)]]
m is an

event identifier

 that can be used elsewhere

• Request sent to an unspecified receiver; action has been scheduled.

[[sent m –> anAction(x,y)]]

• A previously sent action has been completed and returned r.

[[m (...) = r]]

Advanced Topic

4.11.4 Specifying sequences of raised actions

Output actions some-
times must be sequenced

When specifying raised actions, it is sometimes necessary to specify that they happen
in a particular sequence — to describe the protocol of a dialogue. You might want that
an “open_comms” action sends certain messages to a modem object in a particular
order. We wish to specify this while retaining our basic premise of just using initial
and final states in post-conditions.

Some receiver must
accept that sequence

In effect, this is telling your designer something about the type of the intended
receiver. You may tell me absolutely nothing else about it, but I do know that it can
accept messages a, b, c in a particular order, and that at certain times you require me
to have sent all three in that order.

...specified as a local
view of that receiver

This is equivalent to saying that I have been asked to get it into the state of “having
received message c”. I haven’t been told what that state might signify as far as the
receiver is concerned; just that I’ve got to get it there. But also, you tell me that I must
first send message b: in other words, the modem has a state — as far as I am con-
cerned — of “having received message b”, which is a precondition of c.

The post-condition sim-
ply achieves the target
state

So the simplest way to specify that a sequence of messages must be sent as part of the
outcome of an action, is to make a minimal local model of the state transitions for the
receiver, and specify that the final target state is reached:

action

OurObject::
open_line(m:LocalViewOfModem)

pre

:

 m.idle
post

:

 m.ready
& various effects on our own state

By using the full apparatus of state charts, we can
specify sequences that are linear, branching, and
concurrent.

Used in this way, states shown as separate in this
local view can turn out not to be separate in an implementation of the modem; they
are, however, separate in our object’s implementation, since it must generate in

ModemLocalView

OurObject

idle

s2ready

s1
a

b
c

open_line(m)
Outputs of Actions 4-185

sequence.

OurObject

 would work if we provided a modem that ignored operations

a

and

b

 but went straight from

idle

 to

ready

 on

c

. Provided there are no operations for
actually finding out its state, that’s OK.

Sequential outputs are often better dealt with as refinements, as described in Chapter
14. State charts are also are used to describe a collaboration refinement (in which
‘zooming in’ on an action shows it to be a dialogue of smaller ones).

Advanced Topic

4.11.5 Sequence expressions

Textual sequence expres-
sions are better drawn as
state charts

It is occasionally useful to write a sequencing constraint in text form, although they
could usually be described using the preferred state chart technique from the previ-
ous section. For example:

action

stay (c: Customer, h: Hotel, dd: Dates)
post:

let bill: Money = h.rate * dd.days in
[[make_reservation (c,h,dd) ;

change_dates (res, dd)* ;
check_in (res);
check_out(res, bill)]]

 In other words, a stay in a hotel is a sequence of making a reservation, possibly chang-
ing the details (any number of times), checking in, then checking out (including pay-
ing the appropriate bill).

Sequence-expression [[...]] shows the permitted sequence of more detailed actions —
not a prescribed program. The elements of the syntax are as follows, where

S1 etc.

 are
usually expressions about actions:

S1 ; S2 S1 always precedes S2

S1 | S2 S1 or S2

S1 * Any number of repetitions of S1

S1 || S2 S1 concurrent with S2

All sequences

[[...]]

 are an abbreviation for a state model with the implication:

(start => done)

where the two states are defined by a state model, whose exact nature depends on the
sequence expression:

[[S1 ; S2]]

[[S1*; S2]]

[[S1 | S2]]

start dones1xS1 S2

start dones1xS1 S2

S1

start doneS1
S2
4-186 Outputs of Actions

[[S1 || S2]]

done
S1

S2
Outputs of Actions 4-187

4.12 Subtypes with Attributes and Invariants

A type specifies a set of
objects

A type defines a set of objects by specifying certain aspects of those objects; every
object that conforms to that specification, regardless of its implementation, is a mem-
ber of that type, and vice-versa. For example, a ServiceEngagement type could define
any object that constitutes a service engagement with a client. Any object with a suit-
able definition of the five attributes is a ServiceEngagement.

A subtype can extend the
definition of a supertype

A subtype extends the specification of its supertype. It “inherits” all properties
(attributes and invariants) of the supertype, and adds its own specifics. Since all
supertype properties still apply to it, and its members have to conform to all proper-
ties, every member of a subtype is also a member of its supertype i.e. a subtype’s
members are a subset of its supertype members.

