

 Chapter 1 Next Generation Software
Outline

In this chapter we outline some trends in the next generation of software develop-
ment, and challenges that software development methods must address in order
to support component-based development, open and distributed systems, adap-
tive business-driven solutions, and iterative development.

Section 1.1 sets the stage for the four main trends that we see following object
technology. Section 1.2 describes the move to component-based development
(CBD) and outlines what new issues CBD will raise. Components will inter-oper-
ate in open and distributed environments — Section 1.3 discusses how.

Component-based development will effectively support business driven solu-
tions, in which flexible software systems enable the business to adapt more
readily to its needs, as discussed in Section 1.4. And these new development prac-
tices will take place increasingly in a world of rapid, iterative development. Sec-
tion 1.5 outlines some changes this will bring.

For components to succeed widely, they must be designed to be flexible and
adaptable. Section 1.6 discusses building with such “pluggable” components.

Finally, Section 1.7 outlines the challenges software development methods face
with these technology trends, and Section 1.8 places Catalysis and the rest of this
book into perspective, based on these challenges.
© Desmond D’Souza & Alan Cameron Wills 1998/May/11 09-08 1-29 of 46

1.1 Trends for the next generation

Technology change is
accelerating.

Software development is a constantly evolving blend of engineering, science, art, leg-
acy, and hype. From the earliest days of mainframe-based systems, through the evolu-
tion of client-server systems and the many politically-correct variants of “open”
systems, to the object-oriented, component-based, and internet-enabled systems of
today, the way we design and build software has evolved in sometimes dramatic,
sometimes subtle ways. Software development, and information systems technology
in general, is today going through an unprecedented period of dramatic change.

After objects — what? Object technology has already made its mark on system modeling, design, and imple-
mentation. Objects, the most recent element of this change, will have a very significant
influence on the evolution of software development over the next several years.

Benefits of object-ori-
ented development

Certain benefits of object-oriented development have proven themselves over the past
several years, such as:

• Polymorphism: the ability to have multiple implementations of the same inter-
face, and to design and implement against an interface.

• Dynamic binding: deferring the binding of a service request to a particular imple-
mentation until run-time, based upon the object receiving the request.

• Incremental definition (inheritance): defining one class by inheriting from another
and implementing only those parts that are different.

Shortfalls of “pure”
object-oriented develop-
ment

Traditional “pure” object-oriented development evolved bottom-up, driven by inno-
vative programming languages and their enthusiastic proponents. All descriptions
are structured around the programming language units of object classes and the ser-
vices they provide. This view has led to several shortcomings:

• Many interesting interaction units involve multiple objects. Hence, the most
useful components to re-use in design and implementation are not individual
classes, but generic frameworks involving multiple classes. These multi-
object units of design are often not given the attention they merit.

• The OOP “message-send” is not always a suitable way to model behavior,
particularly at more abstract levels when modeling the problem domain or
business, or when designing higher-level “connectors” between components.

• By using a single hierarchy of classes for both interface and implementation,
interface decisions were not clearly separated from implementation ones,
resulting in several unnecessary dependencies.

• Rampant usage of sub-classing results in excessive coupling from white-box
reuse between subclass and superclass, partly caused by the inadequate sepa-
ration of interfaces from implementations.

• Unfortunate language-specific dependencies crept into most object designs,
even to the level of source code dependencies with header-files. This impeded
wider-scale re-use, and made boundaries of language, process, and machine
much more visible than necessary.

• Most design methods focused on the services an object provides, ignoring the
services it requires of other objects and the notifications it can send them. This
impedes easy assembly of larger components.
1-30 Trends for the next generation

Towards open business-
driven component-based
systems.

Clearly, while providing some of the essential underpinnings of a better approach to
software development, traditional object-orientation is not the whole answer. The
most significant trends that are facing us today include:

• Component-based development — designing and implementing systems by
assembling components, customizing or extending them as needed; and publish-
ing components in a form that can be used to design and build others, based
purely upon interface specifications.

