
     
 Chapter 4 Behavior Models — Object Types 
and Operations
Outline

In Catalysis, we separate the internal design of a component from its external 
behavior. Behavior is described by specifying the component’s type — a list of 
actions it can take part in, and how it responds to them. 

The type description in turn has two parts:

• the Static Model of an object’s internal state, using attributes and associations 
and invariants; 

• specifications of the effects of the actions on the component, using the vocab-
ulary provided by the Static Model. 

We dealt with the Static Model in the previous chapter; this present chapter deals 
with specifying actions. An action is specified by its effect on the state of the 
object, and any information exchanged in the course of that action.  This state is 
described as a type model of the object, and of  its in/out parameters.  This chap-
ter describes how to derive and write precise action specifications, and how to 
interpret them.

At this stage, the objective is just to specify the actions, not implement them 
(though we will look at some program code as examples). The latter part of this 
chapter will also briefly discuss programming language classes, and how they 
relate to the specifications. The key to an implementation is the how the objects 
inside the component collaborate together to provide the effects specified here. 
Such collaborations will be the subject of the chapter after this.
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4.1 Object Behavior — objects and actions

In component-based development, you have to construct software from components 
you can’t see the insides of: you have to treat them more or less as black boxes. And 
you have to construct your own components so that they will work with a wide vari-
ety of others: components that aren’t interoperable have a low value. So it’s not just 
that you are denying yourself a peep inside some specific black box: it’s that there are 
so many, each with its own special features, that the only option is to isolate the fea-
tures that you need. (As we said before, this has been the situation in hardware for 
years: that it’s novel to our profession should perhaps be an issue of some embarras-
ment for us!)

For that reason, we are interested in separating external specification of behavior from 
the internal works. Ideally, we would like to describe the operations a component per-
forms, without any reference to anything inside; but as we observed at the start of the 
previous chapter, that isn’t possible: the instruction label on the black box has to 
include some sort of picture of what’s inside — even if only a hypothetical picture. 
This is the Static Model. It can be very much simplified, so long as it provides a vocab-
ulary for describing the operations; and provided the resulting model is accurate 
enough that users get the results they expect. 

4.1.1 Business models, component models, object models

Near the end of the previous chapter, we 
remarked that a type model can deal with 
things in the ‘real’ world, or it can model 
the internal state of a larger object such as 
a computer system or component — 
which we showed graphically by drawing 
the type of the component containing the 
types of the objects it ‘knew’ about.

The techniques of this chapter can be used 
to specify either changes in the real world, 
or changes inside a component; but what 
both situations have in common, is that we 
are specifying just the outcome or ‘effects’ of the actions, rather than what goes on 
inside. We close our eyes in between the start and end of every change, and just 
describe the comparison between the two ‘snapshots’ of the business or system state.

4.1.2 Snapshot pairs illustrate actions

Actions change object 
state

Over their lifetime, objects undergo state changes as a result of actions. For example, if 
we had the object snapshot depicted in the top half of Figure 55, and a client requested 
a session of the javaCourse, then we might end up with the snapshot depicted in the 
lower half of Figure 55. The new session is assigned to paulo, as he is qualified to 
teach that course. An occurrence of the scheduleCourse action separates the two snap-
shots.

types representing
what it knows about

type of component

types of things
in the external world

action schedule ...
action cancel ...

specs of operations this component performs
— use static component model as vocabulary

static compt model:

action ...specs of interactions in
terms of participants’ types

Some Component
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Snapshots illustrate 
actions

These before/after snapshots provide a useful way to envisage what each action does. 
Looking at the diagram, can you see what “cancel(session-32)” would do? And what 
about “reschedule(session-5, 2000/1/5)”, or “qualify(paulo, catalysisCourse)”?

Type model attributes 
help describe actions

This is the primary reasons for making a model of object state: we choose objects and 
attributes, whether written inside the types or drawn as links, that will help us define 
the effects of the actions. It would be very difficult to describe the effect of schedule 
course without the model attributes depicted on the snapshots.

4.1.3 Pre and Post-conditions specify effect of actions

The effect of an action 
can be specified

The limitation of snapshots is that they show particular example situations. Of course, 
we want to describe what effect an action has in all possible situations. We can do that 
by writing ‘postconditions’ — informal statements or formal expressions that define 
the effect of an action, using the same ‘navigation’ style as invariants in Section 3.5, 
“Static Invariants,” on page 115. For example, 

action schedule_course (reqCourse: Course, reqStart: Date)
pre: Provided there is an instructor qualified for this course

who is free on this date, for the length of the course.
post: A new confirmed session has been created, with course = reqCourse, 

startDate = reqStart, and endDate – startDate = reqCourse.length.

Figure 55: An action causes a change in state

paulo: Instructor

course

sess32: Session
startDate = 1999/6/2
endDate = 1999/6/6instructor

sess5: Session
startDate = 1999/7/23
endDate = 1999/7/27

instructor
laura: Instructor

qualifiedFor

catalysis: Course

qualifiedFor

course
java: Course

paulo: Instructor

course

sess32: Session
startDate = 1999/6/2
endDate = 1999/6/6instructor

sess5: Session
startDate = 1999/7/23
endDate = 1999/7/27

instructor
laura: Instructor

qualifiedFor

catalysis : Course

qualifiedFor

course
java: Course

sess33: Session
startDate = 1999/8/4
endDate = 1999/8/7

(a) “before” snapshot

(b) “after” snapshot

instructor

course

schedule
course

an action occurrence

instructor
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Postconditions are (par-
tial) specifications

Notice that we have only stated some parts of what this action does. In fact, this is one 
of the nice things about specifying actions rather than designing them: you can stipu-
late just those characteristics as you need the outcome to have, and leave the rest 
unsaid, with no spurious constraints. This is exactly what’s required for component-
based development: we need to be able to say “a plug-in component must achieve 
this”, but should not say how, permitting many realizations.

and can be combined 
easily.

It is also very easy to combine requirements expressed in this way: different needs can 
be and’ed together — something you can’t do with chunks of program code. And dif-
ferent versions, expressed in different subtypes, can add their own extra constraints to 
the basic requirement (see Section 9.4.5, “Joining type specifications is not subtyping,” 
on page 375).
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4.2 More precise postconditions

Postconditions can be used as the basis for writing a test harness: valuable when 
developing any complex system; and even more valuable when you are couipling 
together a variety of components from who knows where! (More in Chapter 7.)

To be useful in this way, we should therefore write the postconditions in a more pre-
cise style. They should be boolean functions, and they should be read-only — a post-
condition that changes what it is testing is no use! For this purpose, you can use the 
boolean-expression part of your favorite programming language. Here, we use a gen-
eral form called Object Constraint Language [OCL]. It translates readily to most pro-
gramming languages, but being purpose-built for specification, has one or two 
features that make it less clumsy in this context than, say, C++.

The other benefit of writing the postconditions more formally is that doing so tends to 
make you think harder about the requirements. The effort is not wasted: you would 
have had to make these decisions anyway; you’re just focussing on the most impor-
tant ones, and getting a better end result. 

The rest of this section deal with key features of the more precise style. It is applicable 
to both business and component modelling. Later sections differentiate the two, and 
go into more details of action specification.

4.2.1 Using snapshots to guide postconditions

A postcondition states what we want the end result to be. 

For example, let’s suppose one instructor may be the mentor of one other: perhaps 
some of them get too outrageous in class from time to time. The action of assigning a 
mentor is, informally:

action assign_mentor (subject: Instructor, watchdog: Instructor)
post: The watchdog is now the mentor of the subject.

This can be shown on a pair of snapshots (Figure 56). 

Figure 56: Assigning a Mentor

paulo: Instructor laura: Instructor

(a) “before” snapshot
(b) “after” snapshot

an action occurrence

jo: Instructor crispin: Instructormentor

paulo: Instructor laura: Instructor

jo: Instructor crispin: Instructormentor

mentor

assign mentor (paulo, crispin)
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There wasn’t any mention of mentors in the model we 
drew earlier, so we needed to invent a way of describing 
them. Every instructor might or might not have a mentor, 
so this fragment of static model seems appropriate.

Now we can write the action in terms of this association:

action assign_mentor (subject: Instructor, watchdog : Instructor)
post -- the watchdog is now the mentor of the subject

subject.mentor = watchdog

Notice:

• The postcondition states what we need; it doesn’t say anything about aspects we 
don’t care about (though we might want to be more explicit about what happens 
to any existing mentee of the watchdog). Looking at the snapshot, you can see 
how the example we illustrated corresponds to the change.

• Associations are by default bidirectional, so it isn’t necessary also to write “watch-
dog.mentee = subject”. However, that would be an alternative to what we wrote.

• Navigation expressions in an action spec should generally start from the parame-
ters. (So mentor=watchdog would be wrong — whose mentor?) Other starting 
points are self (in actions performed by a particular object); and variables you 
have declared locally, in such as forAll and let clauses (Figure 49 on page 117).

Informal –> snapshot –> formal. This basic procedure is the general way to formalise 
a postcondition. However, you need to be careful of alternative cases: a snapshot only 
illustrates one case, and so you may need to draw several to get a feel for the whole 
gamut of possibilities. It’s the action postconditions you’re really trying to determine 
— the snapshots are mainly thinking tools.

4.2.2 Comparing before and after

A postcondition makes an assertion about the states both immediately before and 
immediately after the action has happened. In every object, it therefore has two com-
plete sets of attribute-values it can refer to. By default, every mention of an attribute 
refers to the newer version; but you can slide up to the prior state by suffixing it with 
@pre. So:

subject.mentor@pre — our subject’s old mentor

subject.mentor.mentee@pre — subject’s new mentor’s old mentee

subject.mentor@pre.mentee@pre — subject’s old mentor’s old mentee

subject.(mentor.mentee)@pre — same as previous (= subject)

subject.mentor@pre.mentee — subject’s previous mentor’s new mentee

Each navigation expression is a way of getting from one object to antoher, that nor-
mally works all within the same plane of time. @pre can be applied to an expression 
to make it evaluate in the previous time. But what you get from an expression is the 
identity of an object, which continues through from one time to another; and unless 
you keep applying @pre, further expressions will always evaluate in the newer time 
(Figure 57).

Instructor
mentor   0,1 0,1   mentee (?)
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An example:

 

action assign_mentor (subject: Instructor, watchdog : Instructor)
post subject.mentor=watchdog

 

-- watchdog is now subject’s mentor,

 

and let ex_mentee = watchdog.mentee@pre in
ex_mentee 

 

≠

 

 null ==> ex_mentee.mentor = null

 

-- and if watchdog had a previous mentee, they now have none

 

Notice:

• The use of 

 

null

 

 to represent ‘no object’ where an association permits none;

• The use of ‘==>’, also written ‘

 

implies

 

’ — meaning: if ... then ...

•

 

@pre

 

 takes you back to the previous value of a changeable attribute , not to the 
previous state of the object it refers to. Parameters have the same values all the 
way through, so there is no point in the expression 

 

subject@pre

 

. 

• In an action spec, we’re only dealing with two states, so 

 

x@pre@pre

 

 is undefined.

 

Abstract yet precise –> raises pertinent questions. 

 

The level of detail here is enough 
to draw out debate. Doing this example in groups, this is often a point where discus-
sion arises about what should happen to the ex-mentee (dreadful expression! I hope 
never to be one.) For example, should the static model be revised to allow more than 
one mentee per mentor? 

Whatever the answer, this is a business question; but it might not have arisen at this 
early stage if we hadn’t tried being more precise. And yet we have done so without 
waiting until we are wading around in the detail of the program code. 

 

4.2.3 Newly-created objects

 

A thing that can happen as a consequence of an action is that new objects will be cre-
ated. The set of these objects has the special name 

 

new

 

 in a postcondition, and there 
are some special idioms for using it. After drawing the snapshot in Figure 55 on 
page 131, we can write:

 

action schedule_course (reqCourse: Course, reqStart: Date)
post: let ns= Session.new [course = reqCourse and startDate = reqStart

and endDate – startDate = reqCourse.length ]
in ns.instructor.available@pre(startDate, endDate)

 

-- there is a new Session — call it ns — with the properties requested; and 
-- its instructor (as she was previously) was available for the requested period

 

Figure 57: The kebab model of object history

time
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object kebabs

the Skewer of Identitya navigation 
expression

the Griddle of the Present
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e
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Notice:

• The power of the postcondition, to avoid unnecessary detail. We have not said 
definitely which instructor should be assigned; nor how one should be chosen 
from the available ones. We have limited our statement to just the requirements 
we need, that whoever is chosen, they should have no prior commitment.

• How we have devolved some complexity, by assuming a parameterised attribute 
available defined with Instructors. We’ll have to go back and write that some-
time....

4.2.4 Collections

In this superposed pair of snapshots, the new state is shown in bold:

Many of the associations in a model are of multiple cardinality, and by default repre-
sent ‘flat’ sets. We can use the collection operators (Figure 49 on page 117):

action reassign_course (session : Session, new_inst: Instructor)
post: --An existing Session is taken off one instructor’s schedule, and onto this new one

let ex_instructor = session.instructor@pre
in

ex_instructor.schedule = ex_instructor.schedule@pre – session
and new_inst.schedule = new_inst.schedule + session

Notice:

• Use of + and – with collections — just the set union and difference.
( The construct collectionAttribute= collectionAttribute@pre + x is so common that 
some of us have taken to writing collectionAttribute += x. But if you do this, please 
remember that this is not an assignment, merely a comparison between two 
states.)

• We could perhaps more simply have asserted:

session.instructor == new_inst

Since the static model tells us a Session only has one instructor, this might have 
been adequate. However, an designer might mistake the meaning of this, and 
make this session the only one the new instructor is assigned to, deleting all his 
other commitments. So we choose to be more explicit.1

Figure 58: Snapshot for action reassign_course

1. There is a big issue here concerning ‘framing’. In a fully formal spec such as for safety-criti-
cal systems, you would have to be more explicit about what objects are left untouched.

jo : Instructor
 : Session

session: Session

 : Session

 : Session
laura : Instructor

scheduleinstructor

instructor
schedule

action reassign_course
(session, laura)
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4.2.5 Preconditions

Many of the actions we could define only make sense under certain starting condi-
tions, which can be characterised by a precondition. The precondition only deals with 
one state, so it doesn’t have @pre or new.

For example:

action assign_mentor (subject : Instructor, watchdog : Instructor)
pre -- only happens if the subject doesn’t already have one

subject.mentor = null
post ...as before ...

4.2.6 More precise postconditions — summary

This section has looked at the basics of writing action specifications precisely enough

• to form the basis of a test harness for ‘plug-in’ components or for a system being 
built;

• and to make the model explicit enough for discussion of the major business con-
cerns.

The techniques we have seen can be used to describe the interactions that occur 
within a business; or they can describe the actions performed by a software system or 
component; or — the simplest case — they can describe the operations performed by 
an individual object within a software design. That is what we will look at next.

(The syntax of action specs and postconditions is tabulated in Figure 72 on page 158. 
Specifying requirements for a complete software system (with a user interface etc) is 
the topic of Chapter 16 How to Specify a Component, p 581; specifying the interface to a 
substantial component is in Chapter 11 Components and Connectors, p 437.)
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4.3 Types in business and software

4.3.1 Objects and Actions are not just about software

Our terms ‘object’ and ‘action’ cover a broad range:

‘Object’ includes whole 
systems

• ‘Object’ includes not just individual programming-language objects, but also soft-
ware components, programs, networks, relations, records; as well as hardware, 
people, organizations --- anything that presents a definable encapsulated behav-
ior to the world around it.

‘Action’ includes dia-
logues 

• ‘Action’ includes not just individual programming-language messages or proce-
dure calls, but also complete dialogues between objects of all kinds. But we can 
always talk about the effects of an action, even without knowing exactly who ini-
tiates it or how it works in detail — as in this schedule_course example. 

Model is of real world... The diagram in Figure 55 can be seen in two ways. Firstly, it can be a picture of the 
real-world. The objects represent human instructors, scheduled sessions, etc. The 
attributes represent who is really scheduled to do what, as written on the office wall 
planner and the instructors’ diaries. An action is an event that has happened in the 
real world; and invariably, it can be looked at in more detail whenever we wish — 
scheduling a course involves several interactions between participants and resources. 

... or of software system Alternatively, the diagram may be about what a particular object knows about the 
world outside it (which may, of course, be inaccurate, out of date, or inconsistent with 
some other object’s view). In particular, it can be a model of the state of a computer 
system (that is, application, suite, component, etc.) that we intend to build.

Action could be real-
world event ...

The occurrence of the schedule_course action could represent a dialog between play-
ers in the real world: a representative from the client’s company contacts the course 
scheduler in the seminar company and negotiates the dates and fees for a new session 
of the course.

... or dialog with system Equally, the action could be an abstraction of a dialog with a software system. In that 
case, because of the Golden Rule of OO design (that we base the design on a domain 
model) we can use the same picture to denote objects (whether in a database, or main 
memory) that the system uses to represent the real world. The interesting actions are 
then the interactions between the system and the rest of the world: they update the 
system’s knowledge of what is going on in the world, as represented in the attributes. 

