
SG24-5119-00

International Technical Support Organization

http://www.redbooks.ibm.com

IBM CBConnector Cookbook Collection:
CBConnector Bank Implementation

Alex Gregor, Henri Jubin, The Team

IBM CBConnector Cookbook Collection
CBConnector Bank Implementation

August 1998

SG24-5119-00

International Technical Support Organization

© Copyright Intern ation al Busin ess Machines Corpor ation 1 998. All rights r eserved
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (August 1998)

This edition applies to Component Broker Connector Version 1, Release Number 2 for use with
Windows NT/4 Service Pack 3.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Building 045 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix A, “Special Notices” on page 111.

Take Note!

Contents

Figures . vii

Tables. .ix

Preface .xi
Other Redbooks in the CBConnector Series . xii
The Team That Wrote This Redbook . xiii
Comments Welcome . xv

Part 1. Introduction Motivation and Design . 1

Chapter 1. Introduction . 3
1.1 Motivation . 3
1.2 Scope. 4
1.3 Contents . 5
1.4 Informal Description of the CBConnector Bank Application. 7
1.5 How to Read This Book . 8
1.6 Audience . 9

Chapter 2. Design. 11
2.1 Design . 11
2.2 Business Object Model . 12

2.2.1 Initial CBConnector Bank Business Object Model 13
2.2.2 A CBConnector Policy Model . 16
2.2.3 Amended CBConnnector Bank Business Object Model 18

2.3 Object Relationships . 22
2.4 Data Model. 23
2.5 Summary . 25

Chapter 3. Rational Rose Implementation . 27
3.1 Setting Up the Rational Rose Bridge . 27
3.2 The Rational Rose Model . 28
3.3 Rational Rose Model in Object Builder . 30
3.4 A Bridge Too Far . 31

Part 2. Implementation . 33

Chapter 4. Client Implementation . 35
4.1 Introduction . 35
4.2 The Client Back-End . 35

4.2.1 The Role of A Proxy . 37
© Copyright IBM Corp. 1998 iii

4.2.2 Using a Proxy . 37
4.2.3 The CBConnector Bank Proxies . 39
4.2.4 A Note on Proxy Optimization . 44

4.3 The Client Front-End (Graphical User Interface). 44
4.3.1 The View Structure . 47
4.3.2 Operation Panels . 49
4.3.3 BO Action Classes . 50
4.3.4 Common Data Container . 50
4.3.5 DataSupplier Class . 51
4.3.6 Hierarchy . 52
4.3.7 Hierarchy Specification Format . 54

4.4 Automatic Proxy Generation . 56
4.4.1 Introduction . 56
4.4.2 The Proxy Information Object . 57
4.4.3 The IDL Parser . 57
4.4.4 The Proxy Factory . 61
4.4.5 Putting It All Together . 64
4.4.6 Four Steps to Creating Your Own Proxy Generator 65

Chapter 5. Middle Tier . 67
5.1 Introduction . 67
5.2 Architecture of the Middle Tier . 67
5.3 Persistent Implementation . 68

5.3.1 Managed Object Container . 68
5.3.2 Containers . 68

5.4 CBConnector Bank Architecture . 69
5.4.1 Functions Used in the CBConnector Bank Sample 69
5.4.2 CBConnector Banking Objects . 70
5.4.3 CBConnector Bank Scenario . 72
5.4.4 CBConnector Bank Configuration . 74
5.4.5 Constructs . 78
5.4.6 Address . 79
5.4.7 Customer . 82
5.4.8 Teller . 86
5.4.9 Note . 86
5.4.10 CBBankCheckAccount . 87
5.4.11 SavingsAccount . 89
5.4.12 TransactionRecord . 91
5.4.13 Policy . 92

5.5 Problems Encountered . 95
5.6 Conclusion . 96
iv CBConnector Bank Implementation

Chapter 6. Persistent Implementation. 97
6.1 Importing the Bean to Object Builder . 97
6.2 Implementing the DO . 97
6.3 Using Mapping Helpers . 98
6.4 Fixing Generated Code . 100

Chapter 7. Legacy Tier . 101
7.1 Data Implementation . 101
7.2 Host CICS Transaction. 101

7.2.1 Host Flow Example. 102
7.3 Creating Procedural Adaptor Object . 104

7.3.1 Screen Scraping - Implementation . 104
7.3.2 Screen Scraping - Testing . 105

Chapter 8. Summary . 107

Part 3. Appendices . 109

Appendix A. Special Notices . 111

Appendix B. Related Publications. 113
B.1 International Technical Support Organization Publications 113
B.2 Redbooks on CD-ROMs . 113
B.3 Other Publications. 113

How to Get ITSO Redbooks . 115
How IBM Employees Can Get ITSO Redbooks . 115
How Customers Can Get ITSO Redbooks. 116
IBM Redbook Order Form . 117

Glossary . 119

List of Abbreviations. 127

Index . 129

ITSO Redbook Evaluation . 131
v CBConnector Bank Implementation

vi CBConnector Bank Implementation

Figures

1. Three Tier Architecture . 6
2. Middle-Tier Architecture. 8
3. Organization of the Book . 9
4. The Original Concept Relationships and Specializations 13
5. Party Class Description . 14
6. Entity Class Description. . 15
7. Transaction Class Description . 15
8. Note and Address Class Descriptions . 16
9. Policy Manager and Policies . 16
10. Policy Namespace . 17
11. Policy Class Description . 18
12. Amended Object Model . 20
13. Savings Account, Check Account, and Transaction Class Information . . . 21
14. Customer, Note, Teller, and Address Class Description 22
15. The Data Model . 24
16. Initial Rational Rose Object Model. 29
17. Final Rational Rose Model. 32
18. The Structure of the CBConnector Bank Proxies 36
19. The CBConnector Bank Sample Application User Interface 46
20. Typical Steps in Performing an Operation . 47
21. Hierarchy List Panel. 52
22. Segment of the Hierarchy Model . 53
23. Global Architecture . 67
24. Address Hierarchy . 69
25. CBConnector Bank Objects . 71
26. Architecture . 72
27. Teller GUI. 73
28. Data Object Inheritance . 75
29. Persistent Objects . 77
30. CBBankConstructs IDL and Graphics . 79
31. CBBankAddress and CBBankAddressHome. 80
32. CBBankAddress IDL . 81
33. CBBankAddressHome IDL . 81
34. CBBankAddressHome createAddress. 82
35. CBBankCustomer IDL . 84
36. CBBankCustomerHome IDL . 85
37. CustomerMapper IDL. 85
38. CBBankTeller IDL . 86
39. CBBankNote IDL . 87
40. CBBankNoteHome IDL . 87
© Copyright IBM Corp. 1998 vii