• Open distributed systems — moving beyond the world of client-server into a
world where the network is the system, adapting and evolving its form as well as
content all the time. This requires standards for inter-operation, such as CORBA
and COM, as well as standard infrastructure services.

• Adaptive business-driven solutions — software systems solve a business need,
hence software development and evolution should be driven by the modeling
and improvement of processes to support an adaptive business.

• Iterative development — increasingly, any development method must permit top-
down as well as bottom-up and iterative development with incremental deliver-
ables, while still separating different concerns (users requirements, architectures,
code) as appropriate.

The next several sections in this chapter will discuss these trends in more detail, and
the corresponding challenges to software development methods.
Trends for the next generation 1-31

1.2 CBD — Component-Based Development

Component-based development is being touted as the next major shift in software
development, impacting everything from the construction of user-interfaces, rapid
application development, internet-enabling of legacy applications, and more.

1.2.1 The Move to Components

Component-based devel-
opment is the buzz!

We are quickly moving into a world where we build software from existing compo-
nents primarily by assembling and replacing interoperable parts. You pick compo-
nents from a palette of choices. Each component exposes the set of properties and
behaviors by which you can control it, and through which it will interact with you
and with other components it is connected to. By “wiring” these exposed bits
together, you rapidly assembly the functionality you need.

Components span a very
wide range.

These components range from user-interface controls like list-boxes and hypertext-
navigators, to infrastructure components and frameworks for networking or commu-
nication, to full blown business objects. You buy, unwrap, adapt, plug them into your
system, and wire them to each other, to get instant new functionality, simply based on
their published interfaces, without ever looking at their implementation. Companies
are already seeing the benefits of adopting this approach.

Software assembly
makes an attractive
vision.

We read increasingly about the promise of assembling full-blown “business-objects”
and complete frameworks for scheduling, trading, customers, and orders. The poten-
tial improvements in implementation and test time and in product quality make this a
very attractive vision.

Assembly may even hap-
pen in cyberspace!

We can conceive of the day — in the very near future — when components of our soft-
ware systems are located in cyberspace by software brokers that dynamically match
required services with those provided. These components download themselves to
our machines, much like Java applets do today, negotiate capabilities and interfaces
like fax machines, then connect to each other and inter-operate.

Standardization of infra-
structure and “vertical”
domain APIs helps

Java (through Java Beans and its enterprise cousin, EJB), Active-X, and Corba, already
provide an infrastructure for component-level reuse. Much of the work of publishing
component interfaces, connecting to components, and communication across machine

Figure 1: Component-based assembly could become pervasive
1-32 CBD — Component-Based Development

and language boundaries is done for you in standard ways. Moreover, this standard-
ization is now making its way to “vertical” domains, such as insurance, banking, and
telecommunication. When this becomes a reality, business components themselves
will be defined and purchasable with standard interfaces.

1.2.2 What is new about Components?

Component definedSo what are components? And how do they differ from software units we have
worked with previously, including objects? Lets start with a definition:

Component An independently deliverable unit of software that encapsulates
its design and implementation and offers interfaces to the out-
side, by which it may be composed with other components to
form a larger whole.

Most common uses of the word ‘component’ mean an implementation unit which can
be composed with other implementation components. Others will be more like
“frameworks”, a unit of implementation, modeling, design patterns, or specification,
which is specifically designed to be generic and customizable.

Consider a mainframe
application.

Consider a traditional monolithic host-based application; it was written assuming a
dumb terminal at the other end, from which it received textual commands and to
which it wrote screen displays. All the application logic and data were encapsulated
within the host application. However, there were often no smaller units of encapsula-
tion within that application, and all procedures shared the same global data. Evolving
and modifying such systems are exceedingly difficult.

It takes screen-scrapers to
compose such compo-
nents.

Could such a host-based application be considered a component? Yes — but not a
very elegant one. Its interfaces to the outside are screen outputs and terminal inputs,
so the only way to “compose” such components is to write glue components that emu-
late terminals and screens, and appropriately decode this information to coordinate
with another component.

