
       
 Chapter 3 Static models — Object Attributes 
and Invariants
Outline

Models can be divided into static, dynamic, and interactive parts: dealing with 
what is known about an object at any one moment; how this information changes 
dynamically with events; and how objects interact with each other. 

This chapter deals with the static part of a model, characterizing the state of an 
object by describing the information known about it at any point in time.

The first section is an overview of what a static model is about. Section 3.2 then 
introduces objects, their attributes, and “snapshots”, and distinguishes the con-
cept of object identity from object equality. 

The attributes that model an object’s state may be implemented in very different 
ways. Section 3.3 outlines some implementation variations, using Java, a rela-
tional database, and a “physical” real-world implementation.

Section 3.4 abstracts from individual objects and snapshots of their attribute val-
ues, to a type-model which characterizes all objects with (possibly different imple-
mentations of) these attributes. It introduces parameterized attributes, graphical 
associations between objects, collections of objects, and type constants and type 
combination operators.

Not all combinations of attributes values are legal. Section 3.5 introduces static 
invariants as a way of describing integrity constraints on the values of attributes, 
shows some common uses of such invariants, and outlines how these invariants 
appear in the business domain as well as in code.

The same model of object types and attributes could describe situations in the real 
world, for a software specification, or even of code. Section 3.6 introduces the Dic-
tionary as a mechanism for documenting the relation between model elements 
and what they represent. 
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3.1 What is a static model?

3.1.1 What is ‘state’ about?

An object’s behavior 
depends on history.

Much of how an object responds to any inter-
action with its surroundings depends on what 
has happened to it up to now. Your success in 
checking into a Hotel, for example, depends 
on whether you have previously called to 
arrange your stay. The hotel with which 
you’ve successfully gone through this prelim-
inary courtesy will welcome you with open 
arms, while others on the same night might 
well turn you back into the cold. The response 
to your turning up depends on the previous 
history of your interactions. So it is with so 
many other encounters in life: the drinks 
machine that will not yield drink until you 
have inserted sufficient money; the car that 
will not respond to the gas pedal unless you have previously turned the starter key, 
and provided you have not since switched off; the file that yields a different character 
every time you apply the read operation. The response to each interaction you have 
with any of these objects depends on what interactions it has already had.

State encapsulates his-
tory.

To simplify our understanding of this poten-
tially bewildering behavior, we invent the 
mental notion of ‘state’. The hotel has a reser-
vation for me, the machine is registering 20p, 
the car’s engine is running, the file is open 
and positioned at byte 42. The idea of state 
makes it easier to describe the outcome of any 
interaction: because instead of talking about 
all the previous interactions it might have 
had, we just say (a) how the outcome depends 
on current state, and (b) what the new state 
will be.

State need not be directly 
observable.

It doesn’t matter much whether the user can observe the state directly — through a 
display on a machine or by an enquiry with a person, or by calling a software func-
tion. To provide such a facility is often useful; but even if it isn’t there, the model still 
fulfills its main purpose, to help the client understand the object’s behavior. Take 
away the numeric display in the cartoon, but leave the instructions and the crucial 
state attribute ‘Amount’: the machine is still more usable than with no such model.

State is independent of 
implementation.

Nor doesn it matter how the state is realised. The hotel reservation might be a record 
in a computer, or a piece of paper, or a knot in the manager’s tie. The same applies 
inside software as well: the client objects should not care how an object implements its 
state. State is a technique that helps document the behavior of an object as seen by the 
outside world. 

Sludge

Diet Sludge

Taste-free Sludge
English beer flavor

Regular Sludge

Money;

Drink
Select;

? 10¢ < 65¢

Sludge

Diet Sludge 65¢

Taste-free Sludge 80¢

English beer flavour £1.20

Regular Sludge 65¢

Inserting a coin
increases Amount
by value of coin

Amount

If Amount
>= price, 
selection 
yields drink
and sets
Amount=0

Get drink here->
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State is encapsulated in 
objects.

In fact, it is quite important that a client should not depend on how the state is imple-
mented. Back in the olden days of programming when a team would write a software 
system from scratch, every part of the system was accessible to every other. You just 
had to stick your head above the partition to shout across at whoever was designing 
the bit whose state you wanted to change. But in recent times, software has joined the 
real business world of components that are brought together from many sources, and 
you oughtn’t to interfere with another object’s internal works, any more than you 
should write directly on the hotel’s reservation book (or the manager’s tie). It would 
be wrong and inflexible to make assumptions about how they work.

3.1.2 Drawing pictures of states

Snapshots show exam-
ple states.

To illustrate a given state, we use “snap-
shots”. The objects represent things or con-
cepts; the links represent what we know 
about them at a particular time. In this exam-
ple, we can see that Jo is currently occupying 
Room 101; and Dipak is currently scheduled 
to occupy Room 101 next week. 

Dynamic behavior: 
changes in the states.

Actions can be illustrated by showing how 
the attributes (drawn as lines or written in 
the objects) are affected by the action. Here, 
the rescheduling operation has been applied 
to shift Dipak to Room 202 next week. 
(Notice that although we say a snapshot 
illustrates a particular moment in time, it can 
include current information about something 
planned or scheduled for the future, and also a current record of relevant things that 
have happened previously.) 

Exercise(You might like to draw the effect when Dipak checks in, making a new labeled link 
and deleting some others. What rule governs where you draw the new link when a 
person checks in? Can Jo or Chris check in? What must we see on the drawing before 
a person can check in? )

Models describe states, 
not implementations.

These drawings first and foremost represent states. The same kind of drawing can be 
used to represent specific implementations of a state: for example, we could decide 
that each link represents a row in a relation in a relational database; or they might be 
pointers in main memory; or they might be rows in a chart at the hotel’s front desk. 
But the most useful way at the start of a design is to say, we don’t care yet: we’re inter-
ested in describing the states, not the detail of how they’re implemented. We will take 
the less important representation decisions in due course as the design proceeds.

jo : Person

202 : Roomdipak : Person

101 : Room

: Reservation

occupant

when = 2005/10/3

where

who

jo : Person

202 : Roomdipak : Person

101 : Room

: Reservation

occupant

when = 2005/10/3
wherewho
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3.1.3 Documenting what states are interesting

Static model describes all 
possible snapshots.

While snapshots illustrate specific example 
situations, what we need to document are 
what the interesting and allowed states are: 
what objects, links and labels are going to be 
used in the snapshots. This is the purpose of 
a static model, which comprises a set of type 
diagrams and surrounding documentation. Notice the difference in the appearance of 
type boxes and object-instance boxes: the headers of instances are underlined and 
contain a colon(“:”). This example summarises the ways in which rooms and people 
may be related.

A static model is a glos-
sary.

Most analysts and designers are familiar with the idea of establishing a project glos-
sary at an early stage, so as to get everyone using the same words for the same things. 
In Catalysis, the type diagrams are the central part of the glossary: they represent a 
vocabulary of terms, and make plain the important relationships between them. That 
vocabulary can then be used in all the documents surrounding the project, and in the 
program code itself. 

3.1.4 Using static models

Static models used in dif-
ferent parts of design

Static models have different uses in different parts of the development lifecycle. If we 
decided to start from scratch in providing software support for a hotel’s booking sys-
tem, our analyst’s first deliverable would be a description of how the hotel business 
works, and a type model would be an essential part of it, formalising the vocabulary. 
Later in the lifecycle, the objects in the software can be described in the same notation.

Models are abstract. When applied to analysing the real world, modeling is never complete: there’s more 
to say about a Person than which room they’re in; every type diagram can always be 
extended with more detail. This is just as true within software: we saw earlier that as a 
client of some object, you are interested in a model that helps explain the behavior 
you expect of it — but you don’t care how it is actually implemented. The model can 
leave out implementation detail and have a completely different structure to the 
implementation, so long as the client gets an understanding to which the actual 
behavior conforms.

‘Class’ and ‘type.’ Some tools and authors use the term ‘class diagram’. We reserve ‘class’ for when we’re 
using the diagram at the most detailed level of design, to represent what’s actually in 
the code. A class box (marked «class») shows all the attributes and links its instances 
have. ‘Types’ are more general, and represent information that has to be represented 
somewhere, but we’re not telling how. Because this book is about analysis and design, 
separating the important decisions out from the coding detail, most of the diagrams 
will be type diagrams.