This could describe sys-
tem state, state changes, 
and behaviors

Now “schedule (paulo, javaCourse)” can refer to whatever dialogue someone has to 
have with our system to get it to arrange the session. And we can use snapshots of the 
system state to describe what effect the action has on the system. In turn, the system’s 
state (as described by the snapshots) will have an effect the outcome of future actions, 
including the outputs to the external objects (including people!) who interact with it.
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The attributes do not pre-
scribe an implementation

We’ve already said that these drawings are only models. The meaning of a link in the 
system model is subject to interpretation (and so must be documented in the Dictio-
nary) just as much as a link in the domain model. A link or attribute only represents a 
piece of information that can be got out of the system somehow — via a GUI, a query, 
or indirectly by its effect on other actions — but it will be the job of the designer to 
decide how it is represented inside.

Nor do the actions.The same goes for the actions. Schedule in the domain means the achievement of 
whatever situation is represented by the existence of the session object. Schedule, the 
system action, means whatever dialogue has to be conducted with the system, and 
whatever algorithms have to execute within the system, to achieve the state of the 
code represented in our model by the existence of the session object in the model of 
the system’s internal state. Only once the actual implementation of the object has been 
defined, can the detailed code to implement this operation be fixed.

4.3.2 Types

Types group objects by 
behavior

Different objects will react in different ways to the same interaction. But rather than 
describe each object separately, we group objects into types: sets of objects that have 
some (not necessarily all) behavior in common. A type is described by a type specifi-
cation, that tells what the effects of some actions are, on the internal state of the object; 
and conversely, what effect the state has on the outcome of actions. 

Types can be combinedTypes are generally partial descriptions. They say “if you do X to one of my members, 
the resulting response will have this property and that property”. But they don’t tell 
you about what will happen if you try doing actions that aren’t mentioned; and they 
don’t always tell you everything there is to know about the outcome. This is very 
important, because it means that type-specs can be easily combined or extended, 
essentially by and’ing them together. This is quite different from a programming-lan-
guage class, which is a prescription telling the object how to do what it does.

Figure 59: Models of Domain and System

an_installation : Our_System what our system

the ‘real world’

knows about
the ‘real world’

our system

(as modeled
by us)

interactions
between our system
and the real world

(Notice, same
model!)

schedule (paulo,
 javaCourse)
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Types describe roles 
played for others

Types correspond to real-world descriptions, as OO concepts always should. An 
Employee is something that does work when you give it money; a Parent is some-
thing that does work and gives you money; a Shopkeeper gives you things when you 
give it money. These descriptions are all partial, focusing on the behavior that inter-
ests certain other objects that interact with them. In object design, we build systems 
from interacting objects, and so these partial perspectives are crucial. And each object 
is likely to play several roles, so we need to be able to easily talk about Employee * 
Parent, i.e. someone who does work when paid (by the appropriate other person), and 
will also provide money (ditto).

Interesting behaviors 
need model attributes

Because these descriptions are ‘black box’ (“I don’t care 
how my parent gets the money, just so longs as s/he pro-
vides it”), it would be nice if we could describe the actions 
entirely without reference to anything inside the object. 
That is possible for simple behaviors, but not for complex 
ones. “Why will my employees not work when I ask them 
to?” “Because their pockets are empty” “How can their 
pockets be filled?” “You pay them.” In this conversation, 
it is implicit that an Employee can have a pocket, repre-

senting an amount of money. It doesn’t really matter to the Employer how or where 
they keep their money; it is just a model, a device to explain the relationship between 
the actions of payment and request to work.

The type model can be 
pictorial.

In a complex model, we find a few attributes like pocket 
insufficient, and tend to use pictorial attributes instead. 
But the idea is the same: the model is principally there to 
explain the effects of the actions. And we can use the same 
principle to describe both small simple objects and large 
complex systems. Of course, the large complex systems 
will need a few more tools for managing complexity and 
structuring a specification, but the underlying ideas will 
be the same.

4.3.3 Subtypes and type extensions

A subtype specifies a 
subset of objects

Because a type-spec is a just description of behavior, an object can be a 
member of many types. In fact, an object is a member of every type whose 
specification it conforms to — even if that type specification was written 
after the object was created. In other words, it can play several roles. And 
one type can be a subset, or subtype, of another — even if they were 
defined separately. To say that all Sheep are Animals, is the same as say-
ing Sheep is a subtype of Animal. You expect of Sheep everything 
expected of Animals in general; but there is more to say about Sheep. 
Some objects that are Animals — i.e. conform to the behavior specifica-
tion for that type — may exhibit the additional properties of Sheep.

A subtype is often 
defined as an extension 
of a super-type

Putting more into a specification, raising the expectations, reduces the set of objects 
satisfying it. It’s often useful to define one type-specification by extending another, 
adding new actions, or extending the specifications of existing ones; subject to certain 
restrictions, this will result in the definition of a subtype.

Employee

pocket : Money

pay (amt : Money)

work (...)
post: pocket increased by amt

pre: pocket > 0 ...

TrainingScheduler

schedule (Instructor, 
Course)

Course Instructor

Session **

* *

Animal

Sheep

weight
eat

grow

wooliness
chew cud

go baa
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4.3.4 State Charts

Postconditions can be 
drawn on state charts.

State charts are a powerful pictorial tool for envisioning the effects of different 
sequences of actions, most useful where there are distinct changes of behavior in dif-
ferent states. The states in the chart represent boolean expressions, and transitions 
between them represent actions. State charts are covered in more detail in Section 4.9.

4.3.5 Actions and Operations Defined

An action specifies a set 
of action occurrences

Action. An action-occurrence is an interaction involving specific participant objects 
between two particular points in time, bringing about a change of state in some or all 
of them. An action-spec denotes a set of action occurrences by specifying the effects of 
an action. ‘Action’ or ‘action-type’ means any or all the action-occurrences that con-
form to a given action-spec; action is sometimes used to refer to an action occurrence 
in this text, where the meaning is clear.

Over a period of time, objects are affected by several actions, and will progress 
through a series of changes as shown in Figure 60.  

Actions abstract detailed 
interactions

Actions may be composed of finer-grained actions; the sequence of three action occur-
rences a,b,a in Figure 60 may be modeled as a single more abstract action, A. Func-
tion-calls, rendezvous, hardware signals, and messages are all varieties of action. So 
are use-cases, sessions, remote procedure calls, and complete dialogues.1

An object’s history can be envisaged as the column that threads its states in successive 
snapshots; the history lists all the actions it is involved in, and the resulting states. A 
type is a set of all the possible histories conforming to a given set of action specs.

Two kinds of Actions

Object have individual 
and joint behaviors

There are two main kinds of actions we are concerned with in this book. One kind — 
an localized action; at the level of implementation code this is often called an operation 
— is an action which an individual object is requested to perform, and responds 
accordingly. The other kind — a joint action — is an action in which a group of objects 
participate, and is always an abstraction of a more detailed dialog between these par-

Figure 60: Snapshot history over time

time

i

j

k

l

action a

action b

action a

snapshot
A

1. Your reading this entire book is itself an action; so is the reading of each chapter, and exam-
ination of each footnote. If only we could be sure about the postconditions....
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ticipants. Use-cases are an example of joint actions, subject to refinement to a particular 
dialog of interaction between objects. At the level of program code, actions will corre-
spond to operations. This chapter focuses on the former kind of action.

An operation is per-
formed by one object

Operation. When describing the behavior of an individual object, our focus is on the 
individual operations that may be requested of that object, and the effect of each such 
operation, without consideration of the initiator of the action. You can recognize oper-
ations by their focus on a single distinguished object type: 

action Type::operationName (...) ...

Program code is at the 
level of operations

At the level of program code, one object requests another to 
perform an operation; as a result of the operation there is a 
state change, and some outputs produced. The interactions 
are illustrated with a sequence diagram: individual objects are 
vertical lines, and each operation-request is shown with an 
arrow. The objects a,b,c could be objects in the business such 
as client, seminar company, instructor; or instances of classes 

in software, like session, calendar, instructor; or large-grained software components 
like a course-qualifier, room-allocator, and scheduler.

But the idea applies to 
more abstract objects and 
services.

For a business entity like a seminar company, the operations it 
provides as services to outside objects include: schedule-
Course, courseEnquiry, etc. A much smaller object within one 
of its software systems, a Calendar, provides its own opera-
tions like: addEvent and removeEvent. The operations cause 
state changes in, and outputs from, the object of interest. In 
both cases, the operations are part of the type specification for 
that object type. This is the subject of the current chapter.

A joint action involves 
multiple objects

Joint Action. To describe behavior and interactions of a group of objects, we focus on 
what the interactions between multiple objects achieves, and how to specify the effect 
of those higher-level actions on all objects involved. A joint action is written:

action (party1: Type1, party2: Type2, ...) :: actionName (...) 

Notice that the joint action is not centered on a single distinguished object type. There 
are directed variations of joint actions in which a sender and receiver are designated, 
but the action effect is still described in terms of all participants.

A joint action, or ‘use-
case’, involves multiple 
participants

At the business level, it takes a sequence of interactions 
between client and seminar company, including enquire, 
schedule, deliver, follow-up, and pay, to together comprise 
an abstract purchaseCourse action. This has a net effect on 
both client and seminar company: not only has the seminar 
company delivered a service and gained some revenue, but 
the client has paid some fees and gained knowledge. In soft-
ware, it may take a sequence of low-level operations via the 

UIs of multiple applications and databases, to complete a scheduleCourse operation. 
Such an action is called a joint action or use-case. We describe its effect on all participat-

a:A b: T c:C
op 1

op 4
op 3

op 2

T

op 1
op 2

1 *
b: T

joint actions
effect on all parties

B

C
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ing objects, abstracting individual interactions. All joint actions must be refined even-
tually into operations to be implemented in any popular OO programming language. 
This is the subject of the next chapter.

Each occurrence of such an abstracted action is shown as a 
horizontal bar with ellipses in a sequence diagram, whereas 
the finer grained operations were depicted as simple 
arrows. Note that each action occurrence could be realized 
by many different finer-grained interactions, eventually 
reducing to a sequence of operations.

b: B c:C

a 1

a 1

a 2
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4.4 Example: two implementations

Two implementations of 
a calendar ...

This chapter is about specifying types: what a component does as seen from the out-
side, and ignoring what goes on inside. But ‘brains work bottom up’: it will be easier 
to understand what the specification means, if we can see the kinds of implementa-
tion that it can have. So let’s start the time-honored way: we’ll hack the code first, and 
write up the spec afterwards!1

Our seminar scheduling application will have many classes in its implementation. 
One likely class is a calendar, which tracks different scheduled events for different 
instructors. We start with two different Java implementations of the calendar, then 
will show how the external behaviors can be specified independent of implementa-
tion choices; and independent even of implementation language and technology. We 
will ignore any UI aspects for now.

Both support the same 
interface

Both implementations support just four external operations on a calendar; they may 
introduce other internal operations and objects as needed:

addEvent: add a new event to the current calendar schedule

isFree: determine if an instructor is free on given dates

removeEvent: delete an existing event from the schedule

calendarFor: return the scheduled events for a particular instructor. It is
returned as an Enumeration i.e. a small object that has operations
to step through the collection until the end.

4.4.1 Calendar Implementation A

The first implementation 
maintains events by 
instructor

This implementation keeps a separate un-ordered vector of events for each instructor 
in a hashtable, keyed by the instructor. Its internal interactions are described in the 
sequence diagram in Figure 61, with each arrow indicating an operation request. 
Upon receiving an addEvent request, the calendar first creates a new event object. It 
then looks up the event vector for the current instructor in its hashtable, creating a 
new vector if none existed. The new event is added to this vector, and the hashtable 
updated. The Java code for this design is listed below.

1. If this offends your sense of decency, please skip straight on to the next section. Should you 
wish to avert your eyes from the bare code on display, it’s three page-turns ahead.
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Figure 61: Internal Design interactions of Calendar A

:Calendar_A
:Hashtable

v: Vector

e: Event
   addEvent (d1, d2, p, i)

 new()

v := get(p)

[v = null] v = new Vector()

addElement (e)
put (p, v)

 
create new event

lookup the instructor vector

if none, create one
add new event to the vector
put it back on the hashtable

message, or operation invocation with arguments

object

duration of response to the addEvent message
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Figure 62: Java code for Calendar implementation A

import java.util.*;

// This calendar organizes eventsby instructor in a hashtable keyed by instructor
class Calendar_A {

privateHashtable instructorSchedule = new Hashtable();

// provided no schedule conflict, this creates and records new event
public Event addEvent (Dated1,Date d2, Instructorp, Object info){

if (! isFree (p, d1, d2)) return null;

Event e= new Event (d1, d2, p,info);
Vector v = (Vector) instructorSchedule.get (p);
if (v == null) v = new Vector ();
v.addElement (e);
instructorSchedule.put (p,v);
return e;

}

// Answer if the instructor free between thesedates
// i.e.does any of the instructor’s events overlap d1-d2?
public boolean isFree (Instructor p, Date d1, Date d2) {

Vector events =(Vector) instructorSchedule.get (p);
for (Enumeration e = events.elements(); e.hasMoreElements (); ) {

Event ev = (Event) e.nextElement ();
if (ev.overlaps (d1,d2)) return false;

}
return true;

}

// remove this event from the calendar
public void removeEvent (Event e) {

Vector v = (Vector) instructorSchedule.get (e.who);
v.removeElement (e);

}

// return the events for the instructor(asan enumeration)
public Enumeration calendarFor (Instructor i) {

return ((Vector) instructorSchedule.get(i)).elements();
}

}

// internal details irrelevant here
class Instructor { }

// represents one session
// Just two public operation: delete() and overlaps()
class Event {

Date from;
Date to;
Instructor who;
Object info; //additional info, e.g. Session
Calendar_A container; // for correct deletion
Event (Dated1,Date d2, Instructorw, Object i) {

from = d1;
to = d2;
who = w;
info = i;

}

// doesthis event overlap the given dates?
boolean overlaps (Date d1, Dated2){

return false;
}

public void delete() { /* details not shown*/ }
}
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4.4.2 Calendar Implementation B

 
The second implementa-
tion maintains events by 
date range

 
This version uses a more complex representation, not detailed here, to maintain the 
events so that they are indexed directly by their date-ranges. This data-structure is 
encapsulated behind an interface called 

 

EventContainer

 
. (The art of object oriented 

programming is to delegate as much as possible to another designer:-) The internal 
interactions for this calendar implementation are shown in Figure 63, and the Java 
code is listed below.

Figure 63: Internal Design interactions of Calendar B

:Calendar_B :Event
Container

e: Event
     addEvent (d1, d2, p, i)

new()

v = addEvent(e, d1, d2)

 

just add the new event to 
the event container, 
indexed by dates
Example: two implementations 4-147



  

Figure 64: Java code for Calendar implementation B

import java.util.*;

// Organizes eventsby their dates using a fancy event-container
class Calendar_B {

privateEventContainer schedule;

// create the event and add to schedule
public Event addEvent (Date d1,Date d2, Instructor p, Object info){

Event e= new Event (p,info, schedule);
schedule.addEvent (e, d1, d2);
return e;

}

// is instructor free between thosedates?
// i.e. are any of the events between d1-d2 for this instructor
public boolean isFree (Instructor p, Date d1, Date d2) {

for (Enumeration e = schedule.eventsBetween (d1, d2); 
e.hasMoreElements (); )

if (((Event) e.nextElement()).who ==p) return false;
return true;

}

// remove the event from the schedule
public voidremoveEvent (Event e) {

schedule.removeEvent(e);
}

// return the events for the instructor(asan enumeration)
public Enumeration calendarFor (Instructor i) {

// implementation not shown
// presumably less efficient, sincetuned for date-based lookup
// e.g. get all eventsBetween (-INF, +INF)
// select only those for instructor i
return null;

}

}

// internal details of instructor irrelevant here
class Instructor { }

// Just one public operation: delete() shown
// dates not explicitlyrecorded; containermaintains date index
class Event{

Instructor who;
Object info;
EventContainer container; // for correct deletion
Event (Instructor w, Object i, EventContainer c) {

who = w;
info = i;

}

public void delete

 

() { /* details not shown*/ }
}

 

// event container: a fancy range-indexed structure

 

interface 

 

EventContainer

 

 {

 

// return the events that overlap with the d1-d2 range

 

Enumeration 

 

eventsBetween

 

 (Date d1,Date d2);

 

// add, remove an event

 

void 

 

addEvent

 

 (Event e,Date d1, Date d2);
void 

 

removeEvent

 

 (Event e);
}
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4.5

 

Example: Specification covering all Implementations

 

Both implementations 
meet client needs

 

A client could use either implementation of calendar: both implement the same 

 

type

 

. 
We need to describe this type so that a client can use either implementation based 
solely on the type specification, admitting both implementations as correct implemen-
tations of that type, yet ruling out incorrect implementations.

Ordinarily, we wouldn’t bother with a very precise specification of such a trivial 
thing: but specification 

 
is

 
 important for the cases where there are several potential 

implementations: for example where many components can be ‘plugged in’ to 
another. Specification is important in the world of reusable pieces, even for small 
ones.

 

4.5.1 What a Client should (and should not) know

 

Client must understand 
inputs, outputs, assump-
tions, and guarantees

 

We first document this type by listing the operations it provides. Naturally, the client 
needs to understand a good bit more than just the list of operation names and signa-
tures: they need a specification of the provided behavior. 

• What are the inputs and outputs? 

Calendar operations expect inputs of type 

 

Date, Object

 

, 

 

Instructor, 

 

and 

 

Event

 

. The client must provide arguments 
of the appropriate type i.e. objects that implement the 
stated types. 