Next came large-grained
O.S. and database com-
ponents

The arrival of more modern operating systems brought better services for coordinat-
ing across multiple applications — IPC, RPC, and for separating system services such
as those of a database server. We now had large-grained components like the data-
base, operating system, and individual applications. We even saw an early compo-
nent architecture on UNIX, with the model of pipes and filters; each application
consumed and produced streams of data, and the applications could be composed by
simply connecting up the streams as needed. Elegant, but narrow and limited in
applicability, since the only kind of connector was a pipe.

Object technology
changed component
granularity for good

The arrival of object-oriented languages like C++ and Smalltalk changed the granular-
ity of components. It was no longer entire applications that communicated with each
other, but fine-grained objects like buttons, list boxes (on a UI), products, orders, and
line items. These objects encapsulated local state and data representation, and offered
services to other objects via their published interfaces. Unfortunately, traditional
object-oriented languages had a narrow focus, as discussed in Section 1.1.

OpenDoc and COM
opened up components

The next generation of components appeared in the Macintosh environment as Open-
Doc, and in Windows as OLE/COM. This generation of component technology was
distinguished by the finer granularity of components its exposed. For example, the
CBD — Component-Based Development 1-33

Microsoft Word application would expose numerous “objects” including documents,
paragraphs, tables, and words; a Visio application would expose drawings, shapes,
and cells. Components were connected not just at the level of the entire application,
but at the level of objects within an application. A business object such as an Networ-
kElement may now be connected to a row in a database, a paragraph in a Word docu-
ment, and a Shape in a Visio drawing. Moreover, the nature of the “connectors” started
to change, from being directly coded requests for services, to higher level concepts
such as properties and events.

Workflow systems
required new kinds of
connectors

In parallel, interest in workflow systems was growing. The components used in these
systems were larger grained units of business activity, and the connectors represents
the flow of work products, such as transferring a travel requisition, or replication of
an order for parallel processing in different activities.

Today’s components are
easier to compose

Today’s component technology is characterized by CORBA and COM. Components
can range from large-grained applications to fine-grained objects, connecting to each
other via published interfaces regardless of language and machine boundaries, and
even inter-operating across enterprise boundaries via internet technologies such as
IIOP. The nature of the “connectors” between components can become more high-level
than explicit service requests, so components get wired together in a more natural way,
as suggested by the component ‘wiring diagram’ below.

And are one step beyond
traditional objects

Many components are not very different from large-grained objects, even if their
implementation uses multiple classes. Most components are best implemented using
object-oriented languages. Different forms of component connectors can be both mod-
eled and implemented at a lower level using standard object techniques. But compo-
nents do bring with them a improved focus for larger-scale software development:

• interface-centric design, rather than classes and inheritance

• standard technical infrastructure services, for naming, directory, transactions, etc.

• language and location transparency

• better composition mechanisms, such as properties and events

property

output event

input method

ButtonButton

ButtonButton reactor

ThermometerThermometer ThresholdThreshold

OROR

ThresholdThresholdDifferentiatorDifferentiator

slider

pressed

start

start

stop

pressed

<<physical>>

position

limit
value in

value

in
gradient

in

out

out
in1

in2

out
AlarmAlarm

in

Figure 2: Different kinds of "connectors" in a component design
1-34 CBD — Component-Based Development

1.3 Open Distributed Systems

Open componentware is
especially important for
the internet.

The world’s networks are increasingly looking like one big computer. The internet is
an “open distributed system”, and one that will become increasingly sophisticated
and central to most businesses. In this context, “open” means each component —
whether a coarse-grained object or a framework of collaborating parts — may be
called upon to connect to and work with components its designer never knew about;
the form and content of the network of interacting components is constantly evolving.

Consider an on-line
stock-trading system.

For example, a stock-trading system might include components that publish raw
stock data, define various financial models that can be applied to evaluate different
companies, apply stock data to selected financial models, and interact with trader
components that buy and sell financial instruments. Such a system relies on definite
interfaces between components (StockTrader, QuotePublisher), is intrinsically distrib-
uted, and is open and evolving over time.

The intra- and internet
need interoperable com-
ponents.