Person Room

Reservation

occupant

when : Date

wherewho 1

0..*0..*

1

0..1 0..1
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Views.A model can just focus on one view: for 
example, the housekeeping staff may be 
interested in recording when a room was last 
cleaned. When we come to implement the 
software, we will need it to cope with all 
these different views, so we have to combine 
them at some stage. Conversely, part of our 
overall implementation might be to divide the system up into components that deal 
with different aspects, in which case we will have to do the reverse. We’ll discuss both 
these operations later.

Associations and 
attributes are not pro-
gram variables.

It’s important to realise that the simplified model is still a true statement about the 
complex implementation. The attributes and associations tell us about what informa-
tion is there; they do not tell us how it is represented. Different models can be written 
at different levels of detail, and we can then relate them together to ensure consis-
tency; more of this in Chapter 14, Refining Models. 

Formal models comple-
ment informal narrative.

A model of object state is used to define a vocabulary of precise terms on which to 
base an analysis, specification, or design. A well-written document should still con-
tain plenty of narrative text in natural language, and illustrative diagrams of all kinds; 
but the type models are used to make sure there are no gaps or misunderstandings. 
More on this in Chapter 6, Documentation Style.

Room
cleaned: Date
bed_size

Floor rooms

0..*

Housekeeping view
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3.2 Object State — Objects and Attributes

In this section we introduce the basics of objects and their attributes. 

Before going any further, we’ll introduce an example that will run through the rest of 
the chapter:

IndoctriSoft Inc. is a seminar company that develops and delivers courses and 
consulting services. The company has a repertoire of courses and a payroll of 
instructors. Each session (that is, a particular presentation of a course) is delivered 
by a suitably-qualified instructor, using the standard materials for that course, 
and usually at a client company’s site.

Instructors qualify to teach a course initially by taking an exam, and subsequently 
by maintaining a good score in the evaluations completed by session participants.

3.2.1 Objects

Every individual thing is 
an object.

Anything that can be identified as an individual thing, physical or conceptual, can be 
modeled as an object; if you can count them, distinguish them from one other, or tell 
when they are created, they are objects. All of the following are valid objects, drawn as 
boxes with underlined names for each object; the “:” is optionally followed by a type 
name for the object, as we explain later.

Not all objects are inter-
esting.

Of course, not all valid objects are interesting. As we will see, the behaviors that we 
wish to describe will determine which objects and properties are relevant.

3.2.2 Attributes and Snapshots

An attribute is an 
abstraction of some 
object state.

The state of an object, the information that is encapsulated in it, is modeled by choos-
ing suitable attributes. Each attribute has a label and a value; the value may change as 
actions are performed. In constructing a model, we choose all the attributes we need 
to say everything we need to say about the object.

Figure 37: Some objects

dipak: ibm:

laura:

theClock:

session-5: theJavaCourse:

7/23/99: room-2:

pc41:

catalysisCourse:

session-32:

object

object name

42:
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Attributes refer to other 
objects.

For example, session-5 (in Figure 38 below) has attributes of startDate, instructor, 
course, and client. The value of an attribute is the identity of another object — 
whether a big changeable object like IBM or a simple thing like 1999/7/23. The 
attributes of an object link it to other objects. Some attributes are mutable (that is, they 
can be altered to refer to other objects); others are unchanging, defining lifetime prop-
erties of the object. 

For session-5, the value of its startDate and instructor attributes will change as sched-
uling needs change; but its client attribute will remain unchanged for the lifetime of 
session-5.

null is a special attribute 
value

The predefined name null or ∅  refers to a special object; the value of any unconnected 
attribute or link is null. In Figure 38, the catalysisCourse does not currently have an 
owner.

These depictions are called snapshots or instance diagrams. They are useful for illustrat-
ing a given situation, and we will use them for showing the effects of actions.

3.2.3 Alternative ways of drawing a snapshot

Links and attributes are 
equivalent

The links drawn between the objects and the attributes written inside the objects are 
actually just different ways of drawing the same thing. We tend to draw links where 
the target objects are an interesting part of our own model, and attributes where the 
value is a type of object imported from elsewhere, such as numbers and other primi-
tives. Just to emphasise this point, let’s look at some alternative ways of drawing 
Figure 38.

Text equivalentIt’s worth remembering, especially if you are designing support tools, that a diagram 
is a convenient way of showing a set of statements. There is always an equivalent text 
representation:

Figure 38: Snapshot depicts attribute values of objects

catalysisCourse:
maxSize = 15
owner = null

course

client

session-32:
startDate = 1999/7/23
endDate = 1999/7/26

instructor
attribute names

session-5:
startDate = 1999/7/23
endDate = 1999/7/28

client

hp:
balance = $60,000ibm:

balance = $60,000
laura:

rating = A

session-32 . instructor = laura
session-32 . startDate = 1999/7/23
session-32 . endDate = 1999/7/26
session-32 . client = hp
session-5 . instructor = laura
session-5 . course = catalysisCourse

session-5 . client = ibm
session-5 . startDate = 1999/7/23
laura . rating = A
catalysisCourse . maxSize = 15
catalysisCourse . owner = null
ibm . balance = $60,000
Object State — Objects and Attributes 3-99



                 
A snapshot shows a net-
work of linked objects

Alternatively, we could draw the boxes, but write all the links as attributes inside the 
boxes:

Notice that every link has an implied reverse attribute: if the instructor for session-5 is 
Laura, then by implication Laura has an attribute (by default called ~instructor) mod-
eling the sessions for which Laura is the instructor; which must include session-5. 
Attributes in a model are about the relationships between things; whether we choose 
to design them into the software directly is another question.

Links depict attribute 
values in pictures

Now let’s go to the other extreme 
and draw all the attributes as links. 
Picking out part of Figure 38, we 
could have just as well have shown 
Dates, and even the most primitive 
numbers, as separate objects. An 
attribute is generally written inside 
the box where we’ve nothing inter-
esting to say about the structure of the object it refers to: everyone knows what num-
bers and dates are, so we have no need to show them in detail. 

Numbers are objects We regard as objects, primitive concepts like dates, numbers, and the two boolean val-
ues. You can alter an attribute (like maxSize in the example below) to refer to a differ-
ent number; but the number itself does not change. Useful basic and immutable 
attributes of numbers include ‘next’ and ‘previous’, so that for example 5.next = 6. 
(Many tools and languages like to separate primitives from objects in some funda-
mental way. The separation is useful for the practicalities of databases etc., but for 
modeling, there is no point in this extra complication.)

3.2.4 Navigation

“Navigating” object 
attributes

Given any object(s), you can refer to other related objects by a “navigation” expres-
sion, using “.” followed by an attribute name. The value of a navigation expression is 
another object, so you can further navigate on to its attributes:

session-5 . course = catalysisCourse
session-5 . course . maxSize = 15
session-5 . client . balance = $60,000

catalysisCourse:
maxSize = 15
owner = null
~course = {session-5}

session-32:
startDate = 1999/7/23
endDate = 1999/7/26
session-5:

startDate = 1999/7/23
endDate = 1999/7/28
course= catalysisCourse
instructor = laura

hp:
balance = $60,000
client = session-32

ibm:
balance = $60,000
~client = session-5laura:

rating = A
~instructor = {session-5}

Figure 39: Snapshots with links written as attributes

15:int

course
session-5:catalysisCourse:

ownermaxSize
null

1999/7/23: Date

1999/7/28: Date

startDate endDate
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Expressions refer to 
objects

In the above expressions, session-5, ibm, 1999/7/23 are names that refer to specific 
objects — only names of objects can start off navigation expressions; startDate, 
instructor, course, and client are attributes — they occur to the right of “.” Usually the 
“names” that will refer to objects will be variable names, such as formally named 
parameters to actions or local variables; and constants, such as 1999/7/23, ‘A’, and 15. 
We build navigation expressions from names and attributes.

Not all attributes are 
interesting

Every object has a potentially huge number of attributes. Every Instructor has a pair 
of shoes, each of which has a colour, each of which may be associated with a set of 
people who particularly like it. How does one know which ones to document? We’ll 
deal with this question when we come to actions, used to model interesting behaviors; 
but the short answer is: only those that help describe the behaviors of interest. 

3.2.5 Object Identity

Object identity is a fun-
damental concept.