The 

 

addEvent

 

 operation returns an 

 

Event

 

 object, which 
provides just one public operation to the client: 

 

delete()

 

. 
There are no other externally visible outputs.

• What assumptions is the implementer permitted to make?

These could be many. He expects specific input parameter types; in the case of 
Java, these assumptions happen to be checked by the compiler. The 

 

add 

 

and 

 

isFree

 

 operations could assume that 

 

d1 < d2

 

; they may not check this explicitly, 
and may behave incorrectly if the dates are improper. For a 

 

removeEvent

 

 opera-
tion, the calendar may assume that the input event is one that already exists 
within this calendar. A implementation may or may not support overlapping 
events for an instructor. 

• What else can the client rely upon for the outcome of the operation?

Are the events returned by 

 

calendarFor

 

 ordered by increasing dates? What does a 

 

delete()

 

 on an event object do? Is a separate call to 

 

removeEvent

 

 on the corre-
sponding calendar required? If so, which one should be done first?

 

Client needs an abstract 
model of calendar state 
— attributes

 

Besides inputs and outputs, the client needs an abstract model of the “state” of the cal-
endar independent of a specific implementation, even if that state is not directly acces-
sible. Whenever 

 

addEvent

 

 has been called, there is indisputably a new event in the 
calendar, even though the way in which it is represented differs from one to the other. 

 

isFree

 

 must be based on the events currently in that calendar; and 

 

delete 

 

removes it 
from the calendar — even though the implementations differ. We already know how 
to build such a model using attributes.

Calendar

addEvent (....)
isFree (....)
removeEvent (....)
calendarFor (....)
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Internal details should be 
hidden

 

Figure 61 and Figure 63 illustrate that the internal representation and interactions dif-
fer widely between the two implementations. Our description of object behavior must 
adequately specify operations, input parameters, change of state of the object, and 
returned values or other outputs produced, without getting into irrelevant “internal” 
interactions. 

 

Omit objects the client 
should not be aware of.

 

In a specification, we only include interactions with objects that 

 

the client should be 
aware of

 

1

 

. In this case, the vector, hashtable, and event container are entirely internal to 
the calendar, and a client need not even know they exist; so we summarize interac-
tions with them into a net change on abstract attributes that characterize either imple-
mentation. What we are really describing is not just the single calendar instance, but 
its grouping with its internal supporting objects, as shown in Figure 66. The same rea-

soning applies at the business level; the seminar company can be considered a single 
object from the outside, and all its internal roles and interactions are only visible in an 
internal view.

 

4.5.2 From Attributes to Operation Specification

 

A simple sequence of 
steps to write a type spec

 

Here is a sequence of steps to arrive at a precise type specification of the Calendar. 

 

2

 

 

We will assume that the calendar may return output values to the client, and that all 
other interactions are internal details that should not be known to the client.

1.

 

List operations

 

 — addEvent, isFree, removeEvent, calendarFor

Figure 65: Object behavior description needs a clear boundary

 

1. what operations does the object support?

2. what is required of the inputs?

3a. what state change does the object undergo...?

4. what outputs does it produce? to whom?

3b. ...ignoring “internal” interactions

 

A

B

C

X

 

1. Although intuitively reasonably, this can be tricky due to 

 

“aliasing”

 

 i.e. two different paths 
in an object graph leading to a shared object.

 

Figure 66: External view hides internal objects and interactions

:Calendar_A

:Hashtable

v1: Vector

2 Implementations of “Calendar”

:Calendar_B

:Event
Container

v2: Vector
v3: Vector

 

2. Thanks to Larry Wall for pulling apart the steps involved
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Start informal

 

2.

 

Informal operation descriptions

 

 of each one:

addEvent a new event is created with the properties provided, and added
to the calendar schedule

isFree returns true if the instructor is free in the date-range provided

removeEvent the event is removed from the calendar

calendarFor returns the set of events scheduled for the instructor

At this stage, it’s usual to start sketching a static type diagram (Figure 68 on page 152), 
even though completing it is the focus of a later step. Draw a diagram that includes 
the nouns mentioned in the action specs, and their associations and attributes. 

 

Identify information 
exchanged

 

3.

 

Identify inputs and outputs.

 

 At the level of individual operations in code these 
are usually straightforward, perhaps already known.

addEvent (date1, date2, instructor, info): Event

isFree (instructor): Boolean

removeEvent (event)

calendarFor (instructor): Enumeration

 

Find underlying 
attribute terms

 

4.

 

Snapshots.

 

 Working from your initial type diagram, sketch a pair of snapshots 
before and after each operation. Draw them on one diagram, using highlights to 
show newly created objects and links,  for objects or links that do not exist in 
the “after” snapshot, and name the input and output parameters to the action 
occurrence consistently with the snapshots.

After an 

 

addEvent

 

, the highlighted objects and links are created; the output is 

 

e3

 

:

On the same snapshot, after a 

 

calendarFor (i1)

 

, the snapshot is not changed, and 
the output enumeration will list 

 

{e1, e2}

 

. For read-only functions like 

 

isFree

 

, 
check there is some way the information could be extracted from every snapshot.

 

Attributes form the basis 
for specifying multiple 
operations

 

5.

 

Static type diagram 

 

of the object being specified. Draw a type diagram that gen-
eralises all the snapshots you have drawn. (That is, they are all valid instances of 
it.) The attributes mentioned by each operation are listed below, and summarized 
in Figure 68.

 

1

 

Figure 67: A snapshot-pair for an action occurrence

e1:
start = 6/2/97
end = 6/6/97 instructor

e2:
start = 7/23/97
end = 7/27/97

instructor
i1:

calendar:

schedule

i2:

instructor

addEvent (d1, d2, i2, x): e3

e3:
start = d1
end = d2

highlight newly created object/links

schedule

schedule

action name with named in/out
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addEvent Calendar 

 

schedule

 

 represents events currently in the calendar.
Each event has attributes 

 

instructor

 

 and 

 

start, end

 

 dates, the

 

overlaps

 

 attribute will be convenient.

isFree Instructor has an attribute 

 

free

 

 on a given date, constrained by
the events scheduled for that instructor as described by the
instructor’s 

 

schedule

 

.

removeEvent No new attributes needed; 

 

schedule

 

 on calendar suffices.

calendarFor Use a 

 

schedule

 

 attribute on instructor; note that the externally
provided operation is different from the attribute that models
the necessary state.

 

Write attribute types and 
invariants

 

6.

 

Invariants.

 

 Consider whether any invariants should be written with the model. 
More will become apparent as you work through it. The choice of attributes and 
associations may change too, because their purpose is to make the actions easy to 
specify.

 

-- the start of any event must be before (or at) its end

 

inv Event:: start <= end

 

-- instructor free on any date means “no event on his schedule overlaps that date”

 

inv Instructor:: free(d: Date) = ( self.schedule [overlaps(d)] ->isEmpty )

 

This requires an 

 

overlaps

 

 attribute on event.

 

-- event overlaps (d) means same as “d between start and end, inclusive”

 

inv Event:: overlaps(d: Date) = (start <= d & end >= d)

 

Formalize the operation 
specs

 

7.

 

Specify operations.

 

 Make the operation specs more precise. This step may be fol-
lowed to a greater or lesser extent in different situations, depending on the 
project. The precision helps uncover gaps in the model, and also defines test specs 
for the implementation; it does take some effort, and is greatly aided by a decent 

 

1. Not every tool can draw one type inside another. An alternative is given in §4.13, p.192

 

Figure 68: Type model attributes will be used to specify operations

Calendar

addEvent (....)
removeEvent (....)
isFree (....)
calendarFor (....)

Event

start, end: Date
overlaps(Date): Boolean
info: Object

delete ()

instructor 1

schedule

schedule 

1 
Instructor

free(Date): Boolean   *calendar

*
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tool. At the very least we should improve the informal specifications, as in step §9, 
p.154.

The notation for referring to attributes was introduced in the last chapter; addi-
tional constructs for operation specifications are used here and will be explained 
in detail in the following section.

 

-- the addEvent operation on a calendar

 

action Calendar::addEvent (d1: Date, d2: Date, i: Instructor, o: Object): Event
pre

 

:

 

-- provided dates are ordered, and instructor is free for the range of dates

 

d1 < d2 & {d1..d2}->forAll (d | i.free (d))
post

 

:

 

-- a new event is on the calendar schedule for those dates and that instructor

 

result = Event.new [ info = o &
start = d1 & end = d2 & instructor = i & calendar = self]

 

A 

 

function

 

 is an operation that may return a result.

 -- is a given instructor free for a certain range of dates? 
function

 
 

 
Calendar::isFree (i: Instructor, d1: Date, d2: Date) : Boolean

pre

 

:

 

-- provided the dates are ordered

 

d1 < d2
post

 

:

 

-- the result is true if that instructor is free for all dates between d1 and d2

 

result = {d1..d2}->forAll (d | i.free (d))

 

-- remove the given event

 

action Calendar::removeEvent (e: Event)
pre

 

:

 

-- provided the event is on this calendar

 

schedule->includes (e)
post

 

:

 

-- that event has been removed from the calendar and instructor schedules

 

not

 

 

 

schedule->includes (e) and 
not e.instructor.schedule@pre->includes (e)

 

-- return the calendar for the instructor; also a function, or side-effect free operation

 

function

 

 

 

Calendar::calendarFor (i: Instructor): Enumeration
pre

 

:

 

-- none; returns an empty enumeration if no scheduled events

 

true
post

 

:

 

-- returns a new enumeration on the events on that instructor’s schedule

 

result

 

 

 

= Enumeration.new [unvisited = i.schedule]

 

Also describe other 
related types

 

8.

 

Parameter models.

 

 Describe (by a type model) any input and output parameter 
types as well, and their attributes and operations, to the extent the client and 
implementor need to understand and agree on these.

The 

 

Enumeration

 

 returned by 

 

calendarFor

 

 could also be mod-
eled explicitly. It provides two operations, informally specified 
below. These could be made more precise by using the two 
attributes on the enumeration.

 

action Enumeration::nextElement() : Event
pre

 

:

 

-- provided the enumeration is not empty

 

post

 

:

 

-- returns (and visits) an unvisited event, in no particular 
order

 

function

 

 

 

Enumeration::hasMoreElements() : Boolean

Event

Enumeration

nextElement()
hasMoreElements()

  unvisited * * visited
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post

 

:

 

-- true if all events have been visited

 

Event

 

 has a 

 

delete()

 

 operation that is visible to the client. The client clearly needs 
to know the effect of this operation e.g. does delete also remove it from the calen-
dar? They can be specified directly using the same type model:

 

-- deletion of an event

 

action Event::delete ()
pre

 

:

 

 true
post

 

:

 

-- the event is no longer on the calendar’s or instructor’s schedule

 

not

 

 

 

(calendar.schedule)@pre->includes (e) and 
not (instructor.schedule)@pre->includes (e)

 

Because this is equivalent to 

 

removeEvent

 

 which we have already specified, we 
could also have written it more concisely, as discussed in Section 4.7.6:

 

-- deletion of an event

 

action Event::delete ()
pre

 

:

 

 true
post

 

:

 

-- the same effect as removing the event from the calendar 
-- (though not necessarily by calling the removeEvent method)

 

calendar@pre.removeEvent (self)

 

Note that an adequate specification of 

 

Calendar

 

 requires a sufficient specification 
of other object types that are client accessible, like 

 

Event

 

 and 

 

Enumeration

 

.

 

Don’t forget the comple-
mentary narrative!

 

9.

 

Write a Dictionary

 

 and improve your informal specifications. Even if the invari-
ants and operation specifications will not be formalized, you can now concisely 
define the terminology of types and attributes, and consequently the operation 
requirements. Contrast the updated informal operation specifications below with 
the ones we started out with.

 

-- add an event to a calendar

 

action Calendar::addEvent (d1: Date, d2: Date, i: Instructor, o: Object)
pre

 

:

 

-- provided dates are ordered, and instructor is free for the range of dates

 

post

 

:

 

-- a new event is on the calendar schedule for those dates and that instructor

 Figure 69: A Dictionary of Terms

Instructor the person assigned to a scheduled event

schedule the set of events the instructor is currently scheduled
for

free an instructor is free on a date means that no event on
his schedule overlaps that date

Calendar the collection of scheduled events

schedule the set of events currently “on” the calendar

Event a scheduled commitment (meeting, session, etc.)

when the range of dates for this event

instructor the instructor assigned to this event

overlaps an event overlaps a date means that date lies within
(inclusive) the range of dates of the event
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-- is a given instructor free for a certain range of dates?

 

function

 

 

 

Calendar::isFree (i: Instructor, d1: Date, d2: Date) : Boolean
pre

 

:

 

-- provided the dates are ordered

 

post

 

:

 

-- the return is true if that instructor is free for all dates between d1 and d2

-- return the calendar for the instructor

 

function

 

 

 

Calendar::calendarFor (i: Instructor): Enumeration
pre

 

:

 

-- no assumptions; could return an empty set enumeration if no scheduled events

 

post

 

:

 

-- returns an enumeration on the events on that instructor’s schedule

-- deletion of an event

 

action Event::delete ()
pre

 

:

 

 

 

-- no assumptions

 

post

 

:

 

-- the same effect as removing the event from the calendar 
-- (though not necessarily by calling the removeEvent method)

 

Re-factor to improve 
things.

 

10. Improve the model or design by some re-factoring e.g. we can remove the redun-
dant constraint of 

 

d1<d2

 

 by introducing a 

 

DateRange

 

 type, with attributes 

 

start,end

 

 dates, 

 

overlaps(date), 

 

and an invariant on these attributes. Multiple 
places in our design will become simplified as a result.

 

4.5.3 The resulting object type specification

 

So we have specified our Calendar requirements in such a way that it can be fulfilled 
by either implementation — or indeed any other that behaves suitably. The actions 
have been listed and we have described the effect of each on our model of the state of 
the Calendar. The main products of the specification task are shown in Figure 70.

The next section details how actions are defined.
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Figure 70: The product of Behavior Modeling is an object Type Spec

Specification of component
in form of type model Calendar

Event

start, end: Date
overlaps(Date): Boolean
info: Object

delete ()

schedule

schedule     * 

Instructor

 

free(Date): Boolean

   *

*  calendar

1   instructor 

action

 

 removeEvent (e: Event)

 

pre

 

:

 

-- provided the event is on this calendar

 

schedule->includes (e)

 

post

 

:

 

-- that event has been removed from the 
calendar and instructor schedules

 

not

 

 

 

schedule->includes (e) and 
not e.instructor

 

@pre

 

.
          schedule->includes (e)

 

action

 

 ...

 

etc

 

Static model

with invariants

and 
Dictionary

Required behavior
= a list of effects specs

each defined in 

(In practice, bulk of text
written outside — and 

 

inv

 

 Event:: start <= end

 

An Event is a piece
of work engaging an
Instructor for a number
of days.

terms of static model

diagrams split up manageably)

 

Type specification models object behavior
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4.6

 

Specifying actions

 

Attributes have different 
values at different times

 

If you imagine objects and their links as a diagram on a two-dimensional surface, then 
you have to extend it to three dimensions to understand what an operation specifica-
tion is about. Every object has any number of previous states, as we saw in Figure 60. 
Each operation request to a “receiver” object starts with an initial snapshot of the 

receiver and of all the input parameters to that request, and ends with a final snapshot 
with changed attributes, newly created objects, and some generated outputs. Each 
attribute has a 

 

initial 

 

and 

 

final 

 

value. The operation specification is a relation between 
the inputs, initial values, final values, and outputs, written as a boolean expression i.e. 
an operation specification specifies is a

 

 test 

 

condition

 

; 

 

any implementation will either 
pass or fail that test.

 

An operation spec 
focuses on 

 

before

 

 and 

 

after

 

An operation specification describes the effect of invoking that operation, using a pair 
of 

 

pre-condition/post-condition

 

 expressions called an 

 

effect spec

 

. Within a single effect 
spec, two moments are singled out — immediately 

 

before

 

 the operation, and immedi-
ately after. 

action Calendar::addEvent (d1: Date, d2: Date, i: Instructor, o: Object) : Event
pre: -- provided dates are ordered, and there is no overlap caused by the new event

d1 < d2 & {d1..d2}->forAll (d | i.free (d))
post: -- a new event is on the calendar schedule for those dates and that instructor

result = Event.new [ info = o &
start = d1 & end = d2 & instructor = i & calendar = self]

An alternate syntax puts the receiver type name with the signature; it is more consis-
tent withthe more general ideas we’ll meet later, but less conventional:

action addEvent <= 
-- the action ‘addEvent” is specified, among other things, by the following effects clause:

effect
Calendar:: ( d1: Date, d2:Date, i:Instructor, o:Object)

-- for any combination of a calendar, called “self” in the assertions,
-- together with two Dates and an instructor and something else ;

pre: .... -- and provided they all meet the conditions here stipulated ;
-- then we reckon that when an action conformig to this spec happens, 

post: ... -- this should be the outcome.

Figure 71: Operation spec relates parameters and initial/final attributes

snapshot pair

initial

final

op spec: ....
action b (in x, in y, out z)

x (final)

input y (initial)input x (initial)

output z
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Figure 72: Effect spec clauses

Action specs

Defines a requirement on one or more actions. There are five constituents 
which may be part of an effect spec:

ReceiverType :: ( parameter1 : Type1, parameter2 :Type2) : ResultType
Signature: a list of parameters — named values (refer-
ences to objects) that may be different between different
occurrences of the action(s) the spec governs.