41. CBBankCheckAccount IDL . 88
42. CBBankCheckAccountHome IDL . 89
43. CBBankSavingsAccount . 90
44. CBBankSavingsAccountHome IDL . 91
45. CBBankTransactionRecord IDL. 92
46. CBBankTransactionRecordHome IDL . 92
47. Policy Naming Hierarchy . 93
48. CBBankPolicy Exceptions IDL . 94
49. CBBConnector Bank Policy IDL. 94
50. CBBankPOlicy Manager IDL . 95
51. Data Object Inheritance . 98
52. GenderType Conversion in PAO . 99
53. Mapping Objects with PAO . 100
54. Flow of the CICS Host Application. 103
viii CBConnector Bank Implementation

Tables

1. Namespace Retrievals. 17
2. Object Relationships Used in the Model . 23
3. Role of Note Objects . 78
4. Role of Address Objects . 80
5. Role of Customer Objects . 83
6. Role of Customer Objects . 86
7. Role of Note Objects . 86
8. Role of Note Objects . 87
9. Role of Note Objects . 89
10. Role of Note Objects . 91
11. Role of Policy Objects . 93
© Copyright IBM Corp. 1998 ix

x CBConnector Bank Implementation

Preface

The CBConnector Bank is a sample bank application developed for
Component Broker Connector Release 1.2. This redbook explains how the
CBConnector Bank application was developed, from object model to installed
Business Objects, and is part of the International Technical Support
Organization’s (ITSO) IBM CBConnector Cookbook Collection.

Component Broker Connector (CBConnector) is a new member of the IBM
Transaction Series product family that supports distributed object computing
in a multitier environment. CBConnector provides a middle-tier application
that allows Business Objects to be highly managed and integrated with
back-end databases and transactional systems. Different types of first-tier
clients can access the middle-tier Business Objects. The middle tier
essentially includes middleware that provides clients with an object-oriented
rendering of other middleware. In this regard, CBConnector is not a
stand-alone product, but instead, is designed to work with existing resource
managers that provide persistence, concurrency control, and other services
needed in commercial computing environments.

CBConnector is composed of an industry-leading set of technologies that
facilitate distributed object applications. As the only solution of its kind on the
market today, it combines three critical dimensions:

 • Runtime

 • Systems Management

 • Development

Component Broker consists of two parts that support these three dimensions.
CBConnector provides the runtime environment and supports systems
management. The Component Broker Toolkit (CBToolkit) contains the tools
that application developers use to define and implement the objects running
on the middle tier.

CBConnector’s unique value lies in its ability to integrate and therefore
leverage existing enterprise transactions and data. It will most often be used
to extend existing business models.

We developed the CBConnector Bank as an application that demonstrates
the capabilities of Component Broker Release 1.2. This application will grow
to encompass the new functionality of subsequent releases of Component
Broker.
© Copyright IBM Corp. 1998 xi

The application has three tiers: the client tier, the middle tier–the Component
Broker server–and the legacy tier, where a CICS application resides. We call
this the "legacy system" in quotes because it is a newly developed system,
one whose sole purpose is to act as a persistent store to the bank application.
However, this tier would normally be an existing application to be integrated
into the new, object-oriented architecture that Component Broker represents.

This redbook provides a detailed description of how we implemented the
three tiers and discusses the CBConnector-specific issues and concerns we
encountered during this development.

System Engineers who already have a basic understanding of Component
Broker concepts can use this book as a stepping stone to go from our
samples to develop more complex, real-life applications.

Other Redbooks in the CBConnector Series

So far, there are four books in the CBConnector redbook series. Below is a
short description of what each book covers.

 • IBM Component Broker Overview, SG24-2022. This redbook provides a
general understanding of what CBConnector is and provides an overview
of the underlying architecture and concepts.

 • IBM CBConnector Cookbook Collection is a series of three redbooks
whose the objective is to give the reader hands-on experience by installing
and running sample applications and providing step-by-step (or cookbook)
instructions on how to develop CBConnector applications. The different
parts that make up the Cookbook Collection are:

 • First Steps, SG24-2033. This redbook is the introductory book. It leads
you through elementary examples that show the basic functionality of
CBConnector.

 • CBConnector Bank Implementation, SG24-5119. This is the redbook
you hold in your hand right now. It takes developers one step further
and explains the development process of a sample bank application,
from object model to installed Business Objects. It discusses
CBConnector-specific issues and concerns encountered during
development.

 • CBConnector Bank User Guide, SG24-5121. This redbook provides
instructions on how to install and run the bank application discussed in
the CBConnector Bank Implementation redbook.
xii CBConnector Bank Implementation

In addition to the CBConnector redbooks, we recommend to read the books
in the CBConnector Library, which is a collection of complete installation
guides, programming guides and references.

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working for the International Technical Support Organization, Austin Center.
The project was designed and managed by Alex Gregor and Henri Jubin. The
writers were:

Dr. Andy Bond is a Principal Research Scientist at the Co-operative
Research Centre for Distributed Systems Technology in Brisbane, Australia.
He has over 10 years experience in the field of distributed systems, including
load sharing, distributed system architecture design, DCE, CORBA, and
experimental middleware technologies. He has written many publications in
these areas. He holds a Ph.D. degree from Victoria University of Wellington,
New Zealand, where his topic was "Adaptive Load Sharing in a Distributed
Workstation Environment".

Ryan Cox is an Object Technology/Application Development specialist
working in IBM Advanced Technical Support. He has worked on projects in
many areas, including Internet/intranet development, Lotus Notes/Domino,
Java, distributed computing, and CORBA. He currently supports application
development tools in the IBM VisualAge family, including VisualAge for Java
and Component Broker Connector in the IBM Transaction Series.

Mark Fitzpatrick is a Principal Consultant at the Distributed Systems
Technology Centre in Brisbane, Australia. He has worked in the IT business
for 20 years. His areas of expertise include object-oriented technologies,
distributed architectures, such as CORBA, and application development in
languages such as Smalltalk and Java.