The internet and intranet will provide further impetus to interoperable components,
as they evolve from an information-sharing medium into a full application develop-
ment platform. Application design and implementation are evolving from the desk-
top-centric client-server paradigm to a new class of network-centric applications.
Based on technologies like Corba/IIOP, Java/RMI, and Corba, components will
dynamically connect to, inter-operate with, and even extend, others that they have lit-
tle prior knowledge of.

The ‘virtual enterprise’
can be a reality today

This inter-operation crosses the traditional boundaries of an enterprise to realize new
kinds of federated systems across a ‘virtual enterprise’, building new services that
transparently integrate and customize services on different networks. In the classic
supply-chain illustrated below, a factory’s resource planning systems are connected to
objects and components on the customer end, and to corresponding objects and com-
ponents at its suppliers. The entire federation operates via the internet, using appro-
priate security measures.

All these need open
object and component
systems.

We wish to use components to model, design, and build open object systems, whose
form and function is extensible, consisting of multiple encapsulated components, and
constantly reacting to stimulus. The parts, their interfaces and interactions, and rules

Customer
(browser)

SupplierFactory

distributed objects and components
Open Distributed Systems 1-35

for such interactions, do not preclude any compatible replacements, plug-ins, or
extensions. Such changes may take place across systems or even dynamically within a
single running system.

An object system a one whose run-time form is described by a structure of objects,
and whose run-time behavior is described by the interactions between those objects
and their effects on each other via their interfaces. Many objects will reflect problem
domain concepts. An object design is one in which the structure of the system is based
on concepts known to the user, reflecting the structure of objects in the problem
domain.
1-36 Open Distributed Systems

1.4 Adaptive Business Driven Solutions

Computers reflect the
business they support

The relationship between open systems and businesses is simple. Departments in an
organization have their own computing machinery, and so do individuals in each
department. Each machine is supposed to support the activities of its owner. The
structure and flow of business interactions between individuals and departments are
reflected in the structure and flow of interactions between their machinery. In fact,
enterprise software systems, almost by definition, should meet three basic criteria:

— support the business
— adapt rapidly with the business
— at all times be sufficiently functional and timely

Business change implies
software change

What happens when the company is reorganized? Obviously the interactions between
machines are reorganized in parallel. This is exactly what object technology has
always been about: reflecting the essential structure of the business world in a manner
which enables systems to adapt with the business they support.

The following example is adapted
from [Mabey et al]. A classic business
process for supplies might include
activities for purchasing, receiving
shipments, and reconciling shipments
against purchase orders before issuing
payment. This business was suscepti-
ble to “dumping” — unsolicited deliv-
eries and subsequent invoicing. The
software systems and their interactions
reflect this business operation.

The operations of this business were
streamlined by recognizing that only
supplies that were ordered should be
delivered and paid for. The software components and their connections must be
adapted to this new process.

Not all changes at the business level are of such a grand scale, yet they all place simi-
lar demands upon the supporting software. For example, the ability of a business to
introduce a new innovative pricing plan for phone calls, or a customer loyalty-based
purchasing incentives, may be entirely constrained by the ability of the enterprise
software systems to adapt to such a change.

Since most software requirements arise from some change, or opportunity for change,
in the business -domain, they are best formulated in terms of the business model. Ide-
ally, such business models should also form the basis of the software requirements
and designs as well.

purchase orders

invoices in

items received

payments

“federated” components

collaboration across different
kinds of component connections

Purchases

Receiving

Accounts Payable

reconciling invoices

purchasing

receiving

Purchases

Receiving

Accounts Payable

invoices in

items received

reconcile invoices

payments

purchase orders

orders fulfilled

should be aware of orders!!
Adaptive Business Driven Solutions 1-37

The same is true for non-
business and smaller sys-
tems — they change too!

Not all systems have a “business” flavor to them, in the sense of a commercial activity
that generates money. However, all systems, big or small, have to deal with evolution
and change over time. These changes often come from the problem domain itself;
hence, software should reflect the essential structure of its problem domain.