• Some parameters may be marked out, denoting names
bound only by the end of the operation.

• May also define a result type and a receiver type.

pre: condition Precondition defines the situations in which this effects
spec is applicable. If the precondition is not true when
an action starts, this spec doesn’t apply to it: so we can’t
tell from here what the outcome will be. There might be
another applicable spec defined somewhere else.

The parameter type constraints are effectively terms in
the precondition: d1>3 and d2:Date and d1<d2 ...

May refer to the parameters, to a receiver self, and to
their attributes; but not out parameters or any result.

post: postcond Postcondition specifies the outcome of the action (pro-
vided the precondition was true to begin with). The
postcondition relates two states, before and after: so the
prior state of any attribute or subexpression can be
refered to using @pre. 

A postcondition may refer to self, all the parameters,
and any result; and their attributes.

rely: condition If the rely clause ever becomes false during the execu-
tion of the action, the specification no longer applies.

guarantee: cond The action will maintain this true while executing. 

Pre, post, rely and guarantee conditions are called ‘assertions’. A further two 
assertions appear as part of a type specification, outside any one action spec:

inv condition True before and after every action in the model. Effec-
tively ANDed to each pre and postcondition.

inv effect effect A ‘global’ effects spec that applies to all actions con-
forming to its signature, pre, and rely conditions.
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Figure 73: Postconditions

Special terms in a postcondition

A postcondition relates together two moments in time. By default, every 
expression denotes its value once the action is complete.

x@pre The value of x’s prior state. ( There is no need to use
them in a pre-condition.) E.g. moving rooms:

jo.room@pre — jo’s old room
jo.room@pre.isDirty@pre

— previous state of jo’s old room
jo.room@pre.isEmpty

— current state of jo’s old room
jo.room.isEmpty@pre

—previous state of jo’s new room

new The set of all objects that exist in the later state that did
not exist in the earlier. T*new=(T – T@pre). Common
usages with new:

Egg*new — all new Eggs
Egg*new [size>5] — all new Eggs satisfying the filter
Egg.new — the only new Egg
Egg.new [size>5] — the only new Egg, and its size>5
Egg[size>5].new — the only new (Egg whose size>5)
(The .new notation denotes the new object; but as a side
condition, specifies that there are no new others.)

[[an action]] Action quoting, equivalent to copying its specification
into the present postcondition. It does not imply a nec-
essary actual invocation of the action — just that the
same effect is achieved. If there are several effects-specs
applying to the quoted action, they are all implied.

[[->an action]] The quoted action will definitely be invoked in an
implementation.

result Reserved names for the value denoted by an operation
that a programmer can invoke as an expression. E.g.:
action square_root ( x : int ) post: x = result * result
... y = square_root (64);      // y == 8
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4.7 Interpreting an Action Specification

Op-spec generalizes 
snapshot-pairs

An operation specification generalizes all occurrences of that operation i.e. it should 
hold true of every snapshot pair (Figure 74), much like a type model generalizes all 
snapshots in Figure 68 on page 152.  

An op-spec prohibits cer-
tain snapshot-pairs

Given a type T with operation M whose operation spec has a pre-condition P and 
post-condition Q, we interpret this operation spec as follows:

If you examine the history of any object that correctly implements T, and find in 
that history any occurrence of the operation M, then, if P was true of the invoca-
tion parameters and attribute values before that occurrence, then Q should have 
become true after that invocation.

4.7.1 An Action Spec is not an Implementation

Op-spec is a boolean, not 
an algorithm

Writing a specification for an operation is very different from writing an implementa-
tion. The spec is simply a boolean expression — a relation between the inputs, initial 
state, final state, and outputs. An implementation would choose a particular algorith-
mic sequence of steps, select a data representation or specific internal access functions, 
and work through iterations, branches, and many intermediate states before achiev-
ing the “final” state.

Consider the specifications of these operations, in contrast to their possible implemen-
tations:

function Calculator::squareRoot (in x: Real, out y: Real)
pre: not (x < 0)
post: y > 0 and y * y = x -- more realistically, allow rounding errors

Figure 74: Operation specification generalizes snapshot pairs

Action Specification
  action occurrences (snapshot pairs)

a1 [1] a1 [2] a1 [3]

-- the action a1 on objects of type T1

 

action

 

 

 

T1::a1 (parm1, parm2, ...) : Out
pre: 

 

pre-condition expression
what was initially true of attributes and inputs

 

post

 

:

 

post-condition expression
what will become true of attributes, inputs, and outputs
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action Scheduler::schedule_course (reqCourse: Course, reqStart: Date)
pre: 

 

Provided there is an instructor qualified for this course
who is free on this date, for the length of the course.

 

post:

 

A new Session has been created, with course = reqCourse, 
startDate = reqStart, and endDate – startDate = reqCourse.length,
and with one of the qualified free instructors assigned

 

action FlightRouter::takeShortestPath (f: Flight)
pre:

 

provided there is some path between the source and destination of f

 

post:

 

f has been assigned a path from its source to its destination
there is no other path between f.source and f.destination shorter than f.path
(with a supporting definition of path, and of the length of a path)

 

Any implementation 
must meet the spec

 

These operations, and their corresponding type model attributes, have many possible 
implementations. Instructor qualification and schedules can be represented and calcu-
lated in many ways; as can flight paths, and square roots. No matter how we imple-
ment these operations, they must conform to this specification. If we were to run any 
test data through an implementation, where the test data met the pre-conditions of the 
specification, we would expect the post-condition to be satisfied; if not, we have 
found some bug either in the implementation or the specification. 

 

The spec is like a test

 

A good operation specification is much like a test specification. With a little infrastruc-
ture support — e.g. query functions to map from concrete data representations to the 
abstract attributes used in the specifications, and some means to capture initial values 
of attributes — these operation specifications can often be mapped to test code that is 
executable at run-time, at least during testing and/or debugging.

 

Though some specs are 
easier to test than others!

 

The operation specs will often map directly to tests. Thus, the spec for 

 

squareRoot

 

 
above easily translates into test code; so does 

 

schedule_course

 

, once we write some 
query functions to determine attributes related to instructor qualification and avail-
ability in terms of the concrete implementation. Other specifications may need to be 
re-factored a bit to be tested effectively. A naive usage of 

 

takeShortestPath

 

 as a test 
specification would require generating all possible paths to show that the computed 
path is the shortest; not a very practical test strategy!

 

4.7.2 Parameter types

 

Parameter types are part 
of pre/post

 

Parameter types are an implicit part of pre/post-conditions. Our spec of 

 

squareRoot

 

 
could be re-written so as to make this explicit, although this is not the normal style:

 

action squareRoot (in x, out y)
pre: x: Real & not (x < 0)
post: y: Real & y*y = x

 

A shorthand for parame-
ter types

 

We permit a shorthand for parameter types. A parameter which is not explicitly typed 
has a name which is a lower-case version of its type name. The spec below implicitly 
types all three parameters:

 

action Scheduler::schedule_course (course, client, date)
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The effect of an operation can be specified with an explicit pre/post pair of conditions, 
or with a single postcondition. The main difference is that within the expression start-
ing with 

 

pre: 

 

all references are implicitly to the initial values of attributes; within an 
effect clause we have to explicitly indicate initial values using 

 

x@pre

 

. These two are 
equivalent:

 

action Scheduler::schedule_course (reqCourse: Course, reqStart: Date)
pre: a qualified instructor available for those dates
post: a new confirmed session with ....

action Scheduler::schedule_course (reqCourse: Course, reqStart: Date)
post: (qualified instructor available for those dates)@pre

 => (a new confirmed session with ....)

 

Notice the “=>”, also written 

 

implies

 

 or 

 

if...then...

 

: if the precondition is not met, we 
simply have nothing to say about the outcome.

 

Each is useful in different 
situations

 

The 

 

pre/post

 

 style is well suited to documenting an operation at the implementation 
level as a single pre/post specification in the form of a “contract”: the caller is respon-
sible for only invoking this operation when the pre-condition is true; the implementor 
can assume the pre-condition is satisfied, and must then guarantee the post-condition. 
If a pre/post pair is written, the post-condition should cover all those cases that are 
permitted by the pre-condition, otherwise the specification is not well formed. By con-
vention, if only the post-condition is written, we treat it like an implicit pre-condition 
that is derived (not always easily) from the post-condition.

The single 

 

post 

 

form is sometimes more convenient. It also lets us write specifications 
that do not have to be of the form 

 

P@pre implies Q

 

. Chapter 13 will describe how this 
is useful to factor out parts of the specification of a complex action; however, it then 
takes more effort to extract an explicit pre-condition.

 

4.7.3 Partial action specs

 

Pre and post-conditions 
are always paired

 

An operation post-condition is always paired with a corresponding pre-condition. 
Thus, the stated post-condition of 

 

squareRoot

 

 should be guaranteed provided the cor-
responding pre-condition was true when it was invoked. Similarly, the stated out-
come of 

 

schedule_course

 

 is guaranteed provided that there was an available and 
qualified instructor for this request.

 

Some conditions may be 
left unspecified in a spec

 

What should 

 

squareRoot

 

 do in the case of a negative input? Or 

 

schedule_course

 

 in 
the case when a qualified instructor was not available? Our specs, as written, do not 
cover those other conditions; we leave those behaviors unspecified. If we said nothing 
further about these operations, then the implementations could ignore those other 
conditions completely.

 

But, an operation may be 
constrained by multiple 
specs

 

But, an operation can have multiple specifications; this is very common in higher-
level requirements where we want to separately specify different aspects of an opera-
tion. Different aspects of an operation like 

 

schedule_course 

 

— scheduling policies, 
qualification criteria, associated production of course materials, performance require-
ments — can be specified separately. At the very least, these may appear in separate 
sections of a document. This allows us to factor a specification into more coherent bits, 
and makes it easier to separate exceptions and variations. The implementor of an 
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operation must meet the conjunction of all specifications for that operation

 

1

 

 — every 
one of the individual guarantees must hold independently of the others. Thus, we 
could add the following specification to the 

 

squareRoot

 

 operation:

 

action squareRoot (in x: Real, out y: Real)
pre: x < 0
post: y = -1.0

 

A spec may also con-
strain outcomes, with-
out fully determining 
them

 

Some specifications fully determine the outcome of an operation. Our specification of 

 

squareRoot

 

, allows many implementations — and even more than one result: 2* 2 are 
4; but so are –2 * –2. If we want to exclued one result, we only have to add ‘y>0’. Simi-
larly, 

 

schedule_course

 

 constrains the new session to be assigned a qualified, available 
instructor, but does not specify which one be assigned. And 

 

takeShortestPath

 

 does 
not say which path should be selected in the event there were multiple paths with the 
same length, just that there should be no other path with a shorter length.

 
Multiple specs vs. a sin-
gle — example

 
A operation may be constrained by multiple specifications, each with its own pre/
post pair (or, its own effects clause). Alternately, the multiple specs can be combined 
into a single specification with a more complex pre-condition and post-condition. 
Here, first, is an operation constrained by multiple partial specifications:

 

-- this spec deals with scheduling a confirmed course

 

action Scheduler::schedule_course (client, course, date)
pre: 

 

Provided there is an instructor qualified for this course
who is free on this date, for the length of the course.

 

post:

 

A single new Session has been created for that course, client, dates
and confirmed with one of the qualified free instructors assigned to it

-- this spec deals with a “loyalty-program” for frequent course schedulers

 

action Scheduler::schedule_course (client, course, date)
pre:

 

Provided the client is above some loyalty threshold

 

post: 

 

The client is sent a certificate for a free course

 

Any reasonable tool should related multiple specifications for an operation, and be 
able to present some combined form. Here is the same operation, written with a single 
specification.

 

-- this spec deals with combined aspects of a request to schedule a course

 

action Scheduler::schedule_course (client, course, date)
pre: 

 

instructor available or client is above loyalty threshold

 

post:

 

(instructor available)@pre implies single new session for that course, ...
and (client above threshold)@pre

 

 implies client is sent free certificate ...

The single pre/post form becomes a bit awkward and redundant in the combined 
specification. It must deal with multiple conditional outcomes with overlapping con-
ditions, which is done by and’ed clauses in the post-condition. In addition, the pre-
condition has to specify under what conditions the post-condition is applicable. It is 
simpler to instead write out the multiple pre/post pairs in one action spec:

action Scheduler::schedule_course (client, course, date)
( pre: instructor available

1. Chapter 13 describes other ways to join two operation specifications
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post: single new session for that course, ...
) and
( pre: client is above loyalty threshold

post: single is sent free certificate ...
)

The equivalent effect form is very similar, except it requires explicit @pre:

action Scheduler::schedule_course (client, course, date)
post: (instructor available)@pre implies single new session for that course, ... and

(client above threshold)@pre implies client is sent certificate ...

Pre/post only constrains 
occurrences where pre 
was true.

When we write a pre/post pair, the interpretation is simply that any occurrence of the 
action in which the pre-condition was true must result in the post-condition becoming 
true. That particular spec does not state the outcome if the pre-condition was not true, 
hence it does not constrain such occurrences. When we write an effect clause, every 
occurrence of the operation must satisfy the effects clause; which, so far, has simply 
reflected the pre/post form. 

4.7.4 “Convenience” attributes simplify specs

Introduce new attributes 
to simplify specs

Since invariants can simplify action specifications, and attributes themselves simply 
represent a precise terminology for use in action specs, we can sometimes greatly sim-
plify the specs by introducing suitable attributes and defining them using invariants.

-- cancellation of a session: might need to re-assign the instructor to something else
action Scheduler::cancelCourse (s: Session)
pre: -- if there was a tentative session within those dates waiting for confirmation

( sessions->exist ( s1 | s1.tentative s1.datesWithin (s)
-- and the instructor who was assigned is qualified for it’s course

and s.confirmed and s.instructor.qualifiedFor (s1.course)
post: -- then the instructor is assigned to one such session

....

Finding this specification somewhat complex, we seek 
underlying terms to simplify it. The pre-condition seems 
to refer to a set of sessions which need an instructor for a 
particular range of dates — in this case, the dates of the 
session being cancelled. Why not introduce a parameter-
ized attribute qualWaitingSessions(dates) and simplify 

the operation spec?

inv Instructor:: qualWaitingSessions (d: DateRange) =
-- all tentative sessions within that date range (assuming necessary attributes!)
sessions->select (s | s.tentative & s.dates.within (d)

-- and that the instructor would be qualified to teach
& self.qualifiedFor (s.course))

action Scheduler::cancelCourse (s: Session)
pre: -- if there were any sessions waiting for that instructor on those dates

s.instructor.qualWaitingSessions (s.dates)->notEmpty & s.confirmed
post: -- then the instructor is assigned to one such session

....

Instructor

Session

qualwaitingSessions (Date)

*
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Judiciously chosen auxiliary attributes such as this can be very effective in simplifying 
specs, by introducing precisely defined terms that express the requirement in a natu-
ral way, in terms close to what a client might use (despite the formal syntax).

4.7.5 Effects 

Effect: local function 
with @pre

Another kind of convenience function is called an “effect”: this is a function that can 
use @pre, and so can be used to factor out the parts that are common between differ-
ent action specs.

We want to define effects 
regardless of the action

For example, schedule_course is an action; we have decided there will be some inter-
action for a client to schedule a course. Two possible outcomes of this action are 
schedule_confirmed_course and schedule_unconfirmed_course; however, we would 
not list these as actions. Instead, we define these as named effects; referring to them by 
name is exactly equivalent to writing out their specifications directly. 

-- saying that a schedule_confirmed_course has happened is exactly the same as saying...
effect Scheduler::schedule_confirmed_course (course, date) 

-- that there was some available instructor initially
post instructorAvailable@pre (course, date)

-- and a confirmed session is created
and Session.new [confirmed]

-- saying that a schedule_unfirmed_course has happened is exactly the same as saying...
effect Scheduler:: schedule_unconfirmed_course (course, date)

-- that there was no available instructor initially
post not (instructorAvailable@pre (course, date))

-- and an unconfirmed session is created
and Session.new [unconfirmed]

Named effects can be 
used to specify actions

We can now simply use these two effects to specify the action schedule_course. The 
resulting spec means exactly the same as though we had written the full specifications 
of the two effects.

-- when a scheduler schedules a course
action Scheduler::schedule_course (course, date)

pre: true -- no precondition, since the postcondition covers all cases
post: -- either a confirmed course has been scheduled

schedule_confirmed_course (course, date)
-- or a unconfirmed course has been scheduled

or schedule_unconfirmed_course (course, date)

Esoteric topicPre=>post vs pre&post

In the example above, the two alternative situations and the associated outcomes are 
represented in two different effects. Within the effect, the @pre part is ANDed with the 
post. That means that when we bring the two effects together in the eventual action 
spec, we can say “either this happens, or that”.
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An alternative style is to write the effects in a style that each of them is a self contained 
specification: “in this case => always do this” and “in that case => always do that”. 
This style means that the two specifications are ANDed, because they are both instruc-
tions that we want the implementor always to observe:

-- If an instructor is available, the course must be confirmed
effect Scheduler::when_instructor_available_confirm (course, date) 

-- if the instructor is available:
post instructorAvailable@pre (course, date)

-- then a confirmed session is created
=> Session.new [confirmed]

-- If an instructor is not available, the course must be unconfirmed:
effect Scheduler:: when_no_instructor_reject (course, date)

-- if was no available instructor initially ...
post not (instructorAvailable@pre (course, date))

-- then an unconfirmed session is created
=> Session.new [unconfirmed]

And the composition:

-- You must always confirm or unconfirm a course depending on instructor availability:
action Scheduler::schedule_course (course, date)

pre: true -- no precondition, since the postcondition covers all cases
post: -- either a confirmed course has been scheduled

when_instructor_available_confirm (course, date)
-- or a unconfirmed course has been scheduled

and when_no_instructor_reject (course, date)

Which style should you choose? Nice examples can be found to support either style.1 
Experience suggests:

• Write effects in a (pre => post) style when you wish to ensure that there is no get-
ting out of the contract, that if the precondition is true, then the postcondition will 
be met. Then combine them into actions using AND.