Alex Gregor is an IBM Senior Software Engineer working at the International
Technical Support Organization (ITSO), Austin Center in the OO/AD group.
His responsibilities include technical support for IBM application frameworks.

Henri Jubin currently works for the ITSO in Austin, where he covers the area
of object-oriented technology and, in particular, the JavaBeans and Java
Enterprise arena. Henri has previously worked in various support and
consulting positions with IBM France. He has dealt with topics such as
object-oriented technology, OS/2, Windows NT, and OpenDoc.
 xiii

Zoran Lerch is a self-employed data-processing consultant and an IBM
BestTeam partner, focusing on Java and JavaBeans technologies and on the
broad spectrum of their application.

Dr. Andry Rakotonirainy is a Senior Research Scientist at the Co-operative
Centre for Distributed System Technology Center (DSTC) in Brisbane,
Australia. He holds a Ph.D from INRIA (Institut National de Recherche
Informatique et Automatique) France for his doctoral work titled "Advanced
Transaction Models". He has significant experience in, and has written
publications on, distributed systems.

Hanne Rygg Johnsen is a Systems Engineer in the Nordic Object
Technology Practice (OTP), IBM Norway. She has four years experience in
developing object-oriented systems with Smalltalk and Java, and most of
them have involved interfacing to legacy systems. As a member of the OTP,
she is currently dedicated to the reuse of application frameworks and to
providing customer consulting services in object-oriented analysis and
design.

Pasi Salminen is a project manager at Profit Ltd. in Finland. He has six years
experience in Object Technology and three years in distributed computing.
Profit Ltd. is building large-scale insurance systems using Object Technology.
Its main product, Once&Done, is a system for managing the complete
process from point of sale to contract administration. Profit’s goal is to provide
insurance companies a path from the current "system jungle" to a component
based system architecture conforming to industry standards and running on
all major platforms.

Terje Storstein has worked as a Systems Engineer in IBM Norway for almost
30 years. He started in the mainframe area, worked with the distributed
systems of the 1970s, and went on to work in the client/server era of the
1980s and 1990s. Currently, he is working in the e-business department of
the Norwegian Global Services.

Hennie van Wijk is a Technology Consultant at Amalgamated Banks of
South Africa (ABSA Bank). He is part of a team responsible for defining
Application Architecture for ABSA, specifically dealing with Object
Technology Strategies and OO Analysis and Design. He has extensive
mainframe experience including application development with COBOL, CICS,
IMS, and DB2 database analysis and design, which have kept him occupied
for the past 12 years. He is currently involved in research and development
into retrofitting "legacy systems" for reuse in a distributed computing
environment.
xiv CBConnector Bank Implementation

Thanks to the following people for their invaluable contributions to this
project:

IBM Development Laboratory in Austin, Texas:

Mei-Mei Fu
Greg Truty

IBM Development Laboratory in Rochester, Minnesota:

Eric N. Herness
Kevin Sutter

IBM Development Laboratory in Santa Teresa, California:

Harry Nayak
David Wisneski

IBM Development Laboratory in Toronto, Canada:

Chris Brealy
Tim Francis
Suman Kalia
Christina P. Lau
Yen Lu

IBM International Technical Support Organization:

Eugene Deborin
Joe DeCarlo
Steve Gardner
Bob Haimowitz
Hanspeter Nagel

IBM EMEA Application Development Software Centre, La Gaude:

Jean Pierre Augias
Jean Michel Fauconnier
Joaquin Picon
Bruno Georges
Phiippe Gregoire

Comments Welcome

Your comments are important to us!
 xv

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

 • Fax the evaluation form found in “ITSO Redbook Evaluation” on page 131
to the fax number shown on the form.

 • Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com

For IBM Intranet users http://w3.itso.ibm.com

 • Send us a note at the following address:

redbook@us.ibm.com
xvi CBConnector Bank Implementation

Part 1. Introduction Motivation and Design

Part 1 introduces you to the dialectic of our book and discuss issues related
to the idea of creating a sample application in the banking domain. We called
the sample application the CBConnector Bank.

One of the primary emphases of IBM’s Component Broker Connector
(CBConnector) is to support the evolution of the business enterprise. Its
support for distribution and object modeling makes it the ideal tool to address
evolving business market needs. The integration of legacy resource
managers allows the leveraging of the huge resources invested in existing
applications, including transactions and data.

This book shows how we designed and built a banking application sample
with IBM Component Broker Connector. The sample demonstrates the ability
of CBConnector to integrate legacy middleware (Universal Database (UDB),
CICS) within a multitier CORBA architecture.
© Copyright IBM Corp. 1998 1

2 CBConnector Bank Implementation

Chapter 1. Introduction

The book follows a development cycle, starting with the object model and
continues with the implementation of the three different tiers. We provide a
user guide in the CBConnector Bank User Guide, SG24-5121, to install the
application.

In the following sections, we describe the motivation, scope, and provide a
short description of the CBConnector Bank.

1.1 Motivation

In today’s financial services industry, customers demand fast and convenient
access to their banking solutions. They want more variety in products, and
they want them to be delivered at low cost across a wide array of delivery
channels. For example, banks must evolve and adapt to emerging customer
needs, at low cost and without ignoring existing legacy applications.

The reuse of legacy systems is an issue that software architects cannot
avoid. Software builders cannot afford to periodically rebuild their software
from scratch. Many software designs are now produced by combining and
elaborating on existing architectural design fragments.

Work on architectures for software systems and studies for better ways to
support software development have been around for quite a while. There is
agreement now that Object Technology is the best basis for software
architectures. The properties of object modeling, such as encapsulation and
inheritance, facilitate the prototyping of new software and the integration of
legacy applications into an object environment. The use of Object Technology
considerably speeds up code maintenance and development time,
consequently reducing the development cost. Therefore, Object Technology
has become the de-facto standard for designing and building software.

One of the primary purpose of IBM’s Component Broker Connector
(CBConnector) is to support the evolution of the business enterprise. Its
support for distribution and object modeling makes it the ideal tool to address
evolving business market needs. The integration of legacy resource
managers allows the leveraging of the huge resources invested in existing
applications including transactions and data.