Continuity from problem
domain to code

Hence software development must be driven by the modeling and improvement of
processes to support an adaptive business. For a non-business system, the software
must be based on a model of the problem domain itself. Moreover, it would be nice if
similar principles and techniques are used to model the business (which, after all,
increasingly consists of human roles interacting with major software-components), as
are used to model and design the software components themselves.

1.4.1 Legacy Wrapping

Adapt legacy systems by
“wrapping” them

In adapting to changing business needs our software systems must evolve, but they
clearly cannot be discarded. “Legacy” systems must be adapted to fit into the overall
architecture that is more component and object-based, perhaps utilizing CORBA or
COM. Doing this requires “wrappers” — a software layer that adapts the legacy sys-
tem and offers an object-like interface to the rest of the system. Wrappers range from
very simple, where the entire legacy system appears as one large object, to more com-
plex, where the software layer presents a virtual set of objects from within the legacy
system.

Naturally, this poses a challenge for modeling techniques. We would like to describe
the interfaces of a component regardless of whether it is implemented as a wrapper
around a legacy system, or a newly built one.

object “bus”

virtual object wrapper

legacy system
no real “objects”

data stored in some form

monolithic object wrapper

Figure 3: Wrapping legacy systems
1-38 Adaptive Business Driven Solutions

1.5 Iterative Development using Components

Component-based development has further fueled the move towards rapid applica-
tion development (RAD), with quick, iterative and incremental development of sys-
tems and applications.

Rapid iterative develop-
ment proves its worth.

The trend towards rapid assembly directly complements changes in the software
development process. The value of iterative development and incremental delivery of
features is now widely recognized. Utilizing components and 4GL’s, and working in
Rapid Application Development (RAD) environments can shorten the cycle-time
from requirements exploration to implementation.

It lets us converge on the
right solution better

The reasons for iterative and incremental development are quite simple. Because busi-
nesses change constantly, and business needs are best understood by the business
user, user involvement is an important part of software development. Often, not
everything needed is known up front; nor is everything known up front truly needed!
Frequent iterative and incremental delivery, if carefully planned, helps “re-vector”
development effort appropriately, converging on a business solution with the right
combination of function and timeliness.

Separation of concerns is
important even for itera-
tive development.

With iterative development1 it is still important to separate out problem domain or
requirements issues from designs and code. The authors have seen more than one
project in Visual Basic that made good initial progress in assembling an application,
then rapidly deteriorated to where the implementation code became incomprehensi-
ble, yet it was the only available description of the application being built.

Changing code must be
separate from more
abstract models

In an iterative and/or incremental development lifecycle, some design decisions
might be re-visited and revised more often, due to changing requirements or new
knowledge about issues like performance and flexibility. Each such pass often gener-
alizes and then re-specializes previous designs, e.g. to add new features or improve
performance. If we are to succeed at iterative development without being reduced to
working only at the code level, we will need very clear separation between the con-
stantly changing code, and higher levels of design descriptions, to help us maintain
our designs and models effectively.

target

time

function initial target unclear

target better known
(or moved)

target well defined
(or moved again)

Figure 4: Iteration and requirements uncertainty

1. The same discussion applies to any maintenance activity on an existing system
Iterative Development using Components 1-39

1.6 Designing Pluggable and Generic Components

We are increasingly
building extensible
frameworks.

To succeed with components, our components have to be flexible, so they can be
adapted to use in different contexts. We are increasingly building frameworks for
entire families of products and for wide ranges of customers, as opposed to one-time
dedicated usage. Maintainability and extensibility have become dominant quality
objectives, and the design challenges are correspondingly harder.

Components are units of
design effort.

Building good software is about designing and plugging together components. A
component is a piece of design-effort that makes sense as a unit — it can be designed,
moved around, stored in a library, incorporated in a variety of designs, updated, or
replaced; classes, functions, pieces of analysis, and patterns are all components in this
general sense. If you don’t design your software in well-defined components, then it
will be inflexible and difficult to change. If you don’t use previously-built components
in your designs, then you’re doomed to continually cover the same old ground every
time you write a new application, repeating a lot of the same mistakes.