This is generally better when combining several separately-defined requirements 
— for example when building an component that conforms to the interfaces 
expected by several different clients. 

• Write effects in a (pre & post) style when you wish each to describe one of many 
possible outcomes. Then combine them into actions using OR.

This style is generally better when building a specification model from different 
parts within the same document. These effects have to be combined with open 
eyes: none of them makes any guarantees that the outcome it describes will be 
met.

1. This was the biggest difference between the formal specification languages Z and VDM.
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4.7.6 Quoting Action Specs within effects clauses

Each action introduces a 
named effect

Whenever any action is specified, it implicitly defines an effect. That effect can be 
referred to from another action. Sometimes you want to say “this operation does the 
same as that, but also...” i.e. re-use the effect specification of another action. Specifica-
tions can be quoted within others’ postconditions (like calling subroutines in code). 
Suppose you want to say “if I am told about a phone number change, I alter my 
address book”:

action Person::notify_phone_change (who:Person, n:PhoneNum)
pre: who : friends — this spec only about people I know
post: addressBook[who].number = n

[[action]] uses the effect 
of one action inside 
another

Now “if I move house, I move my furniture to the new address, and get my new 
phone number entered in each of my friends’ address books”.

action Person::moveHouse (newAddr, newNum:PhoneNum)
post: furniture.location = newAddr —  shift my chattels

& ( f:friends, — for each of my friends, call it f, 
[[ f.notify_phone_change(self, newNum) ]]

— get f to do whatever they do with phone changes
)

It does not require the 
action to be invoked; just 
its effect to be achieved

The ‘quoting’ syntax [[...]] is a predicate, possibly involving initial and final states, 
that says “this action achieves whatever notify_phone_change would have achieved, 
with these parameters”, but not necessarily by invoking that action. It doesn’t say 
how this must be achieved. The obvious thing, of course, is invoke the 
notify_phone_change operation on each friend; but we leave the decision open to our 
designer, who might know of another way to achieve the same effect.

If you want to go into the semantics a little more, the quotation is the same as rewrit-
ing ‘[[...]]’ with all the ‘((pre)@pre ⇒ post)’ of the quoted operation, with appropriate 
parameter & self substitutions. These two variations mean the same:

action Person ::moveHouse (newAddr, newNum:PhoneNum)
post: furniture.location = newAddr

& ( f : friends, — for each of my friends,
self : f.friends — if I am one of their friends,...
⇒ f.addressBook[self].number = newNum )

action Person::moveHouse (newAddr, newNum:PhoneNum)
post: furniture.location = newAddr —  shift my chattels

& ( f: friends, — for each of my friends, call it f, 
[[ f.notify_phone_change(self, newNum) ]]

— get the effect of f’s notify phone change
)

[[ –> action ]] actually 
invokes the action

If you decide that a part of this action must do is to actually invoke a specific opera-
tion, you can record that decision by inserting an arrow in front of the operation:
[[ –> f.notify_phone_change(...)]]. This alters the postcondition to mean “the 
notify_phone_change operation has been performed on each friend”. The end result is 
no different, but we’re now pinning down how to achieve it. 
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4.8 Specifying component types

Now let’s put together the actions and the static model. We are writing a type to spec-
ify an interface to an object; it may cover all the operations that object can perform, or 
just the ones used by a particular client.

A type is a specification of the response an object has to a set of operations. The opera-
tion specs are therefore the primary purpose of the spec: without them, it doesn’t 
mean much. The operation specs share a single static model. A simple object has just 
one or two attributes; a complex one has a whole diagram full of them (Figure 75). (Of 
course, it is usually too big to fit in one box like this! See Chapter 6 Effective Documen-
tation, p 237.)

4.8.1 Variables an action spec may use

An action spec tells about the outcome of a named action happening to a set of param-
eter-objects and (for localised actions) a receiver.

The spec of an action may use:

• self, refering to the receiver object, whose type is written 

• the parameter names, refering to those objects

• a result object

• the attributes of the type of self, drawn as associations inside or outside the box

• the attributes of the parameters and the result

4.8.2 Actions need not duplicate Invariants

An example type model 
with invariants

Operation specifications can be simplified by taking advantage of constraints in the 
type model. Consider the type model of Scheduler in Figure 75 with these invariants:

inv Instructor:: -- only assigned to sessions I am qualified to teach
qualifiedFor  ->  includesAll (sessions.course)

-- never double-booked; no 2 assigned sessions that overlap
sessions ->forAll (s1, s2 | s <> s1 implies not s1.overlaps(s2))

inv Session:: -- only confirmed with assigned instructor
confirmed => instructor <> null and
-- session dates cover course duration
end = start + course.duration -- assume suitable “Date+Duration: Date” 
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We can write lots of 
details in a spec

Let us try to define some operations against this model.

-- change the dates of a session
action Scheduler::change_dates (s: Session, d: Date)

pre: s.start > now and -- (1) not from the past
s.course <> nil and -- (2) has a valid course
s.course.duration : Days -- (3) course has a valid duration

post: s.start = d and -- (4) start date updated
s.end = d + course.duration -- (5) end date updated

Some of these are 
implied by param types 
and invariants

Which parts of the specification are necessary, and which unnecessary?

1. One cannot change the dates of a session from the past. Necessary.

2. It would not make sense to change the dates of a session that did not have a 
course. However, the type model already uses a multiplicity of 1 to state that any 
session object must have a corresponding course. The operation parameter 
already requires s to be of type session, so we do not need to repeat (2); using the 
type name Session implies all required properties of session objects. Unnecessary.

3. The post-condition refers to start + course.duration, which only makes sense if 
duration was a valid Duration. Once again, the type model already stipulates that 
every course has a duration attribute which is a valid Duration. Unnecessary.

4. This is the essential part of the post-condition. Necessary.

5. It seems reasonable that the end-date of the course is also changed. However, the 
relationship between the start/end dates and is course duration is not unique to 
this operation, so it has been captured in the type model as an invariant. It is suffi-
cient to state that the start-date has changed; the invariant implies that the end 
date is also changed. Unnecessary.

Invariants simplifies the 
spec

Each of the unnecessary items is already implied by an invariant. The definitions of 
types themselves introduce invariants, such as the multiplicity or types of attributes. 
The unnecessary parts would not be incorrect, just redundant. This leaves us with a 
much simpler operation specification:

action Scheduler::change_dates (s: Session, d: Date)

Figure 75: Scheduler type model with invariants

Scheduler

schedule_course (...) pre ... post ...
cancel_course (...) pre ... post ...
change_dates (...) pre ... post ...

Instructor Session Course

* instructors

*

start: Date
end: Date

*

*0..1

confirmed: Boolean

duration: Duration

1

overlaps(Session)qualifiedInstructors

free (Date,Date)

client: Client

* sessions * courses

qualifiedFor
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pre: s.start > now -- not from the past
post: s.start = d -- start date updated

A more interesting example is schedule_course.

-- this spec deals with scheduling a confirmed course
action Scheduler::schedule_course (who: Client, c: Course, d: Date)

pre: -- Provided there is an instructor qualified and free for these dates
c.qualifiedInstructors ->includes (i | i.free (d, d+c.duration))

post: -- A new confirmed Session has been created for that course, client, dates
Session.new [ confirmed & client = who & course = c & date = d 
-- assigned one of the course qualified instructors who was free
instructor : c.qualifiedInstructors [ free(d, d+c.duration)@pre ]

It is already an invariant that any confirmed course must have a qualified instructor, 
and that instructors cannot be double-booked. Hence, the italicized parts of the post-
condition are redundant, and the last line in this specification can be omitted. Other 
than that, we don’t bother to give any further requirement here: so at present we’re 
allowing different implementations to choose among the available qualified instruc-
tors in different ways.

Advanced Topic 4.8.3 Redundant specifications can be useful

It can be useful to write 
redundant specifications

We have seen how certain elements of an operation specification are implied by the 
invariants, hence become redundant in the op-specs themselves. Writing them would 
not be incorrect; just redundant. It can still be useful to write them down; note the 
change_dates example above. However, it is worth distinguishing those parts of the 
specification the designer should explicitly pay attention to — the invariants and nec-
essary parts of operation specs — from those parts that would automatically be satis-
fied as a result.

Distinguished from nec-
essary specs using /pre, 
/post, /inv

Just as we can introduce derived attributes — those marked with a “/” that could be 
omitted since they defined entirely in terms of other attributes — we can also have 
introduce derived specifications — significant properties which we claim would auto-
matically be true of any correct implementation of the non-derived specifications. 
Using /pre: /post:, we can more explicitly define the change_dates operation:

action Scheduler::change_dates (s: Session, d: Date)
pre: s.start > now -- necessary

/pre: s.course <> nil and -- derived: multiplicity 1
s.course.duration : Days -- derived: atttribute definition

post: s.start = d -- necessary
/post: s.end = d + course.duration -- derived: session invariant

The same holds for derived invariants. Of course, we would only write those claims 
we consider important to explicitly point out.

inv Session:: end = start + course.duration
/inv Session:: start = end - course.duration -- derived: definition of +, -
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4.8.4 Meaning of invariants

Invariants have a special 
meaning with actions

We introduced invariants as constraints on legal snapshots, in Section 3.5, “Static 
Invariants,” on page 115. We have described actions in terms of the relationship 
between two snapshots, before and after the action; and now understand an object in 
terms of its history of action occurrences and snapshots. What do invariants mean in 
this temporal view of changing objects?

Invariant holds before 
and after every action in 
some range

An invariant is implicitly conjoined (and’ed) to both the precondition and the post-
condition of every action within a defined range of actions. In the simplest case, the 
range of an invariant means all operations on members of the type it is defined for.

Thus, 

action FlightMaster:: assign_pilot (p:Pilot, f.Flight)
pre: -- the pilot must be at the departure location on the flight date

p.locationOn (f.date) = f.departureLocation
post: f.pilot = p -- pilot has been assigned to flight

combines with inv Flight:: pilot <> copilot (pilot and co-pilot cannot be the same) to 
form a complete operation specification:

action FlightMaster:: assign_pilot (p:Pilot, f.Flight)
pre: f.pilot <> f.copilot -- true of all flights, one of which we focus on

& p.locationOn (f.date) = f.departureLocation
post: f.pilot <> f.copilot 

& f.pilot = p

There may be actions 
outside its range where 
invariants are “bent”

However, the private operations of any implementation may see situations in which 
the invariant is ‘untrue’. For example, suppose the user assigns a pilot to a flight for 
which she is already copilot. One acceptable implementation would be to deallocate 
the copilot duty — but in the actual code, this might happen after assigning as pilot. 
Thus the invariant is temporarily broken between internal actions in the code. 

Advanced Topic4.8.5 Effect Invariants

Some effects are invari-
ant across all actions

If some actions share common effects — i.e. changes between before and after states 
— we can specify a named effect and refer to it by name in the post-conditions of 
those actions. In contrast, an ordinary invariant is required to hold before and after 
the actions in its range; i.e. it is a static invariant, true of every applicable snapshot. 

Figure 76: Invariants hold before and after a range of actions

i

j

k

l

schedule_course
invariants hold @i, j, k, l

invariants need not hold elsewhere

cancel_course

schedule_course
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Sometimes, an effect is required to be true of all the actions in its range. For example, 
suppose we want to count every operation invocation on our calendar. We could write 
a named effect, but we would have to explicitly reference it in every operation:

effect invoke () post: count += 1

These are effect invari-
ants

Recalling that static invariants are implicitly applied to all specs, we introduce an 
effect invariant — an effect that is invariant across all actions in its range, and is implic-
itly and’ed to the post-conditions of those actions. Unlike a static invariant, it can refer 
to before and after states. An invariant effect does not need to be named, and cannot 
use parameters.

inv effect invoke post: count += 1

An effect invariant is and’ed to the post-condition of all actions in its range; it implic-
itly adds the last clause to this spec:

-- remove the given event
action Calendar::removeEvent (e: Event)

pre: -- provided the event is on this calendar
schedule->includes (e)

post: -- that event has been removed from the calendar and instructor schedules
not schedule->includes (e) and 
not e.instructor@pre.schedule->includes (e)
-- and the effect invariant is implicitly applied
and count += 1

We can define rules that 
span all actions

By using conditions in the post-conditions of an effect invariant, we can describe 
effects that apply selectively to any action that meets the condition. For example, to 
keep a count of all actions that either create or delete an event on the schedule:

inv effect create_or_delete
post: -- if the set of Events before and after differ, count this action occurrence

schedule@pre <> schedule implies count += 1

Advanced Topic 4.8.6 Context of an invariant

Context of invariant can 
be type, class, collabora-
tion

The type in which an invariant is written is called its context. It applies only to the 
operations of that type. (In the next chapter we will also see contexts of groups of col-
laborating objects.) 

Invariants are only true 
outside the interface

Any object claimed to conform to the type should always make it look to clients as if 
the invariant is always true. While the client is waiting for any operation to be accom-
plished, the invariant can be broken behind the interface that the type describes; but it 
must always be true again once the operation is complete. Behind that interface, are 
components of the design that have their own nested contexts, and invariants that 
govern them.
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Invariants should refer to 
the attributes of the type 
in hand

It is possible to write invariants that cannot be satisfied by an implementor — just like 
any specification. In your spec of a Sludge vending machine, you may write an invari-
ant that the weather is always clement in Northern England; but I cannot deliver such 
a device.1 But if you write an effect invariant that the machine’s cashbox will always 
fill as the can stack decreases, then I believe I can do that.

Invariants need encapsu-
lation

In order to achieve it, I must employ certain techniques in my design. For example, if I 
forget to include a stout metal case around the outside, then your assets will mono-
tonically decrease: people can get directly at the cans (and any cash that others may 
have been foolish enough to insert). 

Similarly in software: the developer of an alphabetically sorted list of customers can-
not guarantee that the list will remain sorted, if other designers’ code is able directly 
to update the customers’ names. You can only guarantee what you have control over.

Collaborations are fun-
damental to design

In designing to meet an invariant, then, you have to think not only of your own imme-
diate object, but all the objects it uses; and to be aware of any behavior they have that 
might affect the specs you are trying to meet. Fundamentally, objects have to be 
designed in collaborating groups — the subject of the next chapter.

Figure 77: Invariants outside their contexts
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4.9 State Charts

State charts, and their simpler cousins, ‘flat’ state-diagrams, can be useful modeling 
tools. In Catalysis, states and transitions that appear in a state chart are directly 
related to the attributes and actions in a type specification. The state chart merely pro-
vides an alternate view of the spec.

4.9.1 States as Attributes and Invariants

Some objects progress 
through distinct states

Sometimes it is easy to see distinct states that an object progresses through over its 
lifetime. A Session may go through tentative, confirmed, or delivered; if either con-
firmed or delivered it is considered sold. From another perspective, the session may be 
pendingInvoice, invoiced, or paid. 

A state-chart defines 
boolean attributes and 
invariants

States are often drawn in a state chart, showing the states and relationships between 
them, as in Figure 78. Each state is a boolean attribute1: an object either is, or is not, in 
that state at any time. The structure of states in the state chart defines invariants across 
these attributes. 

State can be exclusive, • States in a simple state chart are mutually exclusive, with exactly one state true at 
a time e.g. within sold; this is what the xor invariants mean.

inclusive, • A state chart may be nested inside a state. While the containing state is false, none 
of the nested states is true; while it is true, the nested state chart is live, meaning 
one of its states (or one from each of its concurrent sections) must be true. This is 
the or invariant defining sold.

or independent. • A state chart may be divided into concurrent sections by a dashed line. Each of 
these is a separate simple state chart. The object is simultaneously in one state 

1. We qualify the attribute name with superstates  names to deal with nested states

Figure 78: A state-chart defines state attributes and invariants

Session
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inv xor (tentative, sold)
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sold: Boolean
inv sold = confirmed or delivered
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from each of the sections. No explicit invariants are needed, since the two sets of 
states are independent.

We can also define 
explicit state constraints

There is no paradox in this, nor necessarily any concurrent processing in the usual 
sense: it’s just that a state simply represents a boolean expression, and there is no 
reason why two such statements should not be true at the same time. We can sep-
arately introduce invariants that eliminate certain combinations, to represent 
business rules. For example, 

inv Session:: invoiced => sold
-- A session can be invoiced only if it is sold

and relate states to other 
attributes.