Every object has an identity: that is, some means of identification that allows it to be 
distinguished from others. This might be realised in all sorts of different ways: a mem-
ory pointer, or a database key, or a reference number or name of some sort, or just a 
physical location. Once again, the point about making a model is to defer such ques-
tions until we get down to the appropriate level of detail.

Identity is implicit.(If you’ve done any database design, you’ll be familiar with the idea that every entity 
must have some sort of unique key, which it is up to you to decide. The key is an 
explicit combination of the entity’s attributes, and any two entities with the same 
attribute values are actually the same one. But in object oriented design, we always 
assume an implicit unique key. If you implement in an OO language or on an OO 
database, they provide this for you; otherwise, you make it explicit when you get to 
coding.)

An object identity can be assigned to a suitable 
attribute or program variable. Changing an 
attribute value to refer to a different object — the 
session’s instructor is changed from dipak to laura 
— is different from having an attribute refer to the 
same object whose state has changed: the maxSize 
for the session’s course may change, but that session is still of the same course.

Different paths may lead 
to the same object.

Two different navigation paths, may refer to the same object: e.g. the object referred to 
as “my boss” may be the same object as that refered to as “my friend’s wife”. In 
Figure 38, session-5.instructor and session-32.instructor both refer to the same object, 
laura. If both names refer to the same object, they both see the same attribute values 
and changes to those values. 

“=” and “<>” are based 
on identity

“x == y” or “x = y” mean “x and y refer to the same object”; “x <> y” means that x and y 
refer to different objects.

Distinct objects can be 
similar or “equal”

But we have to be careful about what relationships like ‘equal’ mean. session-5 and 
session-32 may be the same course, for the same client, starting on the same day, and 
yet they are two different sessions. The seminar company might choose to call two 
courses ‘equal’ while their courses, dates, and clients are the same. But we know 
they’re different objects because operations applied to one don’t affect the other: if 
session-5 is rescheduled, session-32’s date remains unchanged. 

instructorsession-3:

course
maxsize=15 12

laura:

dipak:
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Similarity or equality relationships have to be defined separately for each type, 
depending on the concerns of the business. We can attach a definition to each type in 
the model we build, picking out the attributes of interest:

Session:: -- For any individual Session-instance ‘self ’,
equal (another:Session) = -- we define “equal to another Session” to mean ...

 ( self.startDate = another.startDate
and self.endDate = another.endDate
and self.course = another.course
and self.client = another.client       )

In some cases, equal might be defined to mean identical, but this is by no means gen-
eral. Suppose in a restaurant, when your waiter comes up to take your order, you 
point at the next table and say “I’ll have what she is having”. Now, if the waiter inter-
prets your request in terms of object-identity, rather than your intended “equality” or 
“similarity”, he need not expect a tip from either of you!1 

So while the concept of object identity is fundamental to the object-oriented world 
view, there are usually also separate business-defined concepts of similarity or equal-
ity that depend on the values of particular attributes. Section 10.7, “Templates for 
Equality and Copying,” on page 419 discusses this in detail, and provides templates 
for their use.

1. Anecdote heard from Ken Auer of KSC.
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3.3 Implementations of Object State

“Implementation” 
includes software, hard-
ware, and business. 

Snapshots describe the information in some system. It might be about a business or a 
piece of hardware or a software component; we might be analysing an existing situa-
tion, or designing a new one. Whatever the case, we’ll call the description a ‘model’, 
and the concrete realisation an ‘implementation’. Notice that this includes both pro-
gram code and human organisation: the implementation of a company model is in the 
staff’s understanding of each others’ roles. We could do an analysis, abstracting a 
model of the business by questioning the staff; and then do a software implementa-
tion, coding some support tools by implementing the model in C++.

A implementation must 
represent attributes and 
identities.

An implementation must somehow represent information pertaining to the attributes 
of each object, to describe its properties, status, and links to other objects. To represent 
the links between objects, the implementation must also provide some scheme to 
implement object identity.

3.3.1 Java Implementation

Java uses classes and 
instance variables

In a Java implementation, every object is an instance of a class. The class defines a set 
of instance variables, and each instance of that class stores its own value for that 
instance variable.

According to this code, every session (an instance of the class Session) has its own 
instance variable values for startDate, endDate, client, instructor and course, and 
some additional status attributes. Similarly for the other objects.

Identity and attributes 
are directly represented

Object-identity is directly supported by the language, and is not otherwise visible to 
the programmer. Thus, the link from a session to its instructor is represented as a 
direct reference to the corresponding instructor via the instance variable instructor, 
implemented under the covers by some form of memory address. 

The methods the object provides will use, and possibly modify, these instance vari-
ables. Thus, if Session provides a confirm() method, that method may set the con-
firmed flag, and seek out an appropriate instructor to assign to itself. The keyword this 
represents the current session instance that is being confirmed.

class Session {
// each session contains this data
Date startDate;
Date endDate;
// a client, instructor, and course
Client client;
Instructor instructor;
Course course;
// and some status information
boolean confirmed;
boolean delivered;

}

class Client {
String name;
int balance;

}
class Instructor {

String name;
char rating;

}
class Course {

String name;
int maxSize;

}
Figure 40: Java implementation of object state
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class Session {
....
confirm () {

this.confirmed = true;
this.instructor = findAppropriateInstructor ();

}

3.3.2 Relational Data-Base Implementation

A relational database 
uses tables and columns

In a relational data-base, we might have separate tables, Session, Instructor, and Cli-
ent. Each object is one row in its corresponding table.

Identity and links are 
indirectly represented

Object attributes are represented by columns in the table. Each session, instructor, and 
client is assigned a unique identification tag, ID, used to implement links between the 
objects. Links between objects are represented by columns that contain the ID of the 
corresponding linked object. 

Object behaviors have no clear counterpart in this world of relational data-bases, 
which are concerned primarily with storing the attributes and links between objects. 
The database can be driven with something like SQL, but the queries and commands 
are not encapsulated with specific relations.

3.3.3 Business World “Implementation”

A business world uses 
forms, databases, ...

In a non-computerized seminar business, all the objects we have discussed still exist, 
except not in a computer system. We may keep a large calendar on a wall, with the 
sessions drawn on that calendar as bars with the client, course, and instructor names 
as “links” to these other objects.  Clients and instructors are all recorded in an address 
book. 

... with its own scheme 
for identity, attributes, 
links, etc.

If we get two instructors with the same name, we may add their middle initial to 
remove ambiguity — a scheme for object identity. The balance for each client may be 
written into a ledger, or may be totalled from the unpaid purchase-orders for that cli-
ent in some folder. And actions are procedures followed by the active objects — 
mostly human roles in this case — in carrying out their jobs.

Figure 41: Object state in a relational database

ID name balance

3 “acme” $60,000

7 “micro” $45,000

Client

ID name rating

9 “laura” A

11 “paulo” B

Instructor

ID start end clientI
D

instructorI
D

courseID

5 2001/17/23 2001/7/28 3 9 2

32 2001/7/23 2001/7/28 3 11 2

Session
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3.3.4 And any other implementation...

We abstract away imple-
mentation variations.

The objects and their attributes are common to all implementations, even though the 
specific representation mechanisms may differ. Even within a specific implementation 
technology, such as Java, there are many different ways to represent the objects and 
their attributes. Clearly, we need a way to describe our objects and attributes indepen-
dent of implementation, for those times when the implementation is as yet unknown, 
or is irrelevant to level of modeling at hand.
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3.4 Modeling Object State — Types, Attributes, 
Associations

This section is about how to describe objects and their attributes independent of any 
particular implementation.

3.4.1 Types describe Objects

A type model general-
izes snapshots

Objects and snapshots are very concrete depictions, and we will make good use of 
them in the chapters ahead, but each one just shows a particular situation at a given 
moment in time. To document a model properly, we need a way of saying what all the 
possible snapshots are. This is what type diagrams are for. 

A type model summa-
rizes attributes of its 
members

The boxes in these diagrams are object types (no “:” 
or underlining in the header). A type is a set of 
objects that share some characteristics: their 
attributes and behavior (though we’ll just focus on 
attributes for now). The diagram tells us that every 
Session has a startDate, an attribute that always 
refers to a Date; and an instructor attribute, which — a 
piece of imaginative naming, this — always refers to 
an object belonging to the type Instructor. 