Subtype.forAll (x | x.isTypeOf (Supertype))

All properties are inher-
ited

The types CourseEngagement and ConsultingEngagement could both be subtypes of
ServiceEngagement. Objects of the CourseEngagement type have a total of 6
attributes defined on them; these objects may have different implementations of these
attributes, so long as they map correctly to the specified attributes, and are related
consistent with all invariants. Their fees are determined by the fees set for the course;
the margin must factor in travel expenses and production costs for student notes.
Engagement dates are fixed by the startDate and the standard course duration.

Clearly attributes students and course do not apply to consultingEngagements. The
rules that constrain dates, fees, and margins could be quite different. Still, all five com-
mon attributes can be defined for any consultingEngagement.

Figure 83: Subtype extends definition of supertype

ServiceEngagement

client: Client
dates: DateRange
by: Consultant
fees: Money
margin: Money

CourseEngagement

students: Integer
travelExpenses: Money
startDate: Date
inv fees = course.fee
inv margin = fees

- travelExpenses
- course.unitCost * students

inv dates =

Course

fee: Money
duration: Duration
unitCost: Money

course 1

*

sub-type (type extension)
4-188 Subtypes with Attributes and Invariants

We could well discover further commonality between the subtypes. On closer consid-
eration, both of them follow the same basic rule for their

margin

:

margin = fees - travelExpenses - additionalCosts

Common specs can be re-
factored to the super-
type.

Parts of this invariant are defined differently for each subtype. Consulting fees are
determined by the expertise of the consultant and the length of the engagement.
Additional costs for a course are due to the per-student production costs; additional
costs for consulting may be due to the preparation time required for the engagement
and the actual cost for the assigned consultant. Despite these differences, the broad
structure of the invariant is the same, and can be defined just once in the supertype.

A type is not a class

A type is not a class. A class is an OOP construct for defining the common implemen-
tation — stored data and executed methods — of some objects, while a type is a speci-
fication of a set of objects independent of their implementation. Any number of
classes can independently implement a type; and one class can implement many
types. Some programming languages distinguish type from class. In some languages,
writing a definition of a class also defines a corresponding type

1

.

A subtype does not
imply a subclass

A subtype is not a subclass. Specifically, a subtype in a model does not imply that an
OOP class which implements the subtype should subclass from another OOP class
that implements the supertype. Subclassing is one particular mechanism for inherit-
ing implementation with certain forms of overriding of

implementation

; however, with
subtyping, there is no overriding of

specifications

; just extension.

Not all subtype are inter-
esting

As with objects and attributes, there are many ways of partitioning subtypes.

Service-
Engagement

s could be viewed based on their geographic location (domestic vs. inter-
national), taxation status (taxable or not), nature of service provided (consulting vs.
training), etc. Which of these are relevant is determined primarily by the actions that
we need to characterize, and the extent to which the sub-typing helps describe these
actions in a well-factored way.

4.12.1 Common Pictorial Type Expressions

There are several commonly used combinations and variations of subtyping in mod-
els. This section outlines them and the corresponding notations.

4.12.1.1 Subtype

TA1

 extends

TA

 — it inherits all its attributes and action-specs.

TA1

may add more action specs, for the same or different actions. Viewed
as sets of objects:

TA1

⊆

TA

Example:

1. Java distinguishes interface (type) from class (type and class). A C++ class is also a type.
Smalltalk: type corresponds to a message protocol; class is independent of type

TA1

TA

CowMammal
Subtypes with Attributes and Invariants 4-189

4.12.1.2 Multiple supertypes

TAB

has all the properties specified on the supertypes. Any action
with specifications in more than one supertype must conform to
them all. Viewed as sets of objects:

TAB

⊆

TA * TB

Example:

Subtype is strictly addi-
tive

The subtype conforms to all the expectations that any client could have based solely
on the guarantees of one supertypes. Further requirements particular to this subtype
may be added. It’s perfectly possible to combine two types that have conflicting
requirements, so that you just couldn’t implement the result.

4.12.1.3 Type exclusion

The two types are mutually exclusive i.e. no object is a member
of both.

TA1 * TA2 =

∅

4.12.1.4 Type partitioning.

Every member of

TA

 is a member either of

TA1

 or

TA2

, but not
both. There may be more than one partitioning of a type, each
drawn with a separate triangle.