Components include
implementations,
designs, hardware, peo-
ple, and roles at all
scales.

Components can be small things doing simple programming tasks — keeping a list of
items or representing a person’s name; or they can be complete applications like a
word-processor or a spreadsheet; or skeletal applications designed for extensibility,
like an application framework; or they can be people in a workflow — operators,
clerks, managers; or they can be pieces of hardware — a multiplexor or a robot arm.
Components are designed from smaller components. (The components approach is
sometimes called ‘fractal’! — that is, scale-invariant.) If we’re engineering a whole
business process, our components will be roles of people and departments and per-
haps some computer systems. If we’re designing a computer system, the components
will be pieces of hardware and software. When designing a software component, its
parts should be simpler components – all the way down to the level of individual pro-
gram statements. Design is a recursive process.

Good components are re-
usable.

In every case, we should hope to be able to use components that already exist; ideally,
any new components we have to design ourselves should just represent those features
that are entirely new. But for that ideal to happen, the components we put together
must be adaptable. For example, a component that handles members of book-libraries
is less useful than one that can be employed to handle any kind of membership.
Designing a component well is not just a matter of making it work correctly, nor only
about making it perform efficiently. It is also about generalizing it to be adaptable to a
variety of purposes — not just the one to which it is about to be applied immediately.

Performance vs. general-
ity

There is often a trade-off between performance and generality. In object-oriented
design we emphasize features like basing the design on the business model, polymor-
phism and encapsulation — all in aid of genericity, but sometimes worsening run-
time performance. A good object-oriented design is one which balances these needs
appropriately. And if the relation between an optimized design and the business
model is well-documented, the design will still be flexible, even if with a little more
effort.
1-40 Designing Pluggable and Generic Components

Generic vs. rapid designThere is also a trade-off between genericity and design time. Making a generic compo-
nent takes more effort. You get the investment back when it is eventually used in sev-
eral other contexts; but the sacrifice of short-term deadlines for longer-term benefit is
clearly a management issue that has to be understood and backed at all levels.

This book shows how to
build component

This book is about the trade-offs and the technology of building from components.
This isn’t something we’re unfamiliar with. Most designers assume some platform of
existing parts — the windows system, a database, or the standard libraries that come
with the compiler. But it isn’t something that’s universally done well or consistently
— or as pervasively as we will advocate in this book.

..that can be plugged
together.

Well-designed components can be plugged together in two distinct ways, as shown in
Figure 5:

• Large grained components are composed into larger applications, by writing code
to utilize and co-ordinate their services into meaningful business transactions.

• Generic components themselves are customized for the job at hand, by ‘plugging-
in’ small parts that provide application-specific versions of some parts.

Figure 5: Generic components are customized, then composed

Membership
manager

Reservations
manager

Stock
mgr

Video Store system

we compose these
components

To build this
component,

Generic Membership
manager

Member class

Account class

which are themselves
customized versions
of generic parts
Designing Pluggable and Generic Components 1-41

1.7 Component-Ware Challenges

Components must plug
together at all levels

Like components, plugs are ‘fractal’: the approach is applicable on all scales. Whether
we’re talking about the interface to a little object that just counts up and down, or the
system that runs your nuclear power station, the same basic principles apply. The
component approach to design can only be used effectively if you have a way of
knowing whether two components will work together properly.

This demands clear “con-
tracts”

In component-based design, clear abstraction is essential as the means to specify the
contract between a component and any others that may be used in conjunction with it.
This is perhaps the biggest challenge to overcome before we can readily plug compo-
nents into each other.

Conformance means
meeting a contract

Conformance is an essential relationship between an abstract requirement and any
realization. Documenting conformance means expressing the belief that a more spe-
cific requirement (anything down to a complete implementation) is correctly
described by a more general abstraction — i.e. meeting a contract.

Component-assembly
requires precise behav-
ior descriptions.