Association names. Attributes drawn as links on a type diagram are usually called ‘associations’. In these 
examples, the association labels might seem a bit redundant. But associations are not 
always named for the type of the target object. We might decide, for example, to have 

Figure 42: Type diagrams generalize snapshots

Session

startDate: Date

Instructor

rating: Grade

Client

balance: Money

instructor

client

.....

Type Model

 all instances of
snapshots —

Session

instructor: Instructor
client: Client

Client

balance: Money

attribute name

type name

attribute type

client

(equivalent)
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two Instructors associated with each Session, called leader and helper. But we do some-
times use the convention that, if there is only one attribute linking two types, the 
attribute name is a lower-case version of the name of the type, and don’t bother writ-
ing it in. 

Attribute types define 
what snapshots are ille-
gal

The attributes in a type model define which snapshots are legal. As shown in 
Figure 43, the course attribute of a session must link to a valid Course. A given snap-
shot need not depict all attributes of an object; unconnected attributes must be 
marked with a null value. 

3.4.2 Attributes: model and reality

An attribute is not neces-
sarily stored information.

We’ve already said that an attribute need not correspond directly to stored data in an 
implementation1. A client is described as having a balance, but its implementation 
could be anything from a number tallied by hand in a ledger, to a macro that added 
up selected purchase orders in a data-base. 

But a model should surely tell us something about the business or design: if we’re 
allowed to do things any old how, what’s the difference between a system that con-
forms to the model and one that doesn’t?

An attribute is an 
abstraction (model) of any 
representation. 

The practical answer is that the information represented by each attribute should be in 
there somewhere. It should be possible to write a read-only function or procedure that 
retrieves the information from whatever wierd format the designer has represented it 
in. These ‘abstraction’ or ‘retrieval’ functions are a valuable aid to both documenta-
tion and debugging. (More in Chapter 13, Refinement.) 

(The strict answer is that the static model, without actions, doesn’t tell us anything. 
The only conformance test is whether the system we’re modelling behaves (responds 
to actions) as a client would expect from reading the whole model, actions and all; 
while the static part just sets a vocabulary for the rest. This strict view allows some 
implementations to conform that might not otherwise. For example, suppose we 

Figure 43: Attribute types define some snapshots as illegal

c3: Clients1: Session
startDate = 1999/7/23

c1: Course

:Client
balance = 0

s7: Sessioni: Instructor

$60,000s32: Sessioncourse:

clientcourse

clientcourse

clientcourse

extra attributes OK un-named object OK

object name as lowercase type name OK

1. Unless you’ve marked the types as «classes», in which case you really are documenting 
your code.
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never specified any actions that used the balance. By the ‘retrieval function’ rule, we 
would still have to implement that attribute; but it would actually make no percepti-
ble difference to clients whether it was implemented or not.)

The power of seeing attributes as abstractions is that you can simplify a great many 
aspects of a system, losing detail, but not accuracy. The idea corresponds to the way 
we think of things in everyday life: whether you can buy a new carpet depends, in 
detail, on the history of your income and your expenditure. But it can all be boiled 
down to the single number of the bank balance: that number determines your deci-
sion, quite irrespective of whether your bank chooses to store it as such. The attribute 
pictures we draw in Catalysis show the concepts — which are useful; and not their 
implementations — which are less relevant.

An Advanced Topic 3.4.3 Parameterized Attributes

A parameterized 
attribute value depends 
on a parameter

Once you realize that attributes do not directly represent stored information, the 
unconventional concept of a parameterized attribute is a natural extension. A parame-
terized attribute is one which has a defined value for each of many different possible 
values of its parameter(s); like attributes generally, it is best thought of as a query or 
read-only function that has been hypothesized for some purpose; it is not required to 
be directly implemented.

It also abstracts many 
implementations

client-3 has some balance due, but different amounts are due on different dates. As 
shown in Figure 44, this can be described by an attribute parameterized by the due 
date: balanceDueOn (Date): Money. The snapshot shows attribute values for specific 
interesting parameter values explicitly. Parameterized attributes abstract many possi-
ble implementations — an implementation must be capable of determining the bal-
ance due on any applicable dates.

Similary, client-3 had a favourite course last year, and a (possibly different) one previ-
ously. A second parameterized attribute — depicted as a link — models this informa-
tion.

Figure 44: Parameterized attributes

client-3:
balance = $60,000

balanceDueOn(1998/3/31) = $45,000
balanceDueOn(1998/4/30) = $60,000

C++: Course

java : Course

favouriteCourseIn(1996)

favouriteCourseIn(1997)

true:
$45,000:

isLessThan($60,000)
false:

isLessThan($30)

or (true)
45,000 < 30 = false 45,000 < 60,000 = true

false or true = true
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Parameterized attributes provide an effective abstraction tool to avoid the often-inap-
propriate data-normalization style otherwise required1.

Basic relationships like 
“<“, “and”, “or” are 
parameterized attributes

Assuming that objects such as 1997/7/23 and $60,000 have appropriate attribute defi-
nitions for isLessThan, you can use this notion of parameterized attributes to write 
useful statements like:

session-5.startDate.isLessThan (today)
session-5.client.balanceDueOn (1998/3/31).isLessThan (someLimit)

Or, using a more conventional syntax:

session-5.startDate < today
session-5.client.balanceDueOn(1998/3/31) < someLimit

Such constraint opera-
tors are just attributes on 
predefined types of 
objects

Clearly these constraints merely navigate parameterized attributes; we could use the 
more conventional syntax “a < b“ instead of “a.isLessThan(b)”. Date, a pre-defined 
type of object, has an parameterized attribute “< (Date): Boolean”, which yields true 
or false for any given compared date. Similarly for the Money type.

Even primitive are fully 
defined within Catalysis

The primitive types of numbers, sets, and so on can be defined “axiomatically”: that 
is, by a set of key assertions showing the relationships between their operations, as 
outlined in the Appendix. They can be taken for granted by most users. Other immu-
table types e.g. Dates, can be modelled using primitive attributes and operations. The 
read-only operations of immutable types should not be confused with attributes: the 
former are publicly accessible in any implementation.

It is easy to envisage both immutable and mutable versions of many types: for exam-
ple a Date object whose attributes you can change, or a set you can move things in and 
out of. Often a reasonable model could be built with either. However, people model-
ing a mutable Date object often really intended to use a mutable object like Clock or 
Today, that refers to different date objects as time passes. 

Most interesting domain or “business” objects however, are naturally mutable e.g. 
Customer, Machine, Clock.

Attributes like “<“ use 
efficient encodings

For objects such as dates, we may determine whether d1 < d2 without explicitly stor-
ing all the dates that are less than d1, by using a clever representation of dates e.g. a 
single number representing the time elapsed since some reference date. The values of 

1. Data normalization might define a relationship between Client and Date, and describe bal-
anceDue as a relationship attribute.

Figure 45: Immutable or mutable models of a Date type

1996/8/7

1996/8/8

1996/8/9

next

next
today

...

...

today

1996/8/7 8 9

increment

immutable date mutable date

date

date
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these numbers effectively encode the information about all dates that are less than d1; 
we simply compare the numbers for the two dates. This technique is often used for a 
“value”-type object, whose links to any number of other value-type objects are fixed.

3.4.4 Drawing Associations

Associations are inverse 
attributes drawn pictori-
ally

An association is a pair of attributes that are inverses of each other, drawn as a line 
joining the two types on a type model. For example, each Session has a correspond-
ing Evaluation upon completion (not before); each Evaluation is for precisely one Ses-
sion. This eliminates certain snapshots, as shown in Figure 46. 

Association attributes are 
automatically inverses

Drawing an association says more than simply defining two attributes. Two attributes 
would be independent of each other, and the last snapshot in Figure 46 would be 
legal. With an association, the attributes are defined to be inverses of each other i.e. 
s.eval = e if (and only if) e.session = s. Section 3.5 on page 115 will formalize this con-
cept of invariant.

There are default 
attribute names defined.

If an association is only named in one direction — e.g. eval — then the attribute in the 
opposite direction is named ~eval by default. If no name is written on the association 
in either direction, the name of the type at the other end (but with a lower-case initial) 
can be used — so the default name for s1.eval would be s1.evaluation. But two associ-
ations can connect the same pair of types, this can lead to ambiguity. It is good to 
name the attributes explicitly in both directions if you intend to refer to that direction 
for any reason.