TA = TA1+TA2

Example:

4.12.1.5 State-types.

TA1

 and

TA2

 are sets (not true types) to which members of

TA

belong when in a given state, defined by a predicate on

TA

(usually in terms of attributes of

TA

, but see Section 4.13). If the
determining attributes are not

const

, then objects can migrate
across the state types; otherwise the classification of an object is
fixed by the determining attributes at the time of its creation.
This construct is a convenient way to define conditional type
membership, of the form:

a TA is also a TA1 if it has property x<a;
in which case it also has these other properties (z, etc)

.

TA

TAB

TB

CowMammal Non-flier

TA

TA1 TA2

TA1

TA

TA2

CowMammal

Tiger

Non-flier Flier Bat

Animal

TA1

TA

TA2

x

x<a

x>a
z

4-190 Subtypes with Attributes and Invariants

Example:

State types let you use
very natural names

This is a form of checked subtype relation, providing an implicit classification facility.
It lets you use predicates as type names, and is helps to bridge some common and
intuitive usage of terminology that may not map to a strict meaning of types. Con-
sider what state types of Person would permit the following:

Club::admit (t: Teenager)
post: t.stipend.depleted

[[t.hasEnjoyedSelf()]]

BabySitter::admit (b: Baby)
pre: b.diaper.unsoiled
post: [[b.hasEnjoyedSelf()]]

Advanced Topic

4.12.2 General Type Expressions

Since types define sets of objects, we can use set operations to combine types. These
expressions can be useful in assertions. In that context, the name of a type refers to its
current set of existing objects.

jo : Student Object jo is a member of the type Student, conforming to the
behavioral requirements set by Student.

Tutor * Student the type whose members are in both these types. Maybe laura :
(Tutor * Student) .

Tutor + Student the type whose members are in either or both type. We might
define a type: CollegeMember = Professor + Student

Person – Pilot the type whose members behave according to the first type’s def-
inition, but have behavior inconsistent with the second.

Object the type to which all objects belong; all other types are its sub-
types.

Impossible the empty type to which no object belongs, characterized by any
type-definition that is inconsistent.

NULL has only one member, null (or ∅), the value of an unconnected
link.

Seq(Phone) application of a generic type Seq(X) to a specific type Phone.
Other standard generic types include Set and Bag.

[T] the same as T + NULL; all ‘optional’ attributes are of this form.

Person Employee

Unemployed
getFired
post: self : Unemployed

employer <> null

employer= null

Employer
0,1
Subtypes with Attributes and Invariants 4-191

4.13 Subjective model — the meaning of “containment”

Type model ‘contain-
ment’ means two things

When we specify a type, we will often depict its attributes and specification types
with a distinguished “root” type by using a form of visual containment, as shown in
Figure 84(a) (or with a distinguished type node marked with «root», in (b); the former
has the advantage of permitting multiple levels of nesting, to which these rules apply
uniformly). This is more than a cosmetic choice; it has a specific semantic meaning.

There are two meanings to a type diagram with a “root” type. Both are illustrated by a
traslation to this explicit model:

Enclosure All paths from A back to A that use only associations defined
within the box (or, that do not use any links marked «cross») are
guaranteed to get back to the same instance of A i.e. all links lie
within the tree of objects that is rooted at self:A. By contrast,
though a.b.x.d is certainly a member of type A, it need not be =
a. Thus, an engine is connected to a transmission, provided they
are within the same vehicle. This rule works as expected across
multiple levels of nesting.

Subjective
model The types locally named B and C, and their associations b, c, and

d, all form part of a A’s model; they are really ‘state types’ i.e.
those members of B (or C) who happen to be contained within
an A. Brought outside the boundary of A, they have prefixes to
their names. In a different context, every B might not be linked to
a C. For example, to the Invoicing Dept, Customers are linked to

Figure 84: Type model: (a) with “containment” (b) with “root”

A

B C

b
c

d

specification or model type
root type

A «root»

op 1 pre...post...
op 2 pre...post...

B C

b
c

d

(a) (b)

«cross»
x

x

A

A::B A::C

x

cb
d

inv A:: b.c.d=self

B C

A->exist(a | a.~d=self)A->exist(a | a.b=self)

enclosure rule

subjective model
any B in context of A is A::B

Figure 85: Interpretation of “containment”
4-192 Subjective model — the meaning of “containment”

Products, while Warehousing knows only that Products have
Parts. Containment represents a localized view.

The local usage of a type is a state-type of the common usage. In
addition, local usages can also directly refer to attributes or oper-
ations on their container1. This makes it simple to write localized
specifications of actions and effects, as discussed in Section 4.9.3.