This book shows how we designed and built a banking application sample
with IBM Component Broker Connector. The sample demonstrates the ability
© Copyright IBM Corp. 1998 3

of CBConnector to integrate legacy middleware (Universal database (UDB),
CICS) within a multi-tier CORBA architecture.

1.2 Scope

This book presents a banking application sample built with IBM Component
Broker. It explains the different development phases from the design to
implementation. The banking application described in this book gives you the
opportunity to study an application that fully exploits CBConnector solutions
for enterprise distributed objects. It is a guide to integrating client/server,
object-oriented, relational database, and transactions in the business
enterprise.

The banking sample demonstrates distributed object computing in a multitier
environment. It consists of an application that invokes transactions from the
client front-end (GUI) to a set of UDB and CICS back-ends through the
middle tier. It shows the integration of Object Technology, such as CORBA
and Rational Rose modeling with existing enterprise transactions in CICS,
relational databases such as DB2, and procedural languages such as
COBOL.

The book starts with an informal description of the banking model followed by
the Rational Rose description of the same model. The study of the
architecture leads us to concentrate on the composition of different
components of the architecture. We discovered limitations in the toolkit we
used, in addition to the constraints brought by the integration of Object
Technology with procedural databases. Therefore, we had to refine the model
into a simpler model.

The business logic of the refined model was implemented using the
Component Broker Toolkit and Object Builder. Object Builder is a tool that
application developers use to define and implement the Business Objects
running on the middle tier. The business logic we defined consists of the
implementation of methods, the relationship between objects, and the
mapping from CORBA-IDL to the DB2 data model.

The above mapping allows the client front-end to transparently access
persistent data stored with DB2. A typical CICS customer application was
defined at the back-end. In order to demonstrate that our middle tier can
interoperate, we created two databases, one on Windows NT and another
one on MVS. We used the CICS and IMS Connecting (CICON) tool to access
the second DB2 database through CICS transactions.
4 CBConnector Bank Implementation

Transactions that access the NT DB2 database are coordinated by the
CBConnector Transaction Service, which is conformant with the CORBA -
Object Transaction Service (OTS). The CBConnector transaction monitor:

1. Coordinates a legacy transaction monitor such as CICS, which in turn
accesses DB2

2. Coordinates the resource manager with the X/Open - XA interface

At the other spectrum of the architecture lies the client front-end. The client
application developer does not need to know how the server is being
implemented (database, language, services). The client simply deals with a
CORBA-IDL interface and queries the middle tier. A GUI was developed to
ease the task of the client to query the middle tier. A Business Object Proxy
was also developed to ease and speed up the development of the client
front-end that accesses the middle tier business object.

This book elaborates on all the steps we summarized in this section toward
building the banking application. The banking sample is provided with this
book.

1.3 Contents

The structure of the book reflects the way different tasks were split and
assigned to the team members. The core of the book is organized in three
parts. They are design, implementation and samples. The design section
answers the question "what model" and "why this model". The implementation
answers the question "how to implement the model". The sample presents in
detail the written code and installation.

1. The chapter on the design describes the architecture. It is an important
phase of the software development:

If a project has not achieved a system architecture, including its
rationale, the project should not proceed to full-scale system
development. Specifying the architecture as a deliverable enables
its use throughout the development and maintenance process.

- Barry Boehm, 1995

The first part of the chapter describes, in a simple and generic way, the
requirement and the architecture from which the CBConnector Bank
application was built. It is an abstract system specification consisting
primarily of objects described in terms of their behaviors, interfaces,
attributes and object interconnections, and relationships. It is a description
beyond the algorithms and data structures of the computation; it shows
how we designed and specified the overall system structure.
Introduction 5

This chapter also describes the refinements we’ve made from our initial
model aim to the model that we have actually implemented. A selection
among design alternatives was necessary due to the limitations of the
current version of the software we were using and intrinsic constraints
brought about by the use of legacy systems such as CICS and UDB.

The second part of the design more formally presents the model using
Rational Rose and Object Builder. It does not assume much expertise or
skills in Rose methodology, and it starts with a reminder of the general
principles of Rational Rose.

2. The implementation is defined with Object Builder which comes with the
CBC Toolkit. This chapter is structured according to the well-known
three-tier model. The three-tier model is an extension of the client-server
model (two tiers). The main motivation for the three-tier model is that the
client is lightweight and the server is split into a second tier and a third tier.
The second tier provides the business logic; this tier is also called the
middle layer. The third tier contains the data or any Resource Managers
(see Figure 1 on page 6). Note that an architecture is well-designed when
each tier can be integrated and interoperate easily with other components.

Figure 1. Three Tier Architecture

The details of the content of our three-tier architecture are as follows:

 • The client part shows how a client contacts the middle tier. It deals
with GUI Java code and the proxy that allows the client to connect to
the server through the CBConnector ORB broker.

 • The middle tier part of CBConnector contains the description of the
business logic. It is essentially the middleware that provides clients

Client

Server

Client

Data

Business
Logic

(Middle Tier)

(Third Tier)

(First Tier)

Client/Server Architecture Three Tier Architecture
6 CBConnector Bank Implementation

with the ability to interoperate with other middleware and resource
managers (UDB, CICS).

 • The legacy tier describes how to reuse a legacy CICS transaction
application as a resource component in Component Broker. It refers
to the Procedural Application Adaptor (PAA), CICON, and CICS.

3. The last part of this book presents the samples we used. It describes the
limitations encountered and the solutions we chose.

1.4 Informal Description of the CBConnector Bank Application

This section informally presents the CBConnector Bank application. In the
rest of the document, names written in bold are objects we created in the
model.

A Customer of a Bank creates either a Check_Account or
Savings_Account by providing various personal customer information such
as name and Address. Once the account is created, the Customer can
query his/her account, transfer an amount of money from account to account
and read Notes that the Teller created. A Teller queries accounts and
Customers. They create Notes for Customers and freeze, open, or close
the Check_Account or Savings_Account.

A Teller can dynamically set/get Policy name-value pairs such as default
interest rate. The Policy Manager provides the ability to change dynamically
the value of static variables used in CBConnector program. Those pairs can
be used by all objects in the banking application. Each method can be
invoked within a transaction, a log called a Transaction Record is appended
to each account upon update so that the Teller can query the history of
operations applied to accounts.