There are several other adornments available for any association:

Figure 46: Associations define rules about valid snapshots

s2: Session
eval == e2

SessionEvaluation 0..1 eval

session    1 

e1:Evaluation

 

s1: Session
 eval

session

 

e2:

 

s2:
 eval

session

 

s22:

 

(a) OK

(d) Invalid --- exactly one session per evaluation

 

s3:Session

 

(e) OK; session can have no eval

 

∅

 

s5: Session

 

(g) OK: no info about attributes shown

 

 eval

 

e4: Evaluation
session = null

 

(f) Invalid: Must have a session

session.eval can be an Evaluation or null evaluation.session must be exactly one Session

 

e1:Evaluation
session = s1

 

s1: Session
eval = e1

 

(b) OK --- same as (a)

 

e1:Evaluation
session = s2

 

s1: Session
eval = e1

 

(c) Invalid --- links must be inverses
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In a design or implementation, used to show that navigation in
this direction is much easier than in the other. Further explicit
annotation can mark it as a stored field.

No defined navigation towards the “x”; equivalent to an
attribute from the right to the left, but not left to right.

A derived or redundant association: can be expressed as a func-
tion of others. It should be supported with an invariant. 

If a:A, then a.b refers to the same object throughout the life of a.

 

3.4.5 Collections

 

Attribute values can be 
collections of objects

 

Many attributes have values that are collections of other objects. By default, the mean-
ing of the ‘*’ cardinality is that the attribute is a set; but we can be explicit about what 
kind of collection we want. Useful kinds of collections include:

•

 

Set

 

: a collection of objects without any duplicates
•

 

Bag

 

: a collection with duplicates of elements
•

 

Seq

 

: a sequence; a bag with an ordering of its elements

 

Associations and 
attributes are defined 
accordingly

 

For example, each client has some number of sessions, each with one instructor. Each 
instructor teaches many sessions in a date-ordered sequence. The rating of an instruc-
tor is the average of the in his last five sessions. The type model is illustrated in 
Figure 47.

A Bconst

 

Figure 47: Collections: Type Model and Snapshot

Session

grade: Grade
date

Client

sessions: 
    Set(Session)

Instructor

rating: Grade
sessions: 
   Seq(Session)

sessions

instructor 0..1

* sessions
{Seq   date } 

many (set)

many (sequence, ordered by increasing date)

 textual attributes equivalent to “sessions” associations

 

ibm: Client
balance = $60,000

 

paulo:
rating = A

 

s9: Session
date = 1998/11/30

 

s1: Session
startDate = 98/7/23
grade = A

 

s5: Session
startDate = 98/8/02
grade = A

 

laura:
rating = A

instructor

instructor

sessions

 *

sessions.at(1)

sessions.at(2)

sessions.at(1)

instructor

 

(redundant --- you wouldn’t normally show both)

 

1

 

optional (0 or 1)
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Collections are navigable

 

Here are some examples of useful navigations on this snapshot. Try reading them as 
ways to 

 

refer to

 

 particular objects, rather than as operations that are executed on soft-
ware objects i.e. they are precise, implementation-free definitions of terms. The opera-
tors are summarised in Figure 49 on page 117.

• The set of sessions for 

 

client3

 

, written: 

 

Set {element1, element2, ...}

client3.sessions = Set { s1, s5, s9 }

 

• The instructors that have taught 

 

client3

 

:

 

client3.sessions.instructor = Set { laura, paulo }

 

-- Sets have no duplicates

 

• The number of sessions for 

 

client3.

client3.sessions->count = 3

 

• Sessions for 

 

client3

 

 starting after 1998/8/1; here are 2 equivalent forms, where the 
second form does an implicit 

 

select

 

 from the set:

 

client3.sessions->select (sess | sess.startDate > 1998/8/1) = Set { s5, s9 }
client3.sessions [ startDate > 1998/8/1 ] = Set { s5, s9 } 

 

• Has 

 

laura

 

 taught courses to 

 

ibm

 

: does the set of clients associated with the set of 
sessions that Laura has taught include 

 

laura.sessions.client  ->  includes (ibm) 

 

-- long version

 

 
ibm : laura.sessions.client 

 

-- short version “ibm belongs to laura’s sessions’ clients”

 

Equivalently, has 

 

ibm

 

 been taught any courses by 

 

laura

 

?

 

ibm.sessions.instructor  ->  includes (laura)

 

(

 

ibm.sessions 

 

is a set of Sessions; following the 

 

instructor

 

 links from all of them 
gives a set of Instructors; is one of those Laura?)

• Every one of 

 

laura

 

’s session grades is better than 

 

pass

laura.sessions.grade  ->  forAll (g | g.betterThan(Grade.pass))

 • At least one of  laura  ’s session grades is a  Grade.A

laura.sessions.grade ->  exists (g | g = Grade.A)

 

Collection combinations

 

Mathematicians use special symbols to combine sets, but we keep to what’s on your 
keyboard:

• The courses taught by either Laura or Marty:

 

laura.sessions.course + marty.sessions.course

 

• The courses taught by both Laura and Marty:

 

laura.sessions.course * marty.sessions.course

 

• The courses taught by Laura which are not taught by Marty:

 

laura.sessions.course – marty.sessions.course

 

( 

 

+ * – 

 

can also be written

 

  -> union(...),  -> intersection(...),  ->  difference(...)

 

 )

 

We can refer to attributes 
of a collection 

 

or

 

 its ele-
ments

 

A “.” operator used on a collection evaluates an attribute on every element of the col-
lection and returns another collection. So 

 

laura.sessions

 

 is a set of 

 

Sessions

 

; evaluating 
the 

 

grade

 

 attribute takes us to a set of 

 

Grades

 

. If the resulting collection is a single 
value, it can be treated as a single object rather than a set.
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The “ –> ” operator

 

1

 

 used on a collection evaluates some attribute on the collection 
itself, rather than on each of its elements. Several operations on collections — 

 

select, 
forAll 

 

— take a 

 

block

 

 argument, representing a single argument function evaluated on 
each element of the collection. Some operators are specifically defined to apply to col-
lections of numbers — like 

 

sum

 

 and 

 

average

 

.

 

Collection attributes are 
still an abstraction of 
many implementations 

 

Collections are so widely used in modelling that there is a standard package of 
generic types, extensible by an experienced modeler, as detailed in Appendix A. Col-
lections themselves are immutable objects in Catalysis, although they are not usually 
explicitly shown on type models. As usual, collection attributes do not dictate an 
implementation, but are used simply to make terms precise; they are an abstraction of 
any implementation.

 

3.4.6 Type constants

 

A type constant is a 
shared constant object

 

It is often convenient to define a constant object or value, and associate it with a par-
ticular type. Often we want to associate the constant with the type of which the con-
stant is a member. For example, the Number type has a constant 0, a number; our 
Grade type has constants 

 

pass, A, B,

 

 etc. , each of which is a grade.

 

It is still an attribute, but 
with a shared value

 

A type-constant is still an attribute of type members, such 
that all the members share the same constant value. An 
implementation would most likely not store this constant 
in each member of that type. So 

 

session-5.grade.pass = ses-
sion-23.grade.pass

 

: traversing the 

 

pass

 

 link from any Grade 
always takes you to a single object.

Defining a type-constant is one of the ways in which it is 
permissable to mix object-instances (usually seen in snap-
shots) and types. Figure (a) indicates that following the A 
link from any Grade always takes you to a specific object, 
which itself happens to be a Grade. It has an attribute 

 

suc-
cessor

 

, which takes you to the next grade in the list. 
Instead of drawing the links between the type and the 
objects, you can write an attribute in the type box with the 
modifier 

 

global

 

, as in figure (b).

If you want to refer to a type-constant but don’t have a 
member of that type handy, just use the name of the type. 

 

Grade

 

 is the set of all objects that conform to the Grade 
type-specification; 

 

Grade.pass

 

 takes you to the single 
object they’re all linked to with that attribute.

 

Type constants can 
describe enumerated 
types

 

Type constants can be used to describe what are tradi-
tionally treated as enumerated types. To introduce a 
type 

 

Color

 

, whose only legal values are 

 

red, blue, yel-
low

 

, we use three type constants and an invariant say-
ing every color is one of these three.