As a matter of style, we use containment to depict specification types that have been
introduced simply to describe operations on the primary type of interest. Sometimes
we will also need to describe operations on the input or output parameters of these
operations, as shown in Figure 68.

Without such a mechanism, it becomes difficult to know whether the properties
defined on B are intrinsic to all B’s i.e. apply to it universally; or whether those proper-
ties are defined only on those B’s which happen to be within an A. When an engine
runs, does it always always turn the wheels of the car? How about when it is driving a
boat? Or when it is mounted on a test jig at the mechanic’s?

1. In the manner of inner classes in JavaBeans, and closures or blocks elsewhere
Subjective model — the meaning of “containment” 4-193

4.14 Programming Language: Classes and Types

Our focus on this chapter is on specifying the behavior of objects using types, not on
how to implement them with classes. This section briefly descibes the link between
modeling with types and implementing with classes.

Class prescribes internal
structure

A class is an implementation unit that prescribes the internal structure of any object
that is created as an instance of it. An object belongs to one class throughout its life.

Classes can be imple-
mented in any language

‘Class’ is an OO programming concept — which doesn’t necessarily mean an OO pro-
gramming language concept. There are patterns for the systematic translation of OO
designs to other data and execution models. You can employ these if, for example,
you need to write in a traditional language like Fortran or assembler — perhaps for
especial control of performance. That way, you still get the benefits of OO design
(modularity, re-use, etc). Of course, OO programming languages best support object
design.

Classes also cover persis-
tent objects

OO-to-non-OO patterns must also be applied outside the scope of your programming
language. For example, C++ works with an OO model in main memory, but leaves
persistent data up to you — you can’t send an object in filestore a message. If you can
secure a good OO database you’re in luck; but otherwise, you’re typically stuck with
plain old files or a relational database, and need to think how to encode the objects.
Your class-layer design should intially defer the question of how objects are distrib-
uted between hosts and media.

The class layer of design So there is a ‘class layer’ of design described entirely in terms of classes, with related
types, which can be implemented directly in a language like Java, Eiffel, or C++; or
otherwise by judicious application of class-to-non-class patterns.

Not all OOPLs have classes. In Self, an object is created by cloning an existing one;
objects delegate dynamically to others, rather than statically based on their class
inheritance; and methods can be added dynamically. Nevertheless, Self designs cer-
tainly use the idea of Type.

Figure 86: Class models

ClassName
<<class>>

- var1: T1
- var2: T2

+ m1 (...) { ..body...}
- m2 (...) { ..body...}

Type <<type>>

attributes

action m1 post
effect m2 post ...

<<implements>>

ClassName
<<class>>

- = private
+ = public

class inheritance
4-194 Programming Language: Classes and Types

4.14.1 Messages and operations

Classes implement oper-
ations

A class contains code for the operations the object ‘understands’ — that is, the opera-
tions for which there are specifications, and hence that clients could expect to send it.

• Message — an invocation of an operation, consisting of the name of the operation,
the identity of the recipient, and a set of arguments. Like a procedure call, except
that it is a request to an object: the same message sent to different classes of object
can have different outcomes. “Who performs this operation?” has an interesting
answer in an OO program; in a conventional program, it’s just the computer!

• Operation — a procedure, function, subroutine. The traditional OO term is
‘method’, but we prefer to avoid confusion with the method you follow (hope-
fully) to develop a program. In analysis, and at a more abstract level of design, we
talk about actions: an action-occurrence may be one or more operation-invoca-
tions.

• Receiver — the object distinguished as determining which operation will be
invoked by a given message. Normally thought of as executing the operation,
which has access to the receiver’s variables.

Not all OOPLs have a receiver. In CLOS, it is the combination of classes of all the
parameters that determines what method will be called: methods are not specifically
attached to classes.

4.14.2 Internal variables and messages

There are 4 primary kinds of variables in an object-oriented program:

• Instance variables: data stored within fields in each object
• Parameters: information passed into, and out from, methods
• Local variables: used to refer to temporary values within a method
• Class variables: data stored once per class, shared by all its instances.

Operations use object
variables

Operations read and write variables local to each object. A variable refers to an object:
it is important to distinguish variables from objects, as one variable may be capable of
containing at different times several types of object (for example, different kinds of
Shape), that will respond to messages (e.g. draw) differently. In some cases, several
variables may refer to one object.

Every variable has several key features:

• Type — the designer should know what types of object may be held in a variable
— that is, the expected behavior of the object to which it refers. In Self and bare
Smalltalk, this is left to the design documentation; in C++, Java, and Eiffel, it is
explicit and some aspects are checked by the compiler. Explicit typing is allowed
in some research variants of Smalltalk because it makes it possible to compile
more efficient code; other compilers try to deduce types by analysing the code.