Figure 2 on page 8 shows how the objects used in the middle tier are related
and how they are stored.
Introduction 7

Figure 2. Middle-Tier Architecture

1.5 How to Read This Book

The book is structured into two parts: Implementation and Design as shown
in Figure 3 on page 9. You are invited to read the introduction in order to be
aware of the big picture. The first three parts of the design (Business Model,
Relations, Data Model) must be read together. The design chapter also
describes the refinements we have made between the initial theoretical
model and the implemented model; this section has to be read with the first
three chapters. The Rational Rose part can be read separately. The three
chapters of the implementation (Client, Middle Tier, Legacy Tier) can be read
independently.

In order to study teh CBConnector Bank models and code, you have to have
on hand a copy of the CBConnector Cookbook Collection: CBConnector Bank
User Guide, SG24-5121.

The recommended way to start working with the CD-ROM is as follows:

CheckAccount

Customer

Teller

Transaction
Record

AddressNotes

freeze/unfreeze

SavingsAccount

Transaction
Record

freeze/unfreeze
transfer

transfer

Policy

Object stored with db2 on NT
Object stored with db2 on IMS

Create
Notes

get/set

requestCheckBook

get/set

m methods

A

B
A refers to B

doListCheckAccount
doListNotes

doListSavingsAccount
8 CBConnector Bank Implementation

 • Create a CBBank directory on your hard drive.

 • Map the hard drive to O.

 • Copy the \CBBANK\Middle Tier subdirectory from the CD-ROM User
Guide

 • Execute the ATTRIB -R command on your new directory in order to remove
the read-only flag from the copied files.

 • Start the CBConnector Object Builder

 • Load the Object Model from the level of OBmodel directories.

 • Specify the InstallShield directory in the CBConnector Object Builder.

If you would like to stude the CBConnector Java Client code, you can import
the interchange file to your VisualAge for Java workbench. Please follow
these steps:

 • Create a CBBank directory on your hard drive.

 • Map the hard drive to O.

 • Copy from the \CBBank\Client\FrontEnd\interchange subdirectory the
interchange file.

 • Execute the ATTRIB -R command on your new directory in order to remove
the read-only flag from the copied files.

 • Import the interchange file to your VisualAge for Java workbench.

Figure 3. Organization of the Book

D
es

ig
n

Im
p

le
m

en
ta

ti
o

n

Rational Rose

Client Middle Tier Legacy Tier

Business Model Relations Data Model

4

Refinement

5 6

- CICS

- PAO

- GUI

2.2 2.3 2.4

-Business Object

X Chapter X

3

Introduction 9

1.6 Audience

The intended audience of the book consists of bankers, computer scientists,
and professionals with an interest in IBM Component Broker. Familiarity with
object modeling is helpful background for the rest of the book. Knowledge
about Component Broker is a definite advantage.

The book complements the IBM CBConnector Cookbook Collection Overview
and IBM CBConnector Cookbook Collection: First Steps redbooks, and the
product documentation. We deliberately chose to reuse paragraphs from
those redbooks in order to bring you a self-contained document.
10 CBConnector Bank Implementation

Chapter 2. Design

The banking example we have used is loosely based on some sample
requirements from the banking domain. It is not meant to cover all banking
requirements, but rather to demonstrate the benefits of a distributed,
object-based solution to the traditionally centralized banking environment.

We begin by describing some design philosophies which have guided us in
our initial design and subsequent mapping to object and data models.

The Business Object model describes both our initial object model design as
well as the more restricted model we eventually used. These restrictions were
governed by the versions of the Object Builder and CBConnector
technologies with which we worked.

The data model brings together the object model and the requirements for
database integration at the back-end level. It takes the class descriptions
provided in the Business Object class descriptions and adds key information
needed in the database table definitions.

Chapter 3, “Rational Rose Implementation” on page 27 describes the
specification of the Business Object model using Rational Rose. It is possible
to import the Rational Rose specification into Object Builder, generating the
model to use within Object Builder. Unfortunately, many of the constructs
generated by Rational Rose were not usable in the current Object Builder
release. Thus, the Rational Rose model was more a theoretical exercise.
Further description of the Rational Rose work is described in Chapter 3,
“Rational Rose Implementation” on page 27.

2.1 Design

Banking has long been the home of large financial packages which have
been time-consuming and expensive to extend or replace. An object
environment exhibits many characteristics which alleviate these problems. In
particular, a distributed object environment, such as CORBA, provides a rich
environment embracing software evolution and interaction.

 • Objects use inheritance to extend and specialize other object definitions.
Common attributes and methods can be shared between components with
no replication of specification and implementation.

 • The separation of specification and implementation is a powerful concept
supporting portability and interoperability. Portability is the ability to
migrate software to another platform within a predictable time and effort.
© Copyright IBM Corp. 1998 11

Interoperability is the ability to glue disparate components together using a
common object interaction infrastructure.

 • Separate versions of component implementation can coexist in a
distributed object world. New versions can seamlessly replace older
versions with client objects binding to their server objects at runtime.

 • Objects can represent the function of legacy systems through object
wrapping. The object provides a standard interface specification and
transforms any method or data queries into calls to the legacy
environment. The separation of specification and implementation is key to
this ability.

2.2 Business Object Model

The Business Objects implement the business logic in the middle tier of the
three-tier architecture. They provide data and function to the user interface,
and in turn, access the data layer, providing information from the back-end
database systems.

We first describe our initial Business Object model and follow with the
amended specification, which was restricted by the tools and environment
with which we worked. It is likely that this set of restrictions will change with
future product releases.
12 CBConnector Bank Implementation

2.2.1 Initial CBConnector Bank Business Object Model
The initial Business Object model for the banking environment is depicted in
Figure 4. It shows the Business Objects along with their inherited virtual
parents.

Figure 4. The Original Concept Relationships and Specializations

This is our initial Business Object model. It is designed to demonstrate
object-oriented concepts in a simple example banking environment.

CustomerTeller

Account

SavingsAccountCheckAccount

Entity

Note TransactionRecord

Address

Party

DebitTransactionCreditTransaction

postalAddress physicalAddress

A B A specializes B

A B B references A

A B B references collection of A
Design 13

We now describe the data and operations associated with the Business
Objects. It should be noted that this is our initial, theoretical design. After
analysis and design it was necessary to modify the design to reflect the
restrictions of the tools and environment in which the example was
implemented. These restrictions will be noted following this initial description.