 

1. Sorry, but the choice of operator symbol was not ours.

Grade

:Grade

:Grade

betterThan (Grade)

B

A

successor

:Grade

pass

Grade
global A : Grade
global B : Grade

betterThan (Grade)
successor: Grade

(a)

(b)

global pass: Grade

successor

Color

global red, blue, yellow: Color
inv self : { red, blue, yellow }
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Use type-constants sparingly for mutable types. A type-constant says that there is 
only one object of this name wherever this type is understood, in every implementa-
tion in which it is used. The only practical way to implement this is if the shared object 
itself is immutable, and can be copied permanently in every implementation: for 
example, the relationship of Grade.A to Grade.B is always fixed, just like Integer.0 and 
Integer.1, and Color.red, Color.blue.

An alternative implementation becomes feasible for mutable types when you really 
are prepared to organise worldwide access to the object. The global attribute is con-
stant in that it always refer to one object; but the attributes of the target object itself 
can change. For example, URL.register could model the unique and mutable world-
wide registry of internet addresses. 

3.4.7 Type operators

The Set operators also apply to Types, which are treated as sets of objects. Instead of 
defining a Type in a box, it is sometimes useful to define it with an expression. This 
can be written in the Dictionary, or embedded in the narrative of your model:

Status = enum { on, off, broke } -- enumerated type
CollegeMember = Professor + Student
GradStudent = Student – Undergrad
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3.5 Static Invariants

Some attribute combina-
tions are illegal

Not all combinations of attribute values are legal. We have already seen how the type 
diagram constrains the snapshots that are allowed (Figure 43 and Figure 46 showed 
some examples). Those constraints were all about the type of object an individual 
attribute refered to.

But sometimes we need to disallow certain combinations of attribute values. To do 
this we can write invariants. 

An invariant must be sat-
isfied by every snapshot

An invariant1 is a boolean (true/false) expression which must be true for every per-
mitted snapshot. (We will scope the snapshots by the set of actions to which this 
applies later, in Chapter 4).

3.5.1 Writing an Invariant

Some invariants are 
described explicitly in 
text

A graphical notation cannot cover all possible constraints and rules. For example, we 
have several rules about what instructor can be assigned to a particular session: an 
instructor must be qualified to teach any session she is assigned to.

First of all, we must model the idea of a set of courses 
that an instructor is qualified to teach: that has been 
missing from the model so far. It is easily modeled with 
a many-many association between Instructors and 
Courses.

Based upon this model, here is a snapshot that we 
would not want to admit: 

1. Specifically, a static invariant; we will introduce dynamic invariants later

Figure 48: An illegal snapshot requiring an explicit invariant

Instructor

Session

Course

qualifiedFor
*

*

start: Date
end: Date

0..1

*

*1

lee:

course

session-32:
start = 1999/6/2
end = 1999/6/6instructor

session-5:
start = 1999/7/23
end = 1999/7/27

instructor
laura:

qualifiedFor

catalysisCourse:

qualifiedFor

course
javaCourse:

instructor

session-25:
start = 1999/8/23
end = 1999/8/27
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The problem is that session-25, a Catalysis course, is scheduled to be taught by Lee, 
who is not qualified to teach it. We’d like to ensure that an instructor is never assigned 
to a session unless qualified to teach that course i.e. qualifiedFor — the set of courses 
you get to by following the qualifiedFor link — includes all the courses of its sessions. 
Put more formally,

inv Instructor:: qualifiedFor  ->  includesAll (sessions.course)

or if you prefer it round the other way,

inv Instructor :: sessions.course <= qualifiedFor 
–– the courses I teach are a subset of the ones I’m qualified for

Invariants can abstract 
away much detail

Notice that we have deferred details of the 
rules that determine whether or not an 
instructor is qualified for a course. These will 
have to be captured somewhere; but we might 
defer it for now if we are not yet considering 
concepts like qualification exams and course 
evaluations. 

To add some of these details later, we would 
enrich the model. Then the less detailed 
attribute can be defined in terms of the new 
details, using an invariant. Now it’s clear that 
being qualified for a course means having 
passed an exam for it.

3.5.2 Boolean operators

An invariant is a boolean expression. The usual boolean operators (as used in pro-
gramming languages) are available; there are different ways of writing them, depend-
ing on your preferences. Figure 49 displays them. A more detailed explanation is 
given in [OCL]. 

Some expressions may have undefined values — for example, attributes of null, or 
daft arithmetic expressions like 0/0, or parameterised attributes whose precondition 
is false. Generally, an expression is undefined if any of its subexpressions is unde-
fined. However, some operators do not depend on one of their inputs under certain 
circumstances: 0 * n is well-defined even if you don’t know n; so is n * 0. The same 
applies to (true | b) and (false & b), again no matter what the order of the operands. 
(This works no matter which way round you write the operands — we’re not writing 
a program.)

Instructor

Session

Course

qualifiedFor

start: Date
end: Date

Exam
date

grade

inv Instructor :: 
qualifiedFor = exams.course

passed

0..10..*

0..*
0..*

0..*

0..*
0..*

0..*
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Figure 49: General operators for assertions

Operators in Assertions

Boolean operators

Collection operators

General expressions in assertions

Long Short Explanation
and & False if either operand is false

or | True if either operand is true

a implies b a ==> b True if a is false, False if b is false.

not a ! a

aSet -> forall (x | P(x)) x : aSet, P(x) For every member (call it ‘x’) of aSet, the 
boolean expression P(x) is true

aSet -> exists (x | P(x)) exist x: aSet, P(x) There is at least one member (call it x) of 
aSet for which P(x) is true

s1->size The number of elements in s1

s1->intersection(s2) s1 * s2 The set containing just those items in 
both sets. (Math s1 ∩ s2)

s1->union(s2) s1 + s2 The set of all items in both. (s1 ∪  s2)

s1 – s2 s1 – s2 Those items of s1 that are not in s2.

s1->symmetricDifference(s2) Those items only in one or the other.

s1->includes(item) item : s1 Item is a member of s1

s1->includesAll(s2) s2 <= s1 Every item in s2 is also in s1 (s2 ⊆  s1)

s1-
>select(x|bool_expr)

s1[ x | bool_expr] Filter: the subset of s1 for which 
bool_expr is true. Within bool_expr, each 
member of s1 is refered to as ‘x’

s1->select(bool_expr) s1[bool_expr] Same as s1[self | bool_expr].
Less general — gets self mixed up with 
self in the context.

s1.aFunction The set obtained by applying aFunction 
to every member of s1.

s1->iterate (x, a= initial value |
                   function_using(x,a)))
E.g. scores : Set(integer);    -- some attribute;
Set(integer) :: average = 
    (self->iterate (x, a= 0 | x+a)) / self->size;
scores->average –– meaning now defined

The ‘closure’ of the function. It is applied 
to every member x of s1. The result of 
each application becomes the ‘a’ argu-
ment to the next. The final value is the 
overall result. Write the function such 
that order of evaluation does not matter.

let x = expr1 in expression In expression, x represents expr1’s value

Type The set of existing members of Type

x = y x is the same object as y
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3.5.3 About being formal

Formal and informal 
complement each other

We said in the introductory chapters that Catalysis provides for a variable degree of 
precision, and it is as well to repeat it here, down among the high-precision stuff. The 
notation gives you a way of being as precise as you like about a domain or a system or 
component, without going into all the detail of program code. But you also have the 
option to use only informal descriptions, or to freely intermix the two.

The precision flags prob-
lems early that would 
otherwise be ignored

However, it is the experience of many designers who’ve tried it, that writing precise 
descriptions at an early stage of development tends to bring questions to the fore that 
would not have been noticed otherwise. Granted, the specification part of the process 
goes into a bit more depth and takes longer than a purely text document. But it gets 
more of the work done, and tends to bring the important decisions to the earlier 
stages of development, leaving the less important detail until later. The extra effort 
early on pays off in a more coherent and less bug-prone design.

The formal parts are not necessarily readable on their own by the end-users of a soft-
ware product. But the purpose is not necessarily to be a contract between you and the 
end-users; it is to give a clear understanding between your client, you, and your col-
leagues of what you are intending to provide. It is a statement of your overall vision 
of the software: and writing it down prolongs the life of that vision, making it less 
prone to mungeing by quick-fix maintainers.

More on how the formal dovetails with the informal in Chapter 6, Documentation Style.

3.5.4 The context operator

Some of our examples have attached an Evaluation to a Session; but this only makes 
sense once the session has actually taken place. This can be said in informal prose; we 
make it more precise and testable.