• Access — which methods can get at it. In Smalltalk, all variables are encapsulated
per object: methods cannot get at the variables of another object, of any class. In
Java, variable access can be controlled within a package (= group of classes
designed together), or at a finer grain. This makes sense, as each package is the
Programming Language: Classes and Types 4-195

responsibility of one designer or team; and any changes within the package can
readily be accommodated elsewhere within the same package. Encapsulation is
only important between different pieces of design effort. C++ has access control
per class: an intermediate position, making an intermediate amount of sense.

• Containment— in Smalltalk, Eiffel and Java, all variables contain references to
other objects: implicit pointers that enable objects to be shared and allow the uses
of an object to be decoupled from its size and the details of its internal declaration.
In C++, some variables are explicit pointers, and others contain complete objects.
The latter arrangement yields faster code but no polymorphism: that is, one class
is tied to using one specific other — not a generic design. So in general, we con-
sider containment to be a special and less usual case.

Within this book, we assume that variables are typed, that access can be controlled at
the package level, and that variables contain implicit references — in other words, the
scheme followed by Java, Eiffel, and others.

4.14.3 Class extension

Class inheritance is one
mechanism to re-use
implementation.

Inheritance, derivation, or extension mean that the definition of one class is based
upon that of one or more others. The extended class has by default the variables and
operations of the class(es) it extends, augmented by some of its own. The extension
can also override an inherited operation definition, by having one of its own of the
same name.

Multiple class inheritance
is tricky.

Various complications arise in inheritance from multiple classes: for example, both
superclasses may define an operation for the same message, or both superclasses
themselves inherit from a common parent, and each language will provide some con-
sistent resolution convention. Java and standard Smalltalk prohibit multiple inherit-
ance of implementations for this reason.

Class inheritance over-
hyped.

Inheritance was at one time widely hailed as the magic O-O mechanism that led to
rapid application development and reduced costs etc. ‘Programming by adaptation’
was the buzzphrase: you program by adding to and overriding existing work, and
will benefit from any improvements made to the base classes. In fact, this turned out
to be useful to some extent, but only under adherence to certain patterns connected
with polymorphism.

Re-use implementation
only if you intend to re-
use spec.

In general, if you want to base your code on someone else’s, it is best to use your
favorite editor to copy and paste. Unless the spec of your code is closely coupled to
theirs, it’s quite unlikely that you’d want to inherit any modifications they make. In
fact, the big benefit of O-O design comes more from polymorphism — conformance of
many classes to one spec; if in some cases this is achieved partly by sharing some
code, then that’s nice, but not necessary. Arbitrary code-sharing just couples designs
that ought to be independent.
4-196 Programming Language: Classes and Types

4.14.4 Abstract classes

Inheriting classes should
behave compatibly

So ideally, a class should be extended only if the extension’s instances will be substi-
tutable wherever the superclass is expected. For example, if a drawing builder is
designed to accept a Shape in one of its operation’s parameters, then a Triangle should
be acceptable — because presumably, the latter does everything a Shape is expected to
do.

So abstract operations
need behavior specs.

That raises the question of what a Shape is expected to do — which takes us into the
next section on types (object specifications). In programming languages, it is common
for a class to represent a type. The class may perhaps define no internal variables or
operations itself, but just list the messages it expects. The rest is defined by each sub-
class in its own way.

Abstract classes approxi-
mate types.

A class that stands for a type, and which may include partial implementation of some
operations, is called an abstract class. It should be documented with the full spec of
the type.

Classes with subtypes
shouldn’t have instances

It is now widely accepted good practice that nearly every class should either be an
abstract class (prohibited from having instances, but possibly with a partial imple-
mentation) or a final class (prohibited from having extensions).

Classes should depend
only on other types —
not other classes.

Types help decouple a design — that is, make it less dependent on others. Ideally,
each class should depend only on other types, not specific classes. That way, it can be
used in conjunction with any implementors of the types it uses.

Use factories to create
objects.

But there is one case in which this does not work so well: when you want to create an
object, you must say what class you want it to belong to. However, there are a number
of patterns such as Factory that help localise the dependencies, so that adding a new
Shape to the drawing editor (for example) causes only one or two alterations to be
necessary to the existing code.