 • A Party is a container for the role of people within the bank. Currently, it is
specialized into the Teller and Customer roles. Further specialization
would provide other roles such as manager, accountant, and so forth.

Figure 5 describes the class data and methods for each of the Party,
Customer, and Teller objects. The party contains the name of the person.

 • The Teller is responsible for generating notes associated with a customer.
These are stored within the Customer Object and reference the originating
teller. A teller stores position, username (id), and password information
in addition to the name from the party abstract class.

 • The Customer includes the usual customer information. The postal and
physical addresses are references to Address objects. The id is some
external information, such as a driver’s license or passport identifying the
customer external from any internal bank identification. This is useful for
identifying a customer when they have no bank reference available (for
example, they have forgotten or lost their account number). Each
customer has a sequence of accounts and notes associated with the
customer.

Figure 5. Party Class Description

 • An entity is a generic container for a banking product. At this stage, we
have only introduced Account, but would foresee insurance policies and
wills falling into the same container. It stores a name and creationDate
(as shown in Figure 6).

lastName: string
firstName: string
title: string

position: string
id: string
password: string

dateOfBirth: string
gender: GenderType
homePhone: string
workPhone: string
postalAddress: Address
physicalAddress: Address
accounts: Collection
notes: Collection
id: string

Party Customer Teller
14 CBConnector Bank Implementation

 • The Account holds data and function generic to the set of account types.
This includes a balance, the status of the account (open, frozen, closed),
appropriate interest rates, and fees. Each account maintains a collection
of transactions dealing with the account. The operations to suspend and
activate as well as credit and debit are available.

We assume accounts are never deleted but instead moved to a closed
status. This will be performed in the delete method.

 • A SavingsAccount has a minimum balance that must be maintained and
the CheckAccount a maximum overdraft. In addition, checkbooks can be
requested for the CheckAccount.

Figure 6. Entity Class Description.

 • A TransactionRecord tracks the transactions performed on an account.
They are either a CreditTransaction or a DebitTransaction, as shown in
Figure 7.

Figure 7. Transaction Class Description

dateCreated: string
name: string

balance: double
status: statusType
creditInterestRate: float
debitInterestRate: float
serviceFee: double
transactions: Collection

minLimit: double

overDraftLimit: doublefreeze()
unfreeze()
credit()
debit() requestCheckBook()

SavingsAccountAccountEntity

CheckAccount

timeCreated: string
dateCreated: string
description: string
amount: double

DebitTransactionTransactionRecord CreditTransaction
Design 15

 • The two leaf nodes of Address and Note are described in Figure 8.
Addresses are subtyped into PhysicalAddress and PostalAddress. The
Note has a single reference to the teller who created the note.

Figure 8. Note and Address Class Descriptions

The CBConnector banking objects form an interconnected object model
fulfilling the promises of a distributed object environment by providing legacy
integration, portability, interoperability, and evolution support through
interface specification and implementation.

2.2.2 A CBConnector Policy Model
A second subsystem was designed that acts as an independent policy
provider to the banking subsystem. The Policy Manager (see Figure 9)
manages a set of policies that map a name into a value.

Figure 9. Policy Manager and Policies

The policy namespace is managed as a tree of name contexts and
components (see Figure 10). Each name is a sequence of contexts and a

street: string
city: string
state: string
postcode: string
country: string

text: string
creator: Teller
dateCreated: string
timeCreated: string

NoteAddress PhysicalAddress PostalAddress

Policy
Manager

Policy
Policy

Policy
Policy

void setPolicy(name,value)

value getPolicy(name)

void deletePolicy(name)
16 CBConnector Bank Implementation

component name, for example /CBBank/Account/Check/interestRate. The
context tree has a set of components at each node.

Figure 10. Policy Namespace

Policy retrievals initially split the policy name into the context and component
parts. The tree is searched for the most complete context set that contains
the component name. This is best demonstrated by a set of examples based
on the policy hierarchy, as shown in Figure 10.

Table 1. Namespace Retrievals

Name Result

/CBBank/Account/Saving/Andry Lapue/color blue

/CBBank/color red

/CBBank/interestRate Exception

/CBBank/Account/Check/interestRate 1%

/CBBank/Account/Saving/InterestRate 5%

/CBBank/Account/Check/Clint Eastwood 1%

/

CBBank/

Account/

Saving/

Andry Lapue/

Check/
interestRate=1%

interestRate=5%

interestRate=12%

color=blue

color=red
Design 17

The hierarchical namespace is defined by the policy creator and
subsequently used by the policy users.

Figure 11. Policy Class Description

The Policy Manager is responsible for policies and is the only object which
deals with Policy Objects. The Policy Manager can be instructed to perform
several operations.

 • Policies can be set by binding a policy name and policy value pair.

 • Given a policy name, a policy value can be retrieved.

 • Named policies can be deleted.

 • List policies will return a list of policies given an SQL SELECT statement.
Alternatively, all policies can be obtained.

 • Similarly, the list operation can deal only with policy names.

In the ideal world, policy names would be context and component structures,
and the values would be the CORBA Any type. Unfortunately, the current
limitations of Object Builder have limited us to strings. These limitations will
likely change in future. In addition, the sequences of policies and names
returned from the list operations would be true CORBA sequences, but
current restrictions have found us using strings with components delimited by
a given deliminator character. See 5.4.13, “Policy” on page 92, for more
details.

2.2.3 Amended CBConnnector Bank Business Object Model
Unfortunately, the idealized model had to be simplified due to the versions of
the tools and environment in which we developed the solution. These
restrictions will change with future releases. The restrictions include:

name: string
value: string

PolicyPolicyManager

setPolicy()
getPolicy()
deletePolicy()
listPolicies()
allPolicies()
listPolicyNames()
allPolicyNames()
18 CBConnector Bank Implementation

 • Object Builder 1.2 does not support component inheritance. The
inheritance hierarchies in the model were flattened, thus reducing the total
number of Business Object interfaces. Entity, account, debit transaction,
credit transaction, physical address, postal address, and party were
pushed into their subtypes. Common methods and attributes were copied
into the remaining interfaces.

This appears rather strange in a Business Object model, but was only
implemented this way due to technology restrictions. Future versions of
Object Builder should fix these restrictions.