Since states simply define boolean attributes, it is easy for states to be tied to the val-
ues of other attributes and associations via invariants. So for example, we can write

inv Session :: -- an invoiced or paid Session always has an attached invoice
(invoiced or paid) = (invoice <> null)

thereby tying the state to the existence or not of a link to another object. 

4.9.2 State-Transitions as Actions

Transitions are partial 
action specs

In addition to defining state attributes and their invariants, state charts also depict 
transitions between states. An example state chart for Session is shown in Figure 79. 

The translation is simpleThe change_dates action has multiple transitions, which translate into multiple partial 
action specifications. The transition out of the confirmed state is translated below. For 
brevity, the state chart omitted the parameters used in pre- and post-conditions, but 
we fill these in the textual action specs.

action change_dates (s: Session, d: date)
-- if s was confirmed i.e. transition coming out of the confirmed state
pre: s.confirmed
post: unAssignInstructor(s) & -- assuming an effect with that name

setDates (s, d) & -- assuming effect is defined

Figure 79: Session state-chart with transitions
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confirmable (d) => s.confirmed & assignInstructor (s, d) &
not confirmable (d) => s.tentative

The elements of state chart notation is described below:

A state chart is part of the model of a type. A round-cornered box represents a state — 
the truth of a predicate. Each state implicitly defines an attribute of the type. The 
states in simple state chart are mutually exclusive; nested and concurrent super-states 
have different rules. Normally, the states in one diagram focus on one object. 

Start and end are distin-
guished ‘pseudo’-states

The arrows indicate what sequences of transitions are possible. “ ” indicates which 
state is first entered when the state predicates first become well-defined; this can mean 

when the object is first created; or when this nested state chart is entered). “ ” indi-
cates where they become undefined i.e. when the nested state chart is exited, or the 
object is no longer of any interest. Until reaching the “black hole”, all the predicates 
for the states in the diagram should be well-defined, either true or false.

is exactly the same as

The divergence is not a branch point in the programming sense, but just says there are 
two possible outcomes from this action: its postcondition includes (s1 or s2). Without 
the preconditions, either outcome would satisfy this spec.

Transitions specify pre/
post conditions

State transitions share most of the machinery of effect clauses, described in Section 
4.3.4. State transitions can be used to specify actions as well as named effects.

“[pre]” is a precondition: the transition is guaranteed to occur only if pre was true 
before the action commenced. Notice that this does not say that this transition defi-
nitely does not occur if the precondition is false; to say that, make sure you show tran-
sitions going elsewhere when it’s false.

“/post” — some effect achieved as part of executing this transition.

“↑action” — a (more abstract) action completed as part of executing this transition. 
We’ll have more to say about this in the Chapter 14, Refinement.

[[ receiver.action ]] — part of the effect of this transition is the same as the docu-
mented effect of action on receiver (which is self, the state chart object, by default).

[[ –>receiver.action ]] — part of the effect of this transition is that action is actually 
performed by an invocation on receiver.

s0
[pre1]

[pre2]

[precond] action ↑ r1

↑ r2

s1

s2

/post

SomeType

/post2

a [b]

[c]

s1

s2

a [b]

a [c]

s1

s2
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Translating State Transitions to Actions

A transition illustrates part of the spec of an action.

action Type::a1
pre: s1 && precond
post: s2 && postcond

Multiple transitions 
define conjoined specs

If there are several transitions involving one event, the effects are conjoined. State-
charts give a different way of factoring the description of an action, and a good tool 
would move readily between two views: state chart and textual action specification. 
Each state must have a definition in terms of the other attributes and associations of 
the type. 

Superstates work as 
expected

When using superstates, being in any substate implies being in the superstate. So any 
arrow leaving the superstate means that it is effective for any of the substates.

Transitions define action 
completions

Transitions indicate the completion of the actions with which they are labelled. 
Although the actions may take time to accomplish, the transitions themselves are 
instantaneous; this will become more significant in Chapter 14, Refinement.

4.9.3 State Charts of Specification Types

A single state chart can 
describe only the sim-
plest behaviors graphi-
cally

When drawing state charts, be aware of the primary type 
that is being modeled. In simple cases the states and tran-
sitions are directly of the primary type being modeled. If 
we are trying to specify the behavior of a gas-pump, the 
states and actions labeling the transitions are those of the 
pump itself. It translates directly into actions specs like:

action Pump::hangup pre: ready post: idle
action Pump::pickup pre: idle post: ready

Complex objects have 
many state components

But when the primary type being modeled is complex, its states cannot necessarily be 
enumerated in the simple form required for representing it as a single state chart. The 
behavior of a Scheduler component like Figure 75 cannot be described on a single 
state chart, except with the most trivial states (e.g. “exists”), with all the interesting 
effects described in text on the transitions. This is because the state of the scheduler is 
defined by the states of its multiple sessions, instructors, and courses.

Describe their states via 
multiple state charts

The technique we use here is to draw separate state charts for the specification types 
that constitute the type-model of scheduler. In reality, we are defining the states of the 
scheduler in terms of the states of its specification types. The transitions in the indi-
vidual state charts show what happens to those objects for each of the scheduler’s oper-
ations.

s1 s1
a1 [precond]

Type

/postcond

idle

ready

pumping

GasPump

pickup

squeeze

hangup

release
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The states and transi-
tions are projections of 
the primary type and its 
actions

Each individual state chart effectively specifies that part of every action on the pri-
mary type that has a local effect on that specification type. In contrast, a complete 
action specification defines how one action on the primary type affects any of the 
specification type members. The composition of all change_dates transitions, on any 
and all specification types, constitutes the change_dates operation specification for the 
scheduler. Do not confuse this state chart view with internal design, where we will 
actually be deciding internal interactions between objects within the scheduler, and 
the primary types whose behavior we will describe will be these internal objects. 

This is a useful and gen-
eral technique

A useful technique in specifying a 
large component is to draw a state 
chart that focuses on all the elements 
of a particular type within a larger 
model —for example, showing what 
happens to the shapes in a drawing 
editor for each of the editor’s opera-
tions. select(self) is a shorthand for 
select(s) [s=self]. It’s important to 
realize that this is really a state chart 
for the editor, in which the states are 
defined in terms of the states of its 
shapes. 

We can translate this to text form like this; it is slightly more convenient to use a single 
effect clause than separate the pre/post style here:

action Drawing_Editor::select (shape:Shape)
post: -- every shape in the current document is affected as follows

current_doc_contents ->forAll ( s |
-- if it’s the target and was selected, unselect it
((s.selected && s=shape)@pre ⇒  unselected)
-- if it’s the target and was not selected, select it

& ((s.unselected && s=shape)@pre ⇒  selected)
)

Figure 80: State Charts of Specification Types
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Advanced Topic4.9.4 Underdetermined transitions

Transitions need not be 
fully deterministic

Sometimes a state chart will be deliberately vague about the outcome of an action. The 
reason is usually to allow subtypes to make different choices, while the supertype 
gives the broad constraints, or to simply define a minimal partial constraint.

What does it mean to be 
under-determined?

At any moment, a transition is said to be ‘feasible’ if, before the current action began, 
the system was in the state at the arrow’s source end and any precondition it is 
labelled with was true. You are allowed to write a state chart for which there are sev-
eral feasible transitions at any moment, called an underdetermined set of transitions. 
When this is the case, what state will we end up in?

Based on this spec you 
cannot assume a unique 
outcome

The answer is that we will end up in one of them, but as a client you can’t make any 
assumptions about which one it might be. This doesn’t mean it’s random — just that 
there are forces at work of which you, based solely on the current spec, are unaware. 
As a designer you might be able to choose whichever you like; but you will probably 
be constrained by the requirements from another view or a particular subtype.

Dialling a phone has 
many outcomes

For example, dialling a phone number — dial_number — has several possible out-
comes. As users we are unaware of the factors that will influence the outcome.

At some level all out-
comes are determined

There is an engineer’s view in which you can describe what the outcome will be in 
terms of the capacity of the lines and whether the other end is engaged on a call; but 
from the point of view of the phone user at one phone, these factors are unknown.

So why leave them 
under-specified?

Isn’t it a bit pedantic to insist on drawing the picture that doesn’t show the precondi-
tions on dial_number? After all, moderately educated phone-users know what really 
cause these outcomes, and even when they don’t, there is always a cause that we, the 
designers of the phone system, know about. 

Because the precise 
causes may differ in a 
different context

Well, in this case, perhaps. But indeterminate state charts will be important when we 
discuss components. This component may be combined with a wide variety of others, 
including ones not yet known of: so we actually don’t know what the causes are, just 
what the possible outcomes can be. This might happen if we allowed our phone 
instrument to be connected to a new kind of switching system. As long we have a way 
of re-using this under-specified model, and adding to it in another context, this is a 
worthwhile separation to make.

idle dialTone

lines_busy

offhook

dial_number

dial_number

party_busy

dial_number

ring

connect

onhook

Phone

complete

Figure 81: Underdetermined transitions
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Advanced Topic Silent transitions

A transition may even 
have an unknown trigger

The phone example shows one other way in which state charts can show nondetermi-
nate behavior. It is possible for a system to change state without you knowing why or 
when, and without you doing anything to it. Again, this does not necessarily imply 
pure randomness, just that either we don’t know what might cause the change (as 
when waiting for public transport, which no mortal understands) or that if we do 
know, we don’t know whether or when that cause will happen (as when hanging on 
to see if the phone will be answered). 

Silent transitions also let us describe systems that are not purely re-active, since the 
partial descriptions permit transitions with unknown causes.

4.9.5 Ancillary Tables

Two tables make the 
state view a better com-
plement

State charts themselves provide a useful and different view of behavior from action 
specifications. They focus on how all actions affect one specification type, highlighting 
sequences of transitions, as opposed to focusing on the complete effect of one action 
on all affected types. There are two related tables that can be very helpful in conjunc-
tion with state charts, to check for completeness and consistency.

State transition matrix

A state chart can be represented by a matrix:

Writing the matrix is a valuable cross-check to ensure 
that each action has been considered in each state. This matrix can be automatically 
generated from the state charts themselves; it better highlights combinations that may 
have been overlooked.

State Definition Matrix

Each state should be defined in terms of attributes and associations in the model. Fre-
quently these boil down to simple conjunctions of assertions about them, so are easy 
to show in a table. Even if this table is never written, it is always useful to define each 
state as a function of the existing attributes and associations. 

State e1 e2 e3

S1 [g1] S2 X I

S2 X S3 / pp X

S3 S2 [ ] S1

State attr1 assn1 assn2 Full Definition of State

S1 >30 null <> null attr1>30 & assn1=null & assn2 <> null

S2 >2, < 3 null <> null 2 < attr1 < 3 & assn1=null & assn2 <> null

S3 > 0, < 2 <> null 0 < attr1 < 2 & assn1 <> null

S1 S2

S3

e1 e2e3

X = shouldn’t happen
I = nothing happens
[   ] = determined in subtypes

/pp

e1 [g1]
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4.10

 

Specification Types vs. Design Types

 

Advanced Topic

 

The reason we are interested in specifications is to describe how a client should use a 
component (whether a software component or part of an organization; and no matter 
whether a complete software system or a large or small part of one). And what we 
really want to say about a component is 

 

what it does

 

 — its behavior, the actions it takes 
part in.

 

An implementation can 
look different internally 
from the external spec

 

We have seen how to specify the externally visible behavior of a 
type by specifying actions in terms of a type model of attributes. 
Since a type doesn’t necessarily have to be designed along the same 
lines as its model, it may be that the implementation does not 
explicitly represent distinct and separate objects that belong to the 
types used within that model. When designing, some people like to 
distinguish those types they have decided to implement — “design 
types” — from those that are just there to help write a specification 
— “spec types”. Design types are drawn with a heavier border.

 

Clients only need to 
know external behavior

 

Now, clients are not interested in how it works inside: only the designer is interested 
in that, and he ought to be in a considerable minority. But in order to describe the 
actions clearly, we need to write a model of the component’s state. Here is a typical 
dialog or thinking process involved:

“This command generates a print job” 

 

— what’s a job?

 

 “It’s a thing with pointers to 
a user and a file” 

 

— what can I do with it?

 

 “Oh, you can’t get hold of one yourself, 
but you can list all the jobs there are, and cancel any of your own” 

 

— so there is one 
big list of jobs in there?

 

 “Yup.” 

 

— isn’t that a bit inefficient, considering there are so 
many different printers all over the Department? Wouldn’t it be better to send each job to 
its own printer?

 

 “Uh, well yes, that’s how it’s really done of course; and actually, 
there’s really no such thing as a job, we just append the user name to the file. And 
actually, there’s this hash table,...” 

 

— But if I think of it as a big list of jobs, I’ll under-
stand how to use the system?

 
 “Yes” 

 
— thanks, that’s what I need

 
.

 

Some terms and concepts 
are hypothesized

 

In this scenario, not only the attributes of the printing system — the list of jobs — but 
also the type of objects they contain (Job) is a convenient fiction hypothesized to 
describe its behavior aside from all the implementation complexities. Job’s attributes 
also might or might not be directly implemented. Job is called a 

 

specification type

 

, or a 

 

model type

 

 — it is only there for the purpose of modeling.

 

Others must be explic-
itly implemented

 

Types that are ‘really’ there (in the sense that they are separable and take part in 
actions and we intend to implement them) are called 

 

design types.

 

 Many types are 
used for both purposes — for example, Date is often used in specifications and also 
has many implementations. Also, in some situations the specification requires an 
implementation not just of a primary type, but also of related types as required for 
input and output parameters e.g. §8, p.153.

 

The key distinction is 
who participates in 
actions

 

Typically, a design type will be specified with a model drawn inside it, using model-
ing types. Only a design type can participate in an action, and every type that is spec-
ified as participating in an action is a design type. Specification types do not really 
have actions of their own; but partial specifications (“effects”) can be attached to them 
for convenience, as shown in Section 4.10.1.

Spec Type

Design Type

...

*
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However, there is nothing to stop a type that happens to have an implementation 
somewhere also being used in a model. The more important design decision is how 
the types in an implementation will be used, and those decisions are recorded in col-
laboration diagrams.

 

4.10.1 Factoring to Specification Types

 

Action effects may 
depend on spec types

 

There are many cases when the outcome of an action depends on the type of the object 
or objects to which it is applied; indeed, this is one of the mainstays of the object-ori-
ented approach.

 

e.g. different financial 
instruments

 

For example, if a financial institution keeps a variety of instruments under your name 
— life-insurance, mortgage, savings account, pension, etc. — what happens when you 
notify their system that you have died? (Well — perhaps someone does it for you!) 

 

But the action is still on a 
containing type

 

The outcome is different for each different type of Account: the life insurance pays out 
and stops expecting regular pay-ins, the mortgage demands immediate repayment of 
its outstanding balance, the savings account does nothing, and the pension stops reg-
ular payouts. Yet the action itself is simply on the financial system itself; committing 
to more would be internal design decisions.

 

We can factor the effects 
onto spec types

 

The easiest way to deal with this is to factor the action spec as effects into the model’s 
types (the short

 

 (pre:–post)

 

 here is just for brevity):

 

This is not design; just 
factoring of a spec

 

Does this mean we are doing some design — assigning responsibilities and deciding 
internal interactions to the modeling types? Not really — we’re just distributing the 
action spec among the concepts with which it deals, much as we did with state charts 
in Section 4.9.3. If there happens to be an implementation of, say, Mortgage, we are 
not referring to that implementation and the particular properties of its code: just the 
specification. 

Yes, we could decide to design an object that is a member of the LifeInsurance type of 
our model; and yes, in that case it could very likely have a ‘die’ operation conforming 
to spec as given in the LifeInsurance type-box. But it’s likely that the only design deci-

 

Account
payment history
regular payment

Financial System

Customer
*

action die(c: Customer) 
post: (ac : c.accounts, ac.die( ))

* (c.departure = today)

LifeInsurance

effect    die( )  

attributes

 

Mortgage

effect    die( )

Savings

effect   die( )

Pension

effect die( ) 

 -- every account does its own thing
 -- and we record customer’s death

(pre :– post )  ( pre :– post ) ( pre :– post ) ( pre :– post )

attributes attributes attributes

Figure 82: Factoring the effects of an action to spec types
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sion we’ve really taken so far is to implement FinancialSystem; and perhaps not even 
that — this model may be just a factored part of some larger one. It would still be pos-
sible to represent the information about a Customer’s various policies in some spread-
around way, with no single item corresponding entirely to any one type of account.

Design decisions will be 
recorded in refinements

Design decisions are recorded separately, as refinements and ultimately as code. In a 
support tool, you know that a type is (to be) implemented if it has a link to one or 
more refinements (even if they aren’t fully filled in yet). Some people like to draw 
with a bolder outline a type which has been, or is intended to be, implemented.

Not all types will be used in the design. If a collaboration documents messages being 
sent to members of a given type, then clearly that type will have to be implemented in 
some way.

4.10.2 Factoring — specify effects abstractly

Even if action effects 
vary across subtypes, 
find abstract attributes 
and common spec

The ‘die’ example placed very different outcomes 
in each type. But where possible, it pays to look for 
something common between the supertypes. For 
example, moving a Shape in a graphical editor is 
very different in terms of the attributes of each 
subtype; but we can express the required effect in 
common terms, of what happens to the points con-
tained within each Shape.

Although the most natural attribute models for 
circle, rectangle, triangle would be quite different, 
we can abstract them into a single parameterized 
query, contains (Point); any shape is defined by 
which points it contains. We define move in terms 
of this abstract attribute, and then simply relate the different shapes to this attribute.