-- A session has an evaluation exactly when it is completed.
completeEvals:
inv Session:: self.completed = (self.eval <> null)

Read this as: “for every object of type session — let’s call it ‘self’ — it is always true 
that its eval attribute is not null exactly when its completed attribute is true”. 

Meaning of :: The context operator “::” says “the following is true for any member of this type (or 
set), which we’ll call ‘self’”. self is a special name, that is always the default starting 
point for navigation expressions. We could have written 

inv Session :: completed = (eval <> null)

The context operator is short for an explicit forall:

inv Session  -> forall ( self | self.completed = (self.eval <> null))
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You can only refer to 
known attributes

To capture this invariant we must define the term 
completed; we do so by simply adding a boolean 
attribute to Session — and, of course, defining its 
real-world meaning in the Dictionary.

The invariant is shown on the type model for the 
type Session: either within the type, or separately 
after a context operator ‘Session::’, or in the Dictio-
nary. Recall that attribute types themselves define 
implicit invariants; explicit invariants play the same 
role, and are documented together.

The notation defines 
some invariants directly

The pre-defined notation directly captures certain common invariants. Declaring the 
course attribute of a Session to be of type Course in Figure 42 is equivalent to:

inv Session:: -- for every session, its course must be an object of type Course
self.course : Course -- “:” is set-membership; Course  ->  includes (self.course)

Similarly, the association shown in Figure 46 implicitly defines attribute types and an 
inverse invariant:

inv Evaluation:: -- for every svaluation
self.session : Session -- its session must be a Session
& self.session.eval = self -- whose ‘eval’ attributs refers back to me

Derived parameterized attributes can also be defined by invariants. If the balance 
attributes in Figure 44 were defined in terms of some session history, we might have:

inv Client:: -- for every client
-- the balance due for that client on any date is..
balanceDueOn (d: Date)

-- the sum of the fees for all sessions in the preceding 30 days
= sessions [date < d and d > d - 30] . fees ->sum

3.5.5 Invariants: Code vs. Business

There are static invari-
ants in the code as well 
as the business

An invariant captures a consistency rule about a required relationship between 
attributes. For example, at the business level, an instructor should never be assigned 
to a course unless qualified. For a given implementation, this means that certain com-
binations of stored data should never occur. An invariant representing a busines rule, 
such as assignQualified, could look a lot more complex when expressed against an opti-
mized implementation. For example, the assignment of instructors to courses may be 
represented by a complex data structure indexed by both date and course, to effi-
ciently find replacement instructors as availability changes. 

Lets hear both sides of 
the picture...

Here is an perfectly reasonable objection to the type model, debated by Marty, a real 
good developer™, and Laura, the dreaded type modeler.

Laura: There! We have a nice precise constraint on session completion.

Marty: I see no need for this completed attribute. We already have eval, we can 
simply check if it is null to determine session completion. It is as fast, and saves 
space as well....

Session

completed: Boolean

completeEvals: inv 
completed = eval <> null 

Evaluation

grade: Grade

eval   0..1

1   session
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Laura: 

 

Maybe. But the accounts-receivable folks want to see 

 

completed

 

 sessions.

 

Marty: 

 

Let’s tell them to drop 

 

completed

 

, and to instead check 

 

eval <> null

 

.

 

Laura: 

 

We could try. Do you think they will go for that?

 
Marty: 

 
Bill, over in Accounts, keeps going on about how he really wants to trigger 

invoicing as soon as a session is completed. He adamantly refuses to hear any 
thing related to session evaluations. 

 
Oh well. I suppose we could add it in. But don’t 

say I did not tell you about the space cost.

Laura: 

 

Let’s step back from implementation for a moment; treat this diagram as a 
glossary. Bill needs a definition of 

 

completed

 

, and the folks in course-QA want 

 

eval

 

. So we include both here, related with an invariant. You can still decide how 
to represent things effeciently...

 

Implementation must 
map correctly to require-
ment

 

Marty:

 

 ..So I can just provide a computed 

 

completed

 

? Bill would never know the 
difference, as long as my implementation is consistent about 

 

eval

 

 and 

 

completed.

 

 

 

Laura: 

 

Exactly. And no matter what your implementation, you’d

 

 better 

 

have some 
mapping for each model attribute.

 

Marty: 

 

Could we still mark this attribute as derived? I know that I will be comput-
ing it, not storing it.

 

Laura: 

 

It is derived. Let’s write “

 

/completed

 

” since this attribute is fully defined in 
terms of others. But this is true even if you decided to store it.

 

Marty (anxious to get back to some real work

 

™

 

):

 

 I’m supposed to get the code done 
and debugged. I’d better get started ...

 

Laura (uncannily): 

 

You can use this invariant as part of your tests and debugging 
as well. After running any test case just check if any of your 

 

session

 

 objects are 
inconsistent with respect to the invariant. Seems trivial for this one, but it could be 
very useful for more complex ones. 

 

Marty:

 

 Come to think of it, the Instructor Scheduling folks caught some nasty 
algorithm bugs by checking the instructor assignment rules invariants.

 

(pauses briefly): 

 

You really should talk to John and Wilkes about this stuff. I use 
their communication API, and they keep talking buffers and interrupt handlers. 
Makes no sense to me. They say they have no choice, writing in assembler for this 
embedded device and all that. Most distressing. Seems like they could talk to me 
in my language, instead of those low-level details.

 

Laura:

 

 You bet. Let’s have a word with them.

Laura’s diplomatically explained position boils down to this: 

What does a “client” need to say about a design or requirement? State this using 
terms natural to that client. Make sure all the underlying terms are well defined in 
a glossary. Then make that glossary precise using attributes and invariants in a 
type model. Re-state what you wanted to say more precisely in terms of this type 
model. Lastly, make sure your implementation has a consistent mapping to these 
abstract attributes and invariants.
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3.5.6 Invariants in Code

 

Invariants must hold in 
the implemented code

 

Although an implementation may choose any suitable representation, every attribute 
in a type model must have some mapping from that representation. Hence, all invari-
ants in a type model will have a corresponding constraint on the implemented state.

 
Depending on the repre-
sentation...

 
Consider the invariant 

 
assignQualified

 
 in Section 3.5.1 on page 115. If we choose to rep-

resent the 

 

qualifiedFor(Course)

 

 attribute by storing in each instructor a list of the qual-
ified course, and the 

 

sessions

 

 attribute by storing a list of sessions:

 

class 

 

Instructor

 

 {
Vector qualifiedForCourses;
Vector sessions;

 

...the invariant expands 
differently in code

 

Then the 

 

assignQualified

 

 invariant corresponds to the following boolean function 
that should evaluate to true upon completion of any operation. Note that the code 
form is the same as that the type model invariant, with each reference to an 
attribute in the type model expanded to its corresponding representation in the 
implementation.

 

boolean assignQualified () {
-- for every session that I am assigned to
for (Enumeration e = session.elements(); e.hasMoreElements; ) {

Course course = ((Session) e.nextElement()). course();
-- if I am not qualified to teach that course
if (! qualifiedForCourses.contains (course) ) 

return false; -- then something is wrong!
}
return true;

}

The combination of all invariants for a class can be used in a single ok() function, 
which should evaluate to true after any operation on the object. Such a function 
provides a valuable sanity check on the state of a running application. Together 
with operation specifications, they provide the basis for both testing and debug-
ging.

boolean ok () {
assignQualified() = true
&& notDoubleBooked() = true
&& ......

}

3.5.7 Common Uses of Invariants

There are several common uses of invariants in a type model:

Derived attributes are 
defined as a function of 
others

1. Derived attributes: the value of one attribute may be fully determined by other 
attributes e.g. the completed attribute in Section 3.5.1 on page 115. Because an 
attribute merely introduces a term for describing information about an object, and 
does not impose any implementation decision, we are free to introduce redundant 
attributes to make our descriptions more clear and concise. However, we define 
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such attributes in terms of others, and optionally use a “/” to indicate they can be 
derived from others.

Suppose we need to refer to the clients that a given instructor has taught in the 
past, and to the instructors that are qualified candidates for a session. We intro-
duce simple derived attributes on instructor and session, defined by an invariant:

inv Instructor:: -- clients taught = clients of past sessions I have taught
clientsTaught = sessions[date < today].client

inv Session:: -- my candidate instructors are those qualified for my course
candidates = Instructor[qualifiedFor (self.course)]

We can now directly use these attributes to write clearer expressions:

instructor.clientsTaught... or session.candidates....