 • The data objects supporting our Business Objects are backed by CICS
and UDB back-ends. Specifically, the Customer and Address Objects are
managed through a CICS transaction (a single CICS transaction, in fact)
and are thus limited in their reference to other objects. They must use
object keys that can be produced from a CICS transaction to reference a
collection of other objects.

Objects persistent through UDB must provide a Primary Key for
persistency to the database. Many of our objects contain no combination
of attributes guaranteeing a unique key; so additional keys have been
added as attributes.

 • Object Builder provides an object relationship facility that describes
one-to-many relationships. Object Builder then provides add, remove, and
list operation implementations for these object relationship sets.
Unfortunately, in combination with a persistant implementation,
components cannot currently be listed after they are added to the
collection. Consequently, we have implemented these relationships
ourselves, generating and accessing collections of object references
through iterators.

Figure 12 describes the Business Object model adopted for the bank. Seven
basic object building blocks are provided. Note that the relationships between
objects are, at present, not explicitly present in the object model.

The mapping between the relational database object worlds is a significant
issue. Our approach has seen the relational database environment impose its
Design 19

implementation on the once pure object model. This is not an acceptable
solution, but it was our only option at the time. A better answer would shield
the legacy database environment through a relational/object mapping layer.

Figure 12. Amended Object Model

It would probably be more accurate to term this a data model rather than an
object model, but let us persist nonetheless.

The Business Objects are similar to those in the original model, but they now
explicitly contain the methods and data of their previous parent interfaces as
well as include keys needed by the database layer.

Figure 13 describes the SavingsAccount, CheckAccount, and
TransactionRecord class attributes and methods.

 • The SavingsAccount now contains a unique key to distinguish the
account within the persistent UDB database and a reference to the
customer through the customer key. To find a customer’s account, we must
search for relevant account objects. However, since the customer is
backed by CICS, it can not use any list of object references for this
collection and must instead use the customer key in the account collection
to find the relevant accounts. A savings account also has a collection of
transaction references. This collections is maintained privately and
accessed through the listCollections() method.

 • The CheckAccount is of similar composition.

 • The TransactionRecord uses the unique combination of creation
date/time with customer and account keys to create the Transaction

Customer

Teller

SavingsAccountCheckAccount Note

TransactionRecord Address

A B B references A

A B A references collection of B
20 CBConnector Bank Implementation

Record key. In addition, the type of transaction is distinguished by a
transaction kind type.

Figure 13. Savings Account, Check Account, and Transaction Class Information

The remaining Business Objects are described in Figure 14.

name: string
customerKey: string
dateCreated: string
balance: double
status: statusType
creditInterestRate: float
debitInterestRate: float
serviceFee: double
overdraftLimit: double
key: string

freeze()
unfreeze()
credit()
debit()
requestCheckBook()

listTransactions()

CheckAccount

name: string
customerKey: string
dateCreated: string
balance: double
status: statusType
creditInterestRate: float
debitInterestRate: float
serviceFee: double
minLimit: double
key: string

freeze()
unfreeze()
credit()
debit()

listTransactions()

SavingsAccount TransactionRecord

timeCreated: string
dateCreated: string
description: string
transKind: transactionType
amount: double
customerKey: string
accountKey: string
Design 21

 • The Customer, backed by CICS, contains a unique key as well as
methods to obtain accounts and associated notes. These will be found
through a lookup on the customer key.

Figure 14. Customer, Note, Teller, and Address Class Description

 • The Teller has a unique key provided through the id, which is used by the
Teller (along with the password) to log in to the user interface.

 • A Note contains the customer key for similar reasons to the Account
Objects (such as a reference from the CICS-backed Customer Objects).
Once again, they include a unique note key.

 • Address is similar.

2.3 Object Relationships

Object relationships should ideally be provided by either single object
references or reference collections. As described earlier the limitations of
CICS and UDB backed objects means we have implemented these object
relationships in several interesting ways.

 • A simple one to one object relationship is defined using a simple object
reference attribute.

lastName: string
firstName: string
title: string
dateOfBirth: string
gender: GenderType
homePhone: string
workPhone: string
postalAddress: Address
physicalAddress: Address
id: string
key: string

Customer

listcheckAccounts()
listsavingsAccounts()
listnotes()

street: string
city: string
state: string
postcode: string
country: string
key: string

Address

text: string
customerKey: string
dateCreated: string
timeCreated: string
creator: Teller
key: string

Note

position: string
lastName: string
firstName: string
title: string
id: string
password: string

Teller
22 CBConnector Bank Implementation

 • Object Builder provides an object relationship ability when defining
interfaces. These relationships manifest themselves as reference
collections in the implementation, with methods to add, remove, and list
references. This would be the obvious way of providing a one-to-many
object relationship.

 • It is also possible to reference objects indirectly through their unique key.
For example, since we are restricted by an object backed through CICS,
the only possible reference mechanism is through an object key.

The relationships used in our model are described in Table 2.

Table 2. Object Relationships Used in the Model

2.4 Data Model

The data model associated with the Business Object model is described in
2.2.3, “Amended CBConnnector Bank Business Object Model” on page 18.
We have already described the influence that the CICS and database
back-ends have had on our object model. Figure 15 describes the data model
used by the back-end to store objects from within the CICS back-end. In our
example only the Customer and Address components have been

From To Cardinality Type

Customer Savings Account one-to-many Indirectly

Customer Check Account one-to-many Indirect

Customer Note one-to-many Indirect

Customer Physical Address one-to-one Object Reference

Customer Postal Address one-to-one Object Reference

Note Teller one-to-one Object Reference

Savings Account Transactions one-to -many Object Relationship

Savings Account Transactions one-to-many Object Relationship
Design 23

implemented (through a single CICS screen). Primary keys are highlighted in
italics.

Figure 15. The Data Model

The current implementation includes the CUSTOMER and ADDRESS Data
Objects. Future transactions can be added for the other types.