Shape
contains (Point): Boolean
move (v: Vector)
post: (p: Point, -- any point, p

contains(p)@pre 

Circle
radius: Length
centre:Point
inv contains (p: Point)
⇔ p–centre < radius

// move needs no further spec

      ⇔  contains(p+v) )
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4.11

 

Outputs of Actions

 

Modeling outputs is a 
conscious abstraction

 

Much of the focus of a typical postcondition is on the effect of an action on an object’s 
internal state. But we also need to describe the information that comes out of an action 
back to the invoker, or any output signals or requests that are generated to other 
objects. There are several approaches to this.

 

4.11.1 Return values

 

return values

 

An action can have a return type, the return value being the identity of some new or 
pre-existing object, used by the sender. Within the postcondition, 

 

result

 

 or 

 

return

 

 is 
the conventional name given to this value. Actions with return values are usually 
functions i.e. they have no other side effects.

 

function square_root (x:float)
post

 

:

 

 abs (result * result – x) < x/1e6

 

4.11.2 Out parameters

 Out parameters bind to 
attributes; ordinary ones 
bind to objects.

 Input parameters represent object references that are provided by the caller; return 
values represent object references returned to the caller, to deal with as needed. While 
out parameters can be broadly considered similar to return values, the details are 
somewhat different. The post-condition of the operation will determine the value of 
the out parameter and its attributes; however, the client will call this operation with 
these out parameters bound to some attribute selected by the client. 

 

action Scheduler::schedule_course (course, dates, out contract)
post: .... & contract = Contract.new [...]

action Client::order_course
post: scheduler.schedule_course ( c1, 11/9, self.purchase_order.contract)

 

An ordinary parameter refers to an object; an 

 

out

 

 parameter refers to an attribute, 
which might be as simple as a local variable of the caller. An out parameter can there-
fore be used to specify that a different object is now referred to by the bound attribute; 
an ordinary parameter can only change the state of the object it refers to.

 

out

 

 is like a C++ reference parameter. Other programming languages, like Java and 
Eiffel, do not have these features, which shows that it is possible to do without them 
in an implementation language. However, the idea of having multiple return values is 
itself very convenient in both specification and implementation.

 

4.11.3 Raised actions

 

A post-condition can 
specify invocations

 

It is also possible to state as part of a postcondition that another action has been 
invoked, either:

 

Synchronous

 

• Synchronously — the sent action will be completed as part of the sender. Its post-
condition can be considered part of this one. Written: 
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[[ r := –> receiver.anAction(x,y) ]]
r is a value returned from the message.

 

Asynchronous

 

• Asynchronously — the request has been sent; the action will be scheduled for exe-
cution later, and its completion may be awaited separately.

• Request sent to a specific receiver, and the action has been scheduled:

 

[[ sent m –> receiver.anAction(x,y) ]]
m is an 

 

event identifier

 

 that can be used elsewhere

 

• Request sent to an unspecified receiver; action has been scheduled.

 

[[ sent m –> anAction(x,y) ]]

 

• A previously sent action has been completed and returned r.

 

[[ m ( ... ) = r ]]

 

Advanced Topic

 

4.11.4 Specifying sequences of raised actions

 

Output actions some-
times must be sequenced

 

When specifying raised actions, it is sometimes necessary to specify that they happen 
in a particular sequence — to describe the protocol of a dialogue. You might want that 
an “open_comms” action sends certain messages to a modem object in a particular 
order. We wish to specify this while retaining our basic premise of just using initial 
and final states in post-conditions.

 
Some receiver must 
accept that sequence

 
In effect, this is telling your designer something about the type of the intended 
receiver. You may tell me absolutely nothing else about it, but I do know that it can 
accept messages a, b, c in a particular order, and that at certain times you require me 
to have sent all three in that order.

 

...specified as a local 
view of that receiver

 

This is equivalent to saying that I have been asked to get it into the state of “having 
received message c”. I haven’t been told what that state might signify as far as the 
receiver is concerned; just that I’ve got to get it there. But also, you tell me that I must 
first send message b: in other words, the modem has a state — as far as I am con-
cerned — of “having received message b”, which is a precondition of c. 

 

The post-condition sim-
ply achieves the target 
state

 

So the simplest way to specify that a sequence of messages must be sent as part of the 
outcome of an action, is to make a minimal local model of the state transitions for the 
receiver, and specify that the final target state is reached:

 

action

 

 

 

OurObject:: 
open_line(m:LocalViewOfModem)

pre

 

:

 

 m.idle
post

 

:

 

 m.ready
& various effects on our own state

 

By using the full apparatus of state charts, we can 
specify sequences that are linear, branching, and 
concurrent.

Used in this way, states shown as separate in this 
local view can turn out not to be separate in an implementation of the modem; they 
are, however, separate in our object’s implementation, since it must generate in 

ModemLocalView

OurObject

idle

s2ready

s1
a

b
c

open_line(m)
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sequence. 

 

OurObject

 

 would work if we provided a modem that ignored operations 

 

a

 

 
and 

 

b

 

 but went straight from 

 

idle

 

 to 

 

ready

 

 on 

 

c

 

. Provided there are no operations for 
actually finding out its state, that’s OK. 

Sequential outputs are often better dealt with as refinements, as described in Chapter 
14. State charts are also are used to describe a collaboration refinement (in which 
‘zooming in’ on an action shows it to be a dialogue of smaller ones). 

 

Advanced Topic

 

4.11.5 Sequence expressions

 

Textual sequence expres-
sions are better drawn as 
state charts

 

It is occasionally useful to write a sequencing constraint in text form, although they 
could usually be described using the preferred state chart technique from the previ-
ous section. For example:

 

action

 

 

 

stay (c: Customer, h: Hotel, dd: Dates)
post:

let bill: Money = h.rate * dd.days in
[[ make_reservation (c,h,dd)    ;    

change_dates (res, dd)*    ;    
check_in (res); 
check_out(res, bill) ]]

 In other words, a stay in a hotel is a sequence of making a reservation, possibly chang-
ing the details (any number of times), checking in, then checking out (including pay-
ing the appropriate bill).

Sequence-expression [[... ]] shows the permitted sequence of more detailed actions — 
not a prescribed program. The elements of the syntax are as follows, where 

 

S1 etc.

 

 are 
usually expressions about actions:

S1 ; S2 S1 always precedes S2

S1 | S2 S1 or S2

S1 * Any number of repetitions of S1

S1 || S2 S1 concurrent with S2

All sequences 

 

[[ ... ]]

 

 are an abbreviation for a state model with the implication:

 

(start => done)

 

where the two states are defined by a state model, whose exact nature depends on the 
sequence expression:

 

[[ S1 ; S2 ]]

[[ S1*; S2]]

[[ S1 | S2]]

start dones1xS1 S2

start dones1xS1 S2

S1

start doneS1
S2
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[[ S1 || S2]]

done
S1

S2
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4.12 Subtypes with Attributes and Invariants

A type specifies a set of 
objects

A type defines a set of objects by specifying certain aspects of those objects; every 
object that conforms to that specification, regardless of its implementation, is a mem-
ber of that type, and vice-versa. For example, a ServiceEngagement type could define 
any object that constitutes a service engagement with a client. Any object with a suit-
able definition of the five attributes is a ServiceEngagement.

A subtype can extend the 
definition of a supertype

A subtype extends the specification of its supertype. It “inherits” all properties 
(attributes and invariants) of the supertype, and adds its own specifics. Since all 
supertype properties still apply to it, and its members have to conform to all proper-
ties, every member of a subtype is also a member of its supertype i.e. a subtype’s 
members are a subset of its supertype members.

Subtype.forAll (x | x.isTypeOf (Supertype))

All properties are inher-
ited

The types CourseEngagement and ConsultingEngagement could both be subtypes of 
ServiceEngagement. Objects of the CourseEngagement type have a total of 6 
attributes defined on them; these objects may have different implementations of these 
attributes, so long as they map correctly to the specified attributes, and are related 
consistent with all invariants. Their fees are determined by the fees set for the course; 
the margin must factor in travel expenses and production costs for student notes. 
Engagement dates are fixed by the startDate and the standard course duration.

Clearly attributes students and course do not apply to consultingEngagements. The 
rules that constrain dates, fees, and margins could be quite different. Still, all five com-
mon attributes can be defined for any consultingEngagement. 

Figure 83: Subtype extends definition of supertype

ServiceEngagement

client: Client
dates: DateRange
by: Consultant
fees: Money
margin: Money

CourseEngagement

students: Integer
travelExpenses: Money
startDate: Date
inv fees = course.fee
inv margin = fees

- travelExpenses
- course.unitCost * students

inv dates = .....

Course

fee: Money
duration: Duration
unitCost: Money

course   1

*

 

sub-type (type extension)
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We could well discover further commonality between the subtypes. On closer consid-
eration, both of them follow the same basic rule for their 

 

margin

 

: 

 

margin = fees - travelExpenses - additionalCosts

 

Common specs can be re-
factored to the super-
type.

 

Parts of this invariant are defined differently for each subtype. Consulting fees are 
determined by the expertise of the consultant and the length of the engagement. 
Additional costs for a course are due to the per-student production costs; additional 
costs for consulting may be due to the preparation time required for the engagement 
and the actual cost for the assigned consultant. Despite these differences, the broad 
structure of the invariant is the same, and can be defined just once in the supertype.

 

A type is not a class

 

A type is not a class. A class is an OOP construct for defining the common implemen-
tation — stored data and executed methods — of some objects, while a type is a speci-
fication of a set of objects independent of their implementation. Any number of 
classes can independently implement a type; and one class can implement many 
types. Some programming languages distinguish type from class. In some languages, 
writing a definition of a class also defines a corresponding type

 

1

 

.

 

A subtype does not 
imply a subclass

 

A subtype is not a subclass. Specifically, a subtype in a model does not imply that an 
OOP class which implements the subtype should subclass from another OOP class 
that implements the supertype. Subclassing is one particular mechanism for inherit-
ing implementation with certain forms of overriding of 

 

implementation

 

; however, with 
subtyping, there is no overriding of 

 

specifications

 

; just extension.

 

Not all subtype are inter-
esting

 

As with objects and attributes, there are many ways of partitioning subtypes. 

 

Service-
Engagement

 

s could be viewed based on their geographic location (domestic vs. inter-
national), taxation status (taxable or not), nature of service provided (consulting vs. 
training), etc. Which of these are relevant is determined primarily by the actions that 
we need to characterize, and the extent to which the sub-typing helps describe these 
actions in a well-factored way.

 

4.12.1 Common Pictorial Type Expressions

 

There are several commonly used combinations and variations of subtyping in mod-
els. This section outlines them and the corresponding notations.

 

4.12.1.1 Subtype

 

TA1

 

 extends 

 

TA

 

 — it inherits all its attributes and action-specs. 

 

TA1

 

 
may add more action specs, for the same or different actions. Viewed 
as sets of objects:

 

TA1 

 

⊆ 

 

TA

 

Example: 

 

1.  Java distinguishes interface (type) from class (type and class). A C++ class is also a type. 
Smalltalk: type corresponds to a message protocol; class is independent of type

TA1

TA

CowMammal
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4.12.1.2 Multiple supertypes

 

TAB 

 

has all the properties specified on the supertypes. Any action 
with specifications in more than one supertype must conform to 
them all. Viewed as sets of objects:

 

TAB 

 

⊆ 

 

TA * TB

 

Example: 

 

Subtype is strictly addi-
tive

 

The subtype conforms to all the expectations that any client could have based solely 
on the guarantees of one supertypes. Further requirements particular to this subtype 
may be added. It’s perfectly possible to combine two types that have conflicting 
requirements, so that you just couldn’t implement the result.

 

4.12.1.3 Type exclusion

 

The two types are mutually exclusive i.e. no object is a member 
of both.

 

TA1 * TA2 =

 

 

 

∅

 

4.12.1.4 Type partitioning. 

 

Every member of 

 

TA

 

 is a member either of 

 

TA1

 

 or 

 

TA2

 

, but not 
both. There may be more than one partitioning of a type, each 
drawn with a separate triangle.

 

TA = TA1+TA2

 

Example: 

 

4.12.1.5 State-types.

 

TA1

 

 and 

 

TA2

 

 are sets (not true types) to which members of 

 

TA

 

 
belong when in a given state, defined by a predicate on 

 

TA

 

 
(usually in terms of attributes of 

 

TA

 

, but see Section 4.13). If the 
determining attributes are not 

 

const

 

, then objects can migrate 
across the state types; otherwise the classification of an object is 
fixed by the determining attributes at the time of its creation. 
This construct is a convenient way to define conditional type 
membership, of the form: 

 

a TA is also a TA1 if it has property x<a; 
in which case it also has these other properties (z, etc)

 

.

TA

TAB

TB

CowMammal Non-flier

TA

TA1 TA2

TA1

TA

TA2

CowMammal

Tiger

Non-flier Flier Bat

Animal

TA1

TA

TA2

x

x<a

x>a
z
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Example: 

 

State types let you use 
very natural names

 

This is a form of checked subtype relation, providing an implicit classification facility. 
It lets you use predicates as type names, and is helps to bridge some common and 
intuitive usage of terminology that may not map to a strict meaning of types. Con-
sider what state types of Person would permit the following:

 

Club::admit (t: Teenager)
post: t.stipend.depleted

[[ t.hasEnjoyedSelf() ]]

BabySitter::admit (b: Baby)
pre: b.diaper.unsoiled
post: [[ b.hasEnjoyedSelf() ]]

 

Advanced Topic

 

4.12.2 General Type Expressions

Since types define sets of objects, we can use set operations to combine types. These 
expressions can be useful in assertions. In that context, the name of a type refers to its 
current set of existing objects.

jo : Student Object jo is a member of the type Student, conforming to the
behavioral requirements set by Student.

Tutor * Student the type whose members are in both these types. Maybe laura :
(Tutor * Student) .

Tutor + Student the type whose members are in either or both type. We might
define a type: CollegeMember = Professor + Student

Person – Pilot the type whose members behave according to the first type’s def-
inition, but have behavior inconsistent with the second.

Object the type to which all objects belong; all other types are its sub-
types.

Impossible the empty type to which no object belongs, characterized by any
type-definition that is inconsistent. 

NULL has only one member, null (or ∅ ), the value of an unconnected
link.

Seq(Phone) application of a generic type Seq(X) to a specific type Phone.
Other standard generic types include Set and Bag.

[T] the same as T + NULL; all ‘optional’ attributes are of this form.

Person Employee

Unemployed
getFired
post: self : Unemployed

employer <> null

employer= null

Employer
0,1
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4.13 Subjective model — the meaning of “containment”

Type model ‘contain-
ment’ means two things

When we specify a type, we will often depict its attributes and specification types 
with a distinguished “root” type by using a form of visual containment, as shown in 
Figure 84(a) (or with a distinguished type node marked with «root», in (b); the former 
has the advantage of permitting multiple levels of nesting, to which these rules apply 
uniformly). This is more than a cosmetic choice; it has a specific semantic meaning.

There are two meanings to a type diagram with a “root” type. Both are illustrated by a 
traslation to this explicit model:

Enclosure All paths from A back to A that use only associations defined
within the box (or, that do not use any links marked «cross») are
guaranteed to get back to the same instance of A i.e. all links lie
within the tree of objects that is rooted at self:A. By contrast,
though a.b.x.d is certainly a member of type A, it need not be =
a. Thus, an engine is connected to a transmission, provided they
are within the same vehicle. This rule works as expected across
multiple levels of nesting. 

Subjective 
model The types locally named B and C, and their associations b, c, and

d, all form part of a A’s model; they are really ‘state types’ i.e.
those members of B (or C) who happen to be contained within
an A. Brought outside the boundary of A, they have prefixes to
their names. In a different context, every B might not be linked to
a C. For example, to the Invoicing Dept, Customers are linked to

Figure 84: Type model: (a) with “containment” (b) with “root”

A

B C

b
c

d

specification or model type
root type

A «root»

op 1 pre...post...
op 2 pre...post...

B C

b
c

d

(a) (b)

«cross»
x

x

A

A::B A::C

x

cb
d

inv A:: b.c.d=self

B C

A->exist(a | a.~d=self)A->exist(a | a.b=self)

enclosure rule

subjective model
any B in context of A is A::B

Figure 85: Interpretation of “containment”
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Products, while Warehousing knows only that Products have
Parts. Containment represents a localized view. 

The local usage of a type is a state-type of the common usage. In
addition, local usages can also directly refer to attributes or oper-
ations on their container1. This makes it simple to write localized
specifications of actions and effects, as discussed in Section 4.9.3.

As a matter of style, we use containment to depict specification types that have been 
introduced simply to describe operations on the primary type of interest. Sometimes 
we will also need to describe operations on the input or output parameters of these 
operations, as shown in Figure 68.

Without such a mechanism, it becomes difficult to know whether the properties 
defined on B are intrinsic to all B’s i.e. apply to it universally; or whether those proper-
ties are defined only on those B’s which happen to be within an A. When an engine 
runs, does it always always turn the wheels of the car? How about when it is driving a 
boat? Or when it is mounted on a test jig at the mechanic’s?