Precise Behavior Descriptions. In order to be able to dynamically locate and use
components suitable for some need, whether it be within a CASE tool environment or
dynamically in cyberspace, we will need an explicit and machine-processable repre-
sentation of the interfaces and behaviors involved. The behaviors will have to be spec-
ified in some mutually agreed-on form, and must quite precisely express the
assumptions and guarantees that both users and implementors can make.

Re-usable components
will be generic and
extensible frameworks.

Designing Extensible Components and Framework. It is not realistic to expect non-
trivial implementation components to suit the exact needs of every specific context in
which it will be used. Hence, our component implementations must permit adaptation
to customize them for different uses, and our component interfaces and design models
must document such permitted extensions, while still accurately describing the
behavioral constraints that must be guaranteed regardless of extensions.

Your code ...
...will work correctly when connected

Type spec A

with anything that implements...

Component you publish

Their component

Their code...

Type spec B

abstraction

realization

Big Question. When some third party puts these components together, will they
work? What should you do to be sure they will work?

...implements...

plug in ?conforms?

Figure 6: Components and plug-conformance
1-42 Component-Ware Challenges

Our modeling and speci-
fication techniques must
be more “open”.

Modeling of Frameworks. Designing frameworks which are re-usable and extensible
across entire families of applications brings new challenges to modeling and methods.
Such systems are typically built by polymorphic composition and extension of multi-
ple smaller frameworks. We will need “open” modeling and specification techniques
which can accommodate such extension, as well as ways to describe extension mecha-
nisms, such as subclassing and composition, without requiring full access to and
knowledge of the implementation.

Component repositories
contain composible
design models as well.

Component Repositories. The ideas of assembling components should not merely
apply to implementation activities, but also to all the related modeling, specification,
and architectural design activities as well. Our component repositories should contain
generic versions of models and architectural patterns that we compose and adapt to
our needs. The composition and refinement of component models must be well
defined.

Abstract descriptions
even of legacy systems

Legacy Component Models. Our modeling and design techniques should smoothly
integrate legacy components as well i.e. systems that have not been built with object
or component technology, but which will have some wrappers built to adapt them as
needed. This means we will need an approach that describes the external interfaces of
components clearly, yet abstractly enough to permit both legacy and new implemen-
tations.

And that is what this
book is about!

This book talks about how to ensure the plug-compatibility of your components. We
will see how to specify simple interfaces, then deal with more complex ones, and look
at techniques for layering the complexity of an interface.
Component-Ware Challenges 1-43

1.8 Where Does Catalysis Fit In?

This blurb summarizes
Catalysis goals

The objectives of the Catalysis method are summarized in this single, buzzword-
laden blurb. Taking apart the marketing jargon on this blurb, we have:

• next-generation: Catalysis provides a systematic basis and process for the construc-
tion of precise models starting from requirements, for maintaining those models,
for re-factoring them and extracting patterns, and for reverse-engineering from
detailed description to abstract models.

• standards-aligned: Catalysis is based on, and has helped shape, standards in the
object modeling world. Both authors have been involved in the OMG standards
submissions for object modeling, and one has been a co-submitter in defining the
Unified Modeling Language (UML 1.0, 1.1) with a consortium of companies, as
standardized by the OMG in September 1997. Catalysis has been central to the
component-specification standards defined by Texas Instruments and Microsoft,
the CBD-96 standards from TI/Sterling, and the Sterling Cool:Cubes tool family.

• open distributed object systems: it is our goal is to support the modeling and con-
struction of open distributed systems -- those whose form and function evolves
over time, as components and services are added and removed from it.

• components: little, if any, modeling or implementation work should be done from
scratch. If you draw two boxes and a line between them, chances are someone has
done something very similar before, with an intent that is also very similar, if you
only abstract away certain specifics. All work done in Catalysis can be based on
composition of existing components, at the level of code, design patterns and
architectures, and even requirements specification.

• frameworks: in particular, some of these components are built so they are easily
adaptable and extensible. We call these components “frameworks”, generalizing
somewhat the traditional definition of a framework as a collection of collaborat-
ing abstract classes.