Attributes are often con-
strained to be in some set

2. Subset constraints: the object(s) linked via one attribute must be in the set of those 
linked via another attribute. For example, the instructor assigned to a session 
must be one of the candidates qualified to teach that session. This form of invari-
ant is quite common, and has a special graphical symbol shown in Figure 50. It 
could have been written out explicitly instead:

inv Session:: -- my assigned instructor must be one of my qualified candidates
candidates->includes (instructor)

Ssubtypes can constrain 
supertype attributes

3. Subtype constraints: a supertype may introduce attributes that apply to several 
subtypes, where each subtype imposes specific constraints on those attributes. An 
example is illustrated in Section 7 on page 22.

Constraints may be state-
specific

4. State-specific constraints: being in a specific state may imply constraints on some 
other attributes of an object. From Section 3.5.1 on page 115:

inv Session:: -- any confirmed session must have an Instructor
confirmed implies instructor <> null

There are some other forms of invariants that are common enough to merit special 
symbols:

const This attribute refers to same object
through the life of the ‘owner’.

unique No other object of this owner type has
the same attribute value. unique can
apply to a tuple of attributes.

Association constraints (between the ends of two or more associations):

Figure 50: Derived attributes and subset-constraints

Session

course: Course
Client

Instructor

qualifiedFor(Course)

clientsTaught

* sessions

 *

 *
 *

1 client
*        candidates *

instructor 0..1

 

{subset}

Car
const incept: Date

Manufacturer

unique serial: int

*makerconst
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Between “many” associations, or a “1” and a “many” associa-
tion. The related associations must have a common source.

Between associations of subtype and supertype. The association
at the subtype end is its name for the association at the super-
type end.

Between two or more optionals. Exactly one of these is non-
null at a time. Similarly [0,1] etc.

 

Attributes and invariant 
define static model.

 

A set of attributes, together with an invariant is the static part of a type model. The 
invariant says what combinations of attribute values make sense at any one time, and 
includes constraints on the existence, ranges, types, and combinations of individual 
attributes.

[subset]

[redefines]

[1]
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3.6

 

The Dictionary

 

Pictures and symbols are 
not self-explanatory!

 

When a link is drawn in a snapshot from a Course to a Session, does that mean the 
session has happened, or that it will happen, or is happening? Or does it mean that it 
might happen if we get enough customers? Does it mean that this session is an occur-
rence of that course, or that it is some other event, intended for people who have pre-
viously attended the course? And what is a Course anyway? Does it include courses 
that are being prepared, or just those ready to run?

It’s important to realise that the diagrams mean nothing without definitions of the 
intended meanings of the objects and attributes.

 

We can be precise about 
symbols

 

The rather precise notation in this chapter gives you a way of making unambiguous 
statements about whatever you want to model or design: you can be just as precise 
with requirements as you can with a programming language in code, but without 
most of the complications. But the notation only allows you to make precise relation-
ships between 

 

symbols

 

. “

 

fris > bee

 

” is fearlessly uncompromising and precise in what 
it states about these two things — provided someone will please tell us what 

 

fris 

 

and 

 

bee

 

 are supposed to represent. We cannot either support or refute the statement 
unless we have an ‘interpretation’ of the symbols.

Figure 51 could just as well be a model of any of a seminar business, or a database, or 

a Java application. When we describe the 

 

assignQualified

 

 invariant, are we saying that 
an unqualified instructor never teaches in the business, or that some piece of software 
should itself never schedule such a thing?

 

The Dictionary relates 
symbols to the world

 

The 

 

Dictionary 

 

relates symbolic names to the real world. So if I told you 

 

fris

 

 is the 
name I use for my age, and 

 

bee

 

 is how the age of the current British Prime Minister is 
referred to in my household, 

 

now

 

 you can definitely find out whether 

 

fris > bee

 

 is true 
or false. If the model above was of a database, the dictionary would relate the model 
elements to tables, columns, etc. 

Suggestive names help, of course. But they can also be misleading since readers 
readily make silent assumptions about familiar names. Should you be dealing with 
“aileronAngle” or “fuelRodHeight” you might want to be a little more careful than 
usual about definitions!

 

1

 

Figure 51: Is this a model of a business? Database? Application?

Session

grade: Grade
date

Client
Instructor

rating: Grade

sessions

instructor 0..1

* sessions
{ordered   date }

 *
1

 

1. Safety critical systems place much more stringent demands on precise definitions.
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To use a precise language properly, you must first define your terms; once that’s done, 
you can use it to avoid any further misunderstandings. There’s no avoiding the possi-
bility of mistakes with the Dictionary definitions, but we can hope to make those as 
simple as possible, and then get into the precise notation to deal with all the complex 
relationships between the named things.

The Dictionary contains named definitions for object types, attributes (including asso-
ciations), invariants, action-types and parameters, and more (which we’ll discuss 
later). A typical dictionary is shown below; some of its contents are automatically 
derived from the models themselves:

 

Type Description (narrative, with optional formal expressions) Created by (actions)

Attr, Inv... Description (narrative, with optional formal expressions) written by (actions)

Instructor T

 

he person assigned to a scheduled event

 

hireInstructor

rating

 

Attribute: 

 

an summary of recent instructor results deliverCourse, passExam

sessions

 

Attribute: 

 

The sessions assigned this instructor scheduleCourse

assign-
Qualified

 

Invariant

 

: Only qualified instructors assigned to a session

 

sessions->forall (s | self.qualifiedFor (s.course))

 

Session One scheduled delivery of a course scheduleCourse

date Start date of the session. rescheduleCourse
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3.7

 

Models of business; models of components

 

So far, we have used static modeling to describe what objects there are in some world. 
But we can also use a static model to describe the state of a complete system. We said 
at the beginning of this chapter that that was really the ulterior motive for making a 
static model.

Here is a model of a simple type: 

This is the type of a system or component. The ‘amount’ represents the money stored 
inside the machine towards the current sale. We don’t know how it is represented 
inside — maybe it keeps the coins in a separate container; or maybe it just counts the 
coins as they go into its takings pool. So Money isn’t a type representing real coins: it’s 
the type of this component’s internal state.

To represent the type of a more complex component, we could just add attributes. But 
the easier way is to do it pictorially. For example, a system that helps schedule instruc-
tors for courses would clearly need to know all the concepts we have been discussing 
in the training business. That will form the model of the component’s state, and we 
can then go ahead and define the actions in those terms.

Figure 52: Simple type model — one attribute

Figure 53: Complex model — pictorial

Vending Machine

amount : Money

insert_coin (value : Money)
post amount has been increased by value

post amount is decreased by $0.65

buy_drink

static model

behavior described in
terms of model

get_change
post coins to value amount appear;

amount is now 0

pre amount is more than $0.65

Course Scheduling Machine
static model

behavior described in
terms of model

Session

grade: 
Client Instructor

rating: 
Grade

sessions

instructor 0..1

* sessions
{ordered   date }

 *
1

 

check_availability (instructor, date)
post find whether instructor is doing a Session on that date

schedule course (date, client)
post set up a new Session and assign an Instructor
etc

* stafffull_schedule*
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3.8

 

Static Models — summary

 

• A static model describes the state of the business or the component(s) we are 
interested in. Each concept is described with a type, and its state is described with 
attributes and associations; these lead in turn to other types.

• The formally-defined types are related to the users’ world in the Dictionary.

• Invariants express constraints on the state — combinations of values that should 
always be observed. They can represent some categories of business rules.

• The main purpose of a static model is to provide a vocabulary in which to 
describe actions — which include interactions in a business, or between users and 
software, or between objects inside the software.

• We use snapshots to represent specific situations, which helps to develop the 
static model. Snapshots are an important ‘thinking tool’, though are not fully gen-
eral descriptions, and therefore play only an explanatory role in documentation.

Figure 54: Static models

Session

startDate: Date

Instructor

rating: Grade

schedule

.....

Type Model
 all instances of

snapshots —

type

attribute name
attribute type

association

role name

0..1

cardinality

instructor

For Instructor, equivalent to 
schedule: Set(Session)

*

Course

level : Grade

*runs
1

inv Session:: instructor.rating >= course.level

invariant expresses business rule

Dictionary

An Instructor is a member of staff who ...

Products of static modeling
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