1. In the manner of inner classes in JavaBeans, and closures or blocks elsewhere
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4.14 Programming Language: Classes and Types

Our focus on this chapter is on specifying the behavior of objects using types, not on 
how to implement them with classes. This section briefly descibes the link between 
modeling with types and implementing with classes.

Class prescribes internal 
structure

A class is an implementation unit that prescribes the internal structure of any object 
that is created as an instance of it. An object belongs to one class throughout its life.

Classes can be imple-
mented in any language

‘Class’ is an OO programming concept — which doesn’t necessarily mean an OO pro-
gramming language concept. There are patterns for the systematic translation of OO 
designs to other data and execution models. You can employ these if, for example, 
you need to write in a traditional language like Fortran or assembler — perhaps for 
especial control of performance. That way, you still get the benefits of OO design 
(modularity, re-use, etc). Of course, OO programming languages best support object 
design.

Classes also cover persis-
tent objects

OO-to-non-OO patterns must also be applied outside the scope of your programming 
language. For example, C++ works with an OO model in main memory, but leaves 
persistent data up to you — you can’t send an object in filestore a message. If you can 
secure a good OO database you’re in luck; but otherwise, you’re typically stuck with 
plain old files or a relational database, and need to think how to encode the objects. 
Your class-layer design should intially defer the question of how objects are distrib-
uted between hosts and media.

The class layer of design So there is a ‘class layer’ of design described entirely in terms of classes, with related 
types, which can be implemented directly in a language like Java, Eiffel, or C++; or 
otherwise by judicious application of class-to-non-class patterns. 

Not all OOPLs have classes. In Self, an object is created by cloning an existing one; 
objects delegate dynamically to others, rather than statically based on their class 
inheritance; and methods can be added dynamically. Nevertheless, Self designs cer-
tainly use the idea of Type.

Figure 86: Class models

ClassName 
<<class>>

- var1: T1
- var2: T2

+ m1 (...) { ..body...}
- m2 (...) { ..body...}

Type <<type>>

attributes

action m1 post ....
effect m2 post ...

<<implements>>

ClassName 
<<class>>

- = private
+ = public

class inheritance
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4.14.1 Messages and operations

Classes implement oper-
ations

A class contains code for the operations the object ‘understands’ — that is, the opera-
tions for which there are specifications, and hence that clients could expect to send it.

• Message — an invocation of an operation, consisting of the name of the operation, 
the identity of the recipient, and a set of arguments. Like a procedure call, except 
that it is a request to an object: the same message sent to different classes of object 
can have different outcomes. “Who performs this operation?” has an interesting 
answer in an OO program; in a conventional program, it’s just the computer!

• Operation — a procedure, function, subroutine. The traditional OO term is 
‘method’, but we prefer to avoid confusion with the method you follow (hope-
fully) to develop a program. In analysis, and at a more abstract level of design, we 
talk about actions: an action-occurrence may be one or more operation-invoca-
tions.

• Receiver — the object distinguished as determining which operation will be 
invoked by a given message. Normally thought of as executing the operation, 
which has access to the receiver’s variables.

Not all OOPLs have a receiver. In CLOS, it is the combination of classes of all the 
parameters that determines what method will be called: methods are not specifically 
attached to classes.

4.14.2 Internal variables and messages

There are 4 primary kinds of variables in an object-oriented program:

• Instance variables: data stored within fields in each object
• Parameters: information passed into, and out from, methods
• Local variables: used to refer to temporary values within a method
• Class variables: data stored once per class, shared by all its instances.

Operations use object 
variables

Operations read and write variables local to each object. A variable refers to an object: 
it is important to distinguish variables from objects, as one variable may be capable of 
containing at different times several types of object (for example, different kinds of 
Shape), that will respond to messages (e.g. draw) differently. In some cases, several 
variables may refer to one object.

Every variable has several key features:

• Type — the designer should know what types of object may be held in a variable 
— that is, the expected behavior of the object to which it refers. In Self and bare 
Smalltalk, this is left to the design documentation; in C++, Java, and Eiffel, it is 
explicit and some aspects are checked by the compiler. Explicit typing is allowed 
in some research variants of Smalltalk because it makes it possible to compile 
more efficient code; other compilers try to deduce types by analysing the code.

• Access — which methods can get at it. In Smalltalk, all variables are encapsulated 
per object: methods cannot get at the variables of another object, of any class. In 
Java, variable access can be controlled within a package (= group of classes 
designed together), or at a finer grain. This makes sense, as each package is the 
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responsibility of one designer or team; and any changes within the package can 
readily be accommodated elsewhere within the same package. Encapsulation is 
only important between different pieces of design effort. C++ has access control 
per class: an intermediate position, making an intermediate amount of sense.

• Containment— in Smalltalk, Eiffel and Java, all variables contain references to 
other objects: implicit pointers that enable objects to be shared and allow the uses 
of an object to be decoupled from its size and the details of its internal declaration. 
In C++, some variables are explicit pointers, and others contain complete objects. 
The latter arrangement yields faster code but no polymorphism: that is, one class 
is tied to using one specific other — not a generic design. So in general, we con-
sider containment to be a special and less usual case.

Within this book, we assume that variables are typed, that access can be controlled at 
the package level, and that variables contain implicit references — in other words, the 
scheme followed by Java, Eiffel, and others.

4.14.3 Class extension

Class inheritance is one 
mechanism to re-use 
implementation.

Inheritance, derivation, or extension mean that the definition of one class is based 
upon that of one or more others. The extended class has by default the variables and 
operations of the class(es) it extends, augmented by some of its own. The extension 
can also override an inherited operation definition, by having one of its own of the 
same name.

Multiple class inheritance 
is tricky.

Various complications arise in inheritance from multiple classes: for example, both 
superclasses may define an operation for the same message, or both superclasses 
themselves inherit from a common parent, and each language will provide some con-
sistent resolution convention. Java and standard Smalltalk prohibit multiple inherit-
ance of implementations for this reason.

Class inheritance over-
hyped.

Inheritance was at one time widely hailed as the magic O-O mechanism that led to 
rapid application development and reduced costs etc. ‘Programming by adaptation’ 
was the buzzphrase: you program by adding to and overriding existing work, and 
will benefit from any improvements made to the base classes. In fact, this turned out 
to be useful to some extent, but only under adherence to certain patterns connected 
with polymorphism. 

Re-use implementation 
only if you intend to re-
use spec.

In general, if you want to base your code on someone else’s, it is best to use your 
favorite editor to copy and paste. Unless the spec of your code is closely coupled to 
theirs, it’s quite unlikely that you’d want to inherit any modifications they make. In 
fact, the big benefit of O-O design comes more from polymorphism — conformance of 
many classes to one spec; if in some cases this is achieved partly by sharing some 
code, then that’s nice, but not necessary. Arbitrary code-sharing just couples designs 
that ought to be independent.
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4.14.4 Abstract classes

Inheriting classes should 
behave compatibly

So ideally, a class should be extended only if the extension’s instances will be substi-
tutable wherever the superclass is expected. For example, if a drawing builder is 
designed to accept a Shape in one of its operation’s parameters, then a Triangle should 
be acceptable — because presumably, the latter does everything a Shape is expected to 
do.

So abstract operations 
need behavior specs.

That raises the question of what a Shape is expected to do — which takes us into the 
next section on types (object specifications). In programming languages, it is common 
for a class to represent a type. The class may perhaps define no internal variables or 
operations itself, but just list the messages it expects. The rest is defined by each sub-
class in its own way. 

Abstract classes approxi-
mate types.

A class that stands for a type, and which may include partial implementation of some 
operations, is called an abstract class. It should be documented with the full spec of 
the type.

Classes with subtypes 
shouldn’t have instances

It is now widely accepted good practice that nearly every class should either be an 
abstract class (prohibited from having instances, but possibly with a partial imple-
mentation) or a final class (prohibited from having extensions).

Classes should depend 
only on other types — 
not other classes.

Types help decouple a design — that is, make it less dependent on others. Ideally, 
each class should depend only on other types, not specific classes. That way, it can be 
used in conjunction with any implementors of the types it uses. 

Use factories to create 
objects.

But there is one case in which this does not work so well: when you want to create an 
object, you must say what class you want it to belong to. However, there are a number 
of patterns such as Factory that help localise the dependencies, so that adding a new 
Shape to the drawing editor (for example) causes only one or two alterations to be 
necessary to the existing code.

4.14.5 Types

Type should still be a 
specification

In a program, a type should be an implementation-free specification of behavior. Dif-
ferent languages provide different support for types:

Java has interfacesJava. A Java interface is a pure type -- i.e. client visible behavior. You define interfaces 
for the major categories of clients you expect to have. You factor your services into dif-
ferent interfaces, and can define some interfaces as extensions of other interfaces (i.e. 
subtypes), to offer suitable client views. This provides those clients with a pluggable 
type requirement, where any object which provides that interface can be used.

interface GuestAtFrontDesk {
void checkin();
void checkout();

}

interface HotelGuest extends GuestAtFrontDesk, RoomServiceClient {
...

}
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A class implements any number of interfaces, and also implicitly defines a new type. 
Behavioral guarantees should be defined on interfaces, but are not directly supported 
by the language itself. You cannot instantiate an interface, just a class.

class Traveller implements GuestAtFrontDesk, AirlinePassenger {
....

}

C++ has pure abstract 
classes

C++. A Java interface is very similar to a C++ “pure abstract” class, with only pure-
virtual functions and no data or function bodies.

   class GuestAtFrontDesk {
        public virtual checkin() = 0;
        public virtual checkout() = 0;
   }

Similarly, a Java extended interface is like an abstract subclass, still with all pure-vir-
tual functions.

   class HotelGuest :public GuestAtFrontDesk, public RoomServiceClient {
        ....
    }

Smalltalk can use mes-
sage categories

Smalltalk. In Smalltalk, when a client Hotel receives a parameter x, that client's view 
of x can be defined by a set of messages HotelGuest={checkIn, checkOut, useRoom-
Service} that client intends to send to x. Hence the type of x, as seen by that client, is 
the type HotelGuest. The language does not directly support, or check, types.

• A client expects a object to support a certain protocol, HotelGuest. 

• Any object with a (compatible) implementation of that protocol will work.

• It is often convenient to get that compatible implementation by subclassing from 
another class, but it never matters to the client whether we subclass or not; we 
could just as well cut/paste the methods, delegate, or code it all ourself. In Small-
talk the only check is a run-time verification that each message sent is supported. 

• The only time the client needs to know the class is to instantiate it.

The class of an object is not really important to that client, as long as it supports the 
protocol. In Smalltalk this may be represented by systematically following program-
ming conventions that use a “message protocol” or “message category” as a type.

4.14.6 Generic types

A generic generates 
many defintions.

A generic definition provides a family of specific definitions. For example, in C++, a 
template class SortedList<Item> could be defined, in which everything common to 
the code for all linked lists is programmed in terms of the placeholder class Item. 
When the designer requires a SortedList<Phone>, the compiler creates and compiles a 
copy of the template, with Item substituted by Phone. 

There are variants on the basic generic idea:
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Either single classes or 
groups of related classes 
can be made generic.

• What is generic— in C++ and Eiffel, classes and operations are the units of generic-
ity. In Ada, many well-thought out experimental languages, and — with any luck 
— a future version of Java, packages are generic. This means that you can define a 
generic set of relationships and collaborations between classes, in the same style 
as the Frameworks (Chapter 10, Model Frameworks and Template Packages (p.389)). 
We argue that this is a very important feature of component-based design.

• When validated— C++ template classes are (and can be simulated by) macros, mere 
manipulations of the program text before it gets compiled. The template defini-
tion itself undergoes few compiler checks. This means that if the design of Sort-
edList<Item> performs, say, a “<” comparison on some of its Items, the compiler 
remarks on this only if and when you try to get it to compile a SortedList<some 
class that doesn’t have that comparison>. A big disadvantage of C++ template 
classes is that they cannot be precompiled: you have to pass the source code 
around. By contrast, the generic parameters of FOOPS [Goguen] come with 
“parameter assumptions” about such properties. The compiler will check that 
you have made all such assumptions explicit when first compiling the generic; 
and can guarantee that it will work for all conforming argument classes.

Catalysis frameworks 
can map to generics

Our Frameworks have parameter assumptions in the form of all the constraints 
placed on placeholder types and actions; and span single types and classes, to families 
of mutually related types and their relationships.

4.14.7 Class objects

A class can itself be an 
object.

In Smalltalk, a class is an object — just like everything else. A class-object has opera-
tions for adding new attributes and operations that its instances will possess. 
Although it is most commonly just the compiler that makes use of these facilities, 
careful use of them can make a system that can be extended by its users; or that can be 
upgraded while in operation. For example, an insurance firm might add a new kind of 
policy while the system is running. In this ‘reflexive’ kind of system, there is no need 
to stop everything and reload data after compiling a new addition. Java offers compa-
rable facilities.

Java also supports such a reflexive layer: classes, interfaces, methods, and instance 
variables can all be manipulated as run-time entities.

Open systems should be 
reflexive

In open systems design, it is important that an object should be able to engage in a 
dialogue about its capabilities — just as, for example, fax machines begin by agreeing 
on a commonly-understood transmission protocol. This comes naturally to a reflexive 
language; others have to have the facility stuck on: C++ has recently aquired a limited 
form of such a feature with RTTI (run-time type identification).

In C++, the static variables and operations of a class can be thought of as forming a 
class-object; but with limited features. There is no metaclass to which class-object 
classes belong, and no dynamic definition of new classes.
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4.14.8 Specifications in classes

4.14.8.1 ‘implements’ assertions

A class implements types To say that a class implements a type means that any client designed to work with a 
specific type in a particular variable or parameter, should be guaranteed to work 
properly with an instance of this class. 

Java supports this 
directly

In Java, types are represented by interfaces and abstract classes. Even though the com-
plete specification of the type (pre and postconditions etc) is not understood by the 
compiler, the clause

class Potato implements Food ...

documents the designer’s intention to satisfy the expectations of anyone who has read 
the spec associated with the interface Food. Java allows many classes to implement 
one interface, directly or through class extension.

class HotPotato extends Potato ...

should mean that the class implements the type represented by its superclass — as 
well as extedning the definition of its code. 

In each case, the interface and abstract class referred to should be documented appro-
priately with a type specification.

C++ rules are slightly 
different

In C++, public inheritance is used to document extension and implementation. private 
inheritance is used for extensions that are not implementations (apart from the simple 
restrictions mentioned above); but the usual recommendation is to use an internal 
variable of the proposed base type instead.

4.14.8.2 Constructors

Constructors initialize 
new instances

A constructor has the property that it creates an instance of the class, and thereby a 
member of any type the class implements:

class Circle implements Shape {
...
public Circle (Point centre, float radius);

// post return:Circle — the result belongs to this Class
// — from which you can infer that return:Shape

Constructors should ensure that the newly created objects are in a valid state i.e. sat-
isfy the expected invariants.

4.14.8.3 Retrieval

Type model attributes 
describe state of imple-
mentation

A fully-documented implementation claim is backed up by a justification; the mini-
mal version is a set of retrieve functions (Section 7.7, “Refinement #4: Operation con-
formance,” on page 315). Writing these often exposes bugs.
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For every attribute in the type specification, a function (read-only operation) is writ-
ten that will yields its value in any state of the implementation. This retrieval may be 
written in executable code for debugging or test purposes, but its execution perfor-
mance is not important. The functions are private, useful for testing but not available 
to clients.

interface Shape {

attribute1 bool contains (Point);// type model attribute
public void move (Vector v); 

// post (Point p, 
// old(self).contains(p) = contains(p.movedBy(v)))

}

class Circle implements Shape {
private Length radius;
private Point center;
private bool contains (Point p) // retrieval

{ return (p.distanceFrom(center) < radius); }
public void move (Vector v) { ... }

}

4.14.8.4 Operation specs

Operations can be speci-
fied precisely

An operation can be specified in the style detailed earlier in this chapter. You can refer 
to the old and new values of the internal variables (and to attributes of their types, 
and of the attributes’ types, and so on). 

Some languages support 
such specs.

Eiffel is among the few programming languages to provide directly for operation 
specs, but they can of course be documented with an operation in any language. In 
C++, suitable macros can be used; Java could use methods introduced on the super-
class Object. For debugging, pre and postconditions can be executed. 

1. This takes liberties with Java syntax. A suitable preprocessor could convert attributes to 
comments, after typechecking them; or leave it as code for testing purposes.
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4.15 Using type specifications

This chapter has dealt in detail with the business of specifying actions — what hap-
pens in some world, or in some system — without going into the detail of how it hap-
pens. Indeed, we have seen an example (§4.4, p.144) of how two different 
implementations can have the same behavioral specification.

The action specifications use the terms defined in a static model (as inthe previous 
chapter). The static and action models together make up the specification of a com-
plete type:

In the chapters that follow, we will use these ideas to build specifications of complete 
software systems and interfaces to components. 

But first we should deal with the interactions that go on between objects: both inside 
the object we have specified, as part of its implementation; and also between our 
object and others, to understand how it is used by our (software or human) clients.

Figure 87: Complex model — pictorial
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Behavior Specifications — summary

 

• An object’s behavior (or part of it) may be described with a type specification.

• A type specification is a set of action specifications; they share a static model that 
provides a vocabulary about the state of any member of the type.

• An action spec has a postcondition, that defines a relationship between the states 
before and after any of its occurrences take place.

• A precondition defines when the associated postcondition is applicable.

Figure 88: Type models
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