• adaptive enterprise: and, we want to use these techniques from business to code
and back. Catalysis provides novel support for abstraction and refinement,
enabling true support for business-to-code models, and a strong foundation for
use-case driven modeling and design.

❒ A next-generation standards-aligned method
· For open distributed object systems

– from components and frameworks

– that reflect and support an adaptive enterprise

Precise models and systematic process
UML partner, OMG standards, TI/MS standards

Dynamic Architectures

Compose pre-built interfaces,
models, specs, implementations...

…all built for extensibility

From business
to code

Figure 7: Method marketing blurb
1-44 Where Does Catalysis Fit In?

This book tells how we
met some of these goals.

Catalysis effectively addresses some of the problems facing the next generation of
software development. The method was developed — at a time when some argue
there is scarecely need for another method — with the specific goals of being:

• Simple: all of Catalysis can be reduced to utilizing three basic constructs at three
levels of description. This simplicity belies its expressiveness; different diagrams
can be used at each level, but their purpose and scope is clearly defined. For
example, state diagrams are not a pre-defined specification device in the method;
rather, they are a particular visual representation of attributes, invariants, and
operation specifications. Even the parts of Catalysis that use rigorous notations
deliberately use a combination of information and formal descriptions, and can be
adopted in a “light” version on any project.

While this book will spell out the rigor possible with Catalysis, which may seem
intimidating to some, the general philosophy in applying it is one of ‘just enough’
rigor; there is a light-weight path through Catalysis.

• Sound: All the diagrams1 used in a Catalysis development have a precise mean-
ing, and there is little room for ambiguity in interpretation; even abstract descrip-
tions convey precise meaning. This applies from the level of capturing user
reqiurements and business rules, all the way to document interfaces of code com-
ponents; abstraction combined with precision makes a nice combination.

• Systematic: the deliverables and their relationships to each other are very pre-
cisely defined, as are suggested techniques for developing and checking them.
Catalysis also provides a clear document structure, and even detailed documenta-
tion templates that can be adapted depending on project needs and CASE tools
used. This provides the foundation for a repeatable and predictable development
process.

• Standard: diagrams used in Catalysis are based on the Unified Modeling Lan-
guage, a standard set of constructs and notations for describing object and com-
ponent systems. What Catalysis adds is a precise interpretation of these diagrams
to greatly simplify their usage, and a development process that clearly separates
concerns.

• Complete and consistent: all deliverables produced in a Catalysis development
have clearly defined criteria for consistency with other artifacts, and for complete-
ness against the more abstract requirements they fulfill. These can be used for
automated checking, for design reviews and inspections, and for progress moni-
toring. The method and its techniques are applicable from business level to code.

• Traceable: The Catalysis concept of refinement provides concrete traceability
between abstract requirements and the realizations of those requirements, from
the level of business rules to code. Moreover, this is achieved without giving up
the separation of concerns that is so important in team and component-based
development.

• Scalable. Too many methods today offer either little bits and pieces ot techniques
and notations without the development framework needed to scale to large
projects, or else provide guidance for large project planning and lifecycle manage-
ment without a sound technical basis underlying them. Catalysis aims to provide

1. Informal sketches and doodles will always be invaluable in their own way, but should typ-
ically be evolved into more precise descriptions.
Where Does Catalysis Fit In? 1-45

a tailorable combination of process, techniques, and precision that can be adapted
to different projects.

• Accessible: Catalysis has been used on projects of many sizes. Its current support
includes training courses and mentoring, a growing collection of certified practi-
tioners, method documentation, case studies, and increasing tool support from
commercial tools.
1-46 Where Does Catalysis Fit In?

	Chapter 1 Next Generation Software
	1.1 Trends for the next generation
	1.2 CBD — Component-Based Development
	1.2.1 The Move to Components
	1.2.2 What is new about Components?

	1.3 Open Distributed Systems
	1.4 Adaptive Business Driven Solutions
	1.4.1 Legacy Wrapping

	1.5 Iterative Development using Components
	1.6 Designing Pluggable and Generic Components
	1.7 Component-Ware Challenges
	1.8 Where Does Catalysis Fit In?