4.14.5 Types

Type should still be a
specification

In a program, a type should be an implementation-free specification of behavior. Dif-
ferent languages provide different support for types:

Java has interfacesJava. A Java interface is a pure type -- i.e. client visible behavior. You define interfaces
for the major categories of clients you expect to have. You factor your services into dif-
ferent interfaces, and can define some interfaces as extensions of other interfaces (i.e.
subtypes), to offer suitable client views. This provides those clients with a pluggable
type requirement, where any object which provides that interface can be used.

interface GuestAtFrontDesk {
void checkin();
void checkout();

}

interface HotelGuest extends GuestAtFrontDesk, RoomServiceClient {
...

}

Programming Language: Classes and Types 4-197

A class implements any number of interfaces, and also implicitly defines a new type.
Behavioral guarantees should be defined on interfaces, but are not directly supported
by the language itself. You cannot instantiate an interface, just a class.

class Traveller implements GuestAtFrontDesk, AirlinePassenger {
....

}

C++ has pure abstract
classes

C++. A Java interface is very similar to a C++ “pure abstract” class, with only pure-
virtual functions and no data or function bodies.

 class GuestAtFrontDesk {
 public virtual checkin() = 0;
 public virtual checkout() = 0;
 }

Similarly, a Java extended interface is like an abstract subclass, still with all pure-vir-
tual functions.

 class HotelGuest :public GuestAtFrontDesk, public RoomServiceClient {

 }

Smalltalk can use mes-
sage categories

Smalltalk. In Smalltalk, when a client Hotel receives a parameter x, that client's view
of x can be defined by a set of messages HotelGuest={checkIn, checkOut, useRoom-
Service} that client intends to send to x. Hence the type of x, as seen by that client, is
the type HotelGuest. The language does not directly support, or check, types.

• A client expects a object to support a certain protocol, HotelGuest.

• Any object with a (compatible) implementation of that protocol will work.

• It is often convenient to get that compatible implementation by subclassing from
another class, but it never matters to the client whether we subclass or not; we
could just as well cut/paste the methods, delegate, or code it all ourself. In Small-
talk the only check is a run-time verification that each message sent is supported.

• The only time the client needs to know the class is to instantiate it.

The class of an object is not really important to that client, as long as it supports the
protocol. In Smalltalk this may be represented by systematically following program-
ming conventions that use a “message protocol” or “message category” as a type.

4.14.6 Generic types

A generic generates
many defintions.

A generic definition provides a family of specific definitions. For example, in C++, a
template class SortedList<Item> could be defined, in which everything common to
the code for all linked lists is programmed in terms of the placeholder class Item.
When the designer requires a SortedList<Phone>, the compiler creates and compiles a
copy of the template, with Item substituted by Phone.

There are variants on the basic generic idea:
4-198 Programming Language: Classes and Types

Either single classes or
groups of related classes
can be made generic.

• What is generic— in C++ and Eiffel, classes and operations are the units of generic-
ity. In Ada, many well-thought out experimental languages, and — with any luck
— a future version of Java, packages are generic. This means that you can define a
generic set of relationships and collaborations between classes, in the same style
as the Frameworks (Chapter 10, Model Frameworks and Template Packages (p.389)).
We argue that this is a very important feature of component-based design.

• When validated— C++ template classes are (and can be simulated by) macros, mere
manipulations of the program text before it gets compiled. The template defini-
tion itself undergoes few compiler checks. This means that if the design of Sort-
edList<Item> performs, say, a “<” comparison on some of its Items, the compiler
remarks on this only if and when you try to get it to compile a SortedList<some
class that doesn’t have that comparison>. A big disadvantage of C++ template
classes is that they cannot be precompiled: you have to pass the source code
around. By contrast, the generic parameters of FOOPS [Goguen] come with
“parameter assumptions” about such properties. The compiler will check that
you have made all such assumptions explicit when first compiling the generic;
and can guarantee that it will work for all conforming argument classes.

Catalysis frameworks
can map to generics

Our Frameworks have parameter assumptions in the form of all the constraints
placed on placeholder types and actions; and span single types and classes, to families
of mutually related types and their relationships.

4.14.7 Class objects

A class can itself be an
object.

In Smalltalk, a class is an object — just like everything else. A class-object has opera-
tions for adding new attributes and operations that its instances will possess.
Although it is most commonly just the compiler that makes use of these facilities,
careful use of them can make a system that can be extended by its users; or that can be
upgraded while in operation. For example, an insurance firm might add a new kind of
policy while the system is running. In this ‘reflexive’ kind of system, there is no need
to stop everything and reload data after compiling a new addition. Java offers compa-
rable facilities.

Java also supports such a reflexive layer: classes, interfaces, methods, and instance
variables can all be manipulated as run-time entities.

Open systems should be
reflexive

In open systems design, it is important that an object should be able to engage in a
dialogue about its capabilities — just as, for example, fax machines begin by agreeing
on a commonly-understood transmission protocol. This comes naturally to a reflexive
language; others have to have the facility stuck on: C++ has recently aquired a limited
form of such a feature with RTTI (run-time type identification).

In C++, the static variables and operations of a class can be thought of as forming a
class-object; but with limited features. There is no metaclass to which class-object
classes belong, and no dynamic definition of new classes.
Programming Language: Classes and Types 4-199

4.14.8 Specifications in classes

4.14.8.1 ‘implements’ assertions

A class implements types To say that a class implements a type means that any client designed to work with a
specific type in a particular variable or parameter, should be guaranteed to work
properly with an instance of this class.

Java supports this
directly

In Java, types are represented by interfaces and abstract classes. Even though the com-
plete specification of the type (pre and postconditions etc) is not understood by the
compiler, the clause

class Potato implements Food ...

documents the designer’s intention to satisfy the expectations of anyone who has read
the spec associated with the interface Food. Java allows many classes to implement
one interface, directly or through class extension.

class HotPotato extends Potato ...

should mean that the class implements the type represented by its superclass — as
well as extedning the definition of its code.

In each case, the interface and abstract class referred to should be documented appro-
priately with a type specification.

C++ rules are slightly
different

In C++, public inheritance is used to document extension and implementation. private
inheritance is used for extensions that are not implementations (apart from the simple
restrictions mentioned above); but the usual recommendation is to use an internal
variable of the proposed base type instead.

4.14.8.2 Constructors

Constructors initialize
new instances

A constructor has the property that it creates an instance of the class, and thereby a
member of any type the class implements:

class Circle implements Shape {
...
public Circle (Point centre, float radius);

// post return:Circle — the result belongs to this Class
// — from which you can infer that return:Shape

Constructors should ensure that the newly created objects are in a valid state i.e. sat-
isfy the expected invariants.

4.14.8.3 Retrieval

Type model attributes
describe state of imple-
mentation

A fully-documented implementation claim is backed up by a justification; the mini-
mal version is a set of retrieve functions (Section 7.7, “Refinement #4: Operation con-
formance,” on page 315). Writing these often exposes bugs.
4-200 Programming Language: Classes and Types

For every attribute in the type specification, a function (read-only operation) is writ-
ten that will yields its value in any state of the implementation. This retrieval may be
written in executable code for debugging or test purposes, but its execution perfor-
mance is not important. The functions are private, useful for testing but not available
to clients.

interface Shape {

attribute1 bool contains (Point);// type model attribute
public void move (Vector v);

// post (Point p,
// old(self).contains(p) = contains(p.movedBy(v)))

}

class Circle implements Shape {
private Length radius;
private Point center;
private bool contains (Point p) // retrieval

{ return (p.distanceFrom(center) < radius); }
public void move (Vector v) { ... }

}

4.14.8.4 Operation specs

Operations can be speci-
fied precisely

An operation can be specified in the style detailed earlier in this chapter. You can refer
to the old and new values of the internal variables (and to attributes of their types,
and of the attributes’ types, and so on).

Some languages support
such specs.

Eiffel is among the few programming languages to provide directly for operation
specs, but they can of course be documented with an operation in any language. In
C++, suitable macros can be used; Java could use methods introduced on the super-
class Object. For debugging, pre and postconditions can be executed.

1. This takes liberties with Java syntax. A suitable preprocessor could convert attributes to
comments, after typechecking them; or leave it as code for testing purposes.
Programming Language: Classes and Types 4-201

4.15 Using type specifications

This chapter has dealt in detail with the business of specifying actions — what hap-
pens in some world, or in some system — without going into the detail of how it hap-
pens. Indeed, we have seen an example (§4.4, p.144) of how two different
implementations can have the same behavioral specification.

The action specifications use the terms defined in a static model (as inthe previous
chapter). The static and action models together make up the specification of a com-
plete type:

In the chapters that follow, we will use these ideas to build specifications of complete
software systems and interfaces to components.

But first we should deal with the interactions that go on between objects: both inside
the object we have specified, as part of its implementation; and also between our
object and others, to understand how it is used by our (software or human) clients.

Figure 87: Complex model — pictorial

Course Scheduling Machine
static model

behavior described in
terms of model

Session

grade:
Client Instructor

rating:
Grade

sessions

instructor 0..1

* sessions
{ordered date }

 *
1

action check_availability (instructor, date)
post find whether instructor is doing a Session on that date

action schedule course (date, client)
post set up a new Session and assign an Instructor
etc

* stafffull_schedule*
4-202 Using type specifications

4.16

Behavior Specifications — summary

• An object’s behavior (or part of it) may be described with a type specification.

• A type specification is a set of action specifications; they share a static model that
provides a vocabulary about the state of any member of the type.

• An action spec has a postcondition, that defines a relationship between the states
before and after any of its occurrences take place.

• A precondition defines when the associated postcondition is applicable.

Figure 88: Type models

Session

startDate: Date

Instructor

rating: Grade

schedule

.....

type

attribute name
attribute type

association

role name

0..1

cardinality

instructor

For Instructor, equivalent to
schedule: Set(Session)

*

Course

level : Grade

*runs
1

inv Session:: instructor.rating >= course.levelinvariants express business rule

Dictionary

An Instructor is a member of staff who ...

Parts of a component’s type spec

Component type

action action1 (parameter : Type)
pre a precondition
post assertion about @pre and new states

action ...
...

static model

behavior model

snapshots (thinking tool)

inv effect
Behavior Specifications — summary 4-203

4-204 Behavior Specifications — summary

	Chapter 4 Behavior Models — Object Types and Operations
	4.1 Object Behavior — objects and actions
	4.1.1 Business models, component models, object models
	4.1.2 Snapshot pairs illustrate actions
	4.1.3 Pre and Post-conditions specify effect of actions

	4.2 More precise postconditions
	4.2.1 Using snapshots to guide postconditions
	4.2.2 Comparing before and after
	4.2.3 Newly-created objects
	4.2.4 Collections
	4.2.5 Preconditions
	4.2.6 More precise postconditions — summary

	4.3 Types in business and software
	4.3.1 Objects and Actions are not just about software
	4.3.2 Types
	4.3.3 Subtypes and type extensions
	4.3.4 State Charts
	4.3.5 Actions and Operations Defined

	4.4 Example: two implementations
	4.4.1 Calendar Implementation A
	4.4.2 Calendar Implementation B

	4.5 Example: Specification covering all Implementations
	4.5.1 What a Client should (and should not) know
	4.5.2 From Attributes to Operation Specification
	4.5.3 The resulting object type specification

	4.6 Specifying actions
	4.7 Interpreting an Action Specification
	4.7.1 An Action Spec is not an Implementation
	4.7.2 Parameter types
	4.7.3 Partial action specs
	4.7.4 “Convenience” attributes simplify specs
	4.7.5 Effects
	4.7.6 Quoting Action Specs within effects clauses

	4.8 Specifying component types
	4.8.1 Variables an action spec may use
	4.8.2 Actions need not duplicate Invariants
	4.8.3 Redundant specifications can be useful
	4.8.4 Meaning of invariants
	4.8.5 Effect Invariants
	4.8.6 Context of an invariant

	4.9 State Charts
	4.9.1 States as Attributes and Invariants
	4.9.2 State-Transitions as Actions
	4.9.3 State Charts of Specification Types
	4.9.4 Underdetermined transitions
	4.9.5 Ancillary Tables

	4.10 Specification Types vs. Design Types
	4.10.1 Factoring to Specification Types
	4.10.2 Factoring — specify effects abstractly

	4.11 Outputs of Actions
	4.11.1 Return values
	4.11.2 Out parameters
	4.11.3 Raised actions
	4.11.4 Specifying sequences of raised actions
	4.11.5 Sequence expressions

	4.12 Subtypes with Attributes and Invariants
	4.12.1 Common Pictorial Type Expressions
	4.12.1.1 Subtype
	4.12.1.2 Multiple supertypes
	4.12.1.3 Type exclusion
	4.12.1.4 Type partitioning.
	4.12.1.5 State-types.

	4.12.2 General Type Expressions

	4.13 Subjective model — the meaning of “containment”
	4.14 Programming Language: Classes and Types
	4.14.1 Messages and operations
	4.14.2 Internal variables and messages
	4.14.3 Class extension
	4.14.4 Abstract classes
	4.14.5 Types
	4.14.6 Generic types
	4.14.7 Class objects
	4.14.8 Specifications in classes
	4.14.8.1 ‘implements’ assertions
	4.14.8.2 Constructors
	4.14.8.3 Retrieval
	4.14.8.4 Operation specs

	4.15 Using type specifications
	4.16 Behavior Specifications —�summary