Customer Key
Customer Name
Customer Id
Customer Title
Customer Date of Birth
Customer Gender
Customer Home Phone
Customer Work Phone

Customer Key
Account Number
Account(Product) Type
Account Balance
Account State
Account Interest Rate
Account Service Fee
Account Creation Date

Customer Key
Address Type
Address Line 1
Address Line 2
Address Line 3
Address Post Code
Address Country

Customer Key
Note Date
Note Time
Note Creator
Note Line 1
Note Line 2
Note Line 3

Customer Key
Account Number
Transaction Key
Transaction Date
Transaction Time
Transaction Type
Transaction Description
Transaction Amount
Transaction Origin

Product Type
Product Description
Product Policy

Product Type
Policy Type

Policy Type
Interest Debit Rate
Interest Credit Rate

Policy Type
Overdraft limit
Cheju book type

Policy Type
Service Fee Type
Service Fee Amount

CUSTOMER ACCOUNT TRANSACTION

SERVICE FEE POLICY CHECK POLICY INTEREST POLICY

PRODUCT

PRODUCT POLICY

NOTEADDRESS
24 CBConnector Bank Implementation

2.5 Summary

The banking industry is facing new challenges as both retail and commercial
sectors require rapid service evolution to meet industry competition and
consumer needs. The Information Technology supporting these services
must provide rapid software evolution, legacy system support, component
interoperability, and coexistance of service implementations. These are
characteristics of a distributed object architecture and in particular, OMG’s
CORBA technology. By using languages such as Java, strategic applications
can be developed quickly and efficiently within a distributed CORBA
environment.

Our Business Object model separates essential banking components into
Managed Objects with the division of interface specification and
implementation. Interface inheritance provides specialization of shared
concepts and isolation of behavior implementation. The environment and
tools restricted the use of a rich object model, and instead, we were limited to
a flat model structure using only attributes with basic types. This chapter
described the motivation of our initial model and the subsequent restricted
model.
Design 25

26 CBConnector Bank Implementation

Chapter 3. Rational Rose Implementation

Rational Rose is an object-oriented analysis and design modeling tool. It can
be used to design an application and then to export the design to Object
Builder, where the implementation can be completed. This chapter covers the
setup and use of the Rational Rose bridge to Object Builder. It describes an
initial object model constructed following the analysis and design work. We
look at the technique for migration to Object Builder then finally provide a
post-analysis of the Rational Rose approach following implementation in
Object Builder. Our conclusion is that the analysis, design, and
implementation cycle is indeed a cycle, and iterative development of the
application is essential and inevitable. Thus, we provide a reimplementation
of the Rational Rose model as finally reflected in the Object Builder model.

3.1 Setting Up the Rational Rose Bridge

Rational Rose must be modified to enable exporting of models into Object
Builder.

1. Copy the Rose_cpp.pty and Rose_cpp.mnu from the CD-ROM’s directory,
drive:\CBroker\Rose\, to the directory where Rational Rose is installed, for
example, C:\Program Files\Rational\Rational Rose Modeler 4.0\.

2. Update the rose.ini file in the drive:\winnt directory.

 • Find the entry [Rational Rose 4.0], and update its contents, as follows
(substitute your Rational Rose installation directory):

 • Find the entry [Virtual Path Map], and add the following statement
immediately after the following entry (substitute your CBConnector
installation directory):

ROSE_MENU_PATH="C:\Program Files\Rational\Rational Rose Modeler
4.0\.rose_cpp.mnu"
ROSE_PTY=C:\Program Files\Rational\Rational Rose Modeler
4.0\.Rose_cpp.pty

BOSS_PATH=C:\CBroker\rose
© Copyright IBM Corp. 1998 27

3.2 The Rational Rose Model

The design objectives, leading to the first object model for the CBConnector
Bank application, were the following:

1. The application’s primary aim is to present the functionality of
CBConnector.

2. The operations the application is providing have to resemble real-life
application requirements as much as possible.

3. The complexity of the application has to be limited to allow the use of it for
presentation purposes without extensive, in-depth domain knowledge and
to keep it focused on the primary goal, which is presenting the possibilities
of CBConnector.

4. The boundaries of the application functionality have to be chosen while
keeping in mind the resources allocated to the project

Responding to these somewhat conflicting requirements (as, to some extent,
they usually occur in real-life projects, too), we came up with the following
model, which resembles some parts of the banking domain. This, however, is
deliberately narrowed down to a very few object classes and operations on
them.

So, the following is the object model we created in the design phase. This is
included on the sample CD-ROM in
CBBank\CBroker\Common\RationalRose\InitialModel.mdl.
28 CBConnector Bank Implementation

Figure 16. Initial Rational Rose Object Model

There is a Bank class, objects of which aggregate parties (of class Party),
entities (of class Entity) and products (of class Product).

Parties are tellers (of class Teller), working at the bank, and customers.
Customers have addresses (of class Address) and can aggregate notes (of
class Note). Although it is included in the model, we did not elaborate on the
teller properties.

The bank’s products are the types of financial services the bank provides.
They are not to be confused with actual entities, such as "Jane’s savings
account". They are actually categories, such as "checking account product",
"insurance policy product", "cash loan product" and others, defining
conditions and strategies for all entities of this product. There is one product
per category of entities. The product is, in a sense, behaving like the class
(static) part of the entity category definition. Therefore, we have a one-to-one
relation between entity classes and their corresponding product classes.

SavingsAccountProduct

(from BankSample)
uses

SavingsAccount

(from BankSample)

CheckingAccountProduct

(from BankSample)
uses

CheckingAccount

(from BankSample)

uses

InsuranceProduct

(from BankSample)

Policy

(from BankSample)

Teller

(from BankSample)

0..*

Product

(from BankSample)

0..*

Entity

(from BankSample)

0..*
Party

(from BankSample)

Bank

(from BankSample)

0..*0..*

0..*

0..*Notes

(from BankSample)

*
Address

(from BankSample)

0..*
Customer

(from BankSample)

0..*
*

Date

(from BankSample)

0..*

Account

(from BankSample)
0..*

TimeStamp

(from BankSample)

Transaction

(from BankSample)

0..*

0..*

TransactionSet

(from BankSample)

0..*
Rational Rose Implementation 29

Among Entity classes, instances of which represent the actual financial
services objects relating to individual customers, we narrowed out model to
the CheckAccount and SavingsAccount classes, both being subclasses of
Account.

We included a Policy class in the model to hint to other entity classes that
would appear in a real-life banking application, but we refrained from detailing
or implementing this class.

An Account aggregates the Transactions made against it.

Customers can have a number of different accounts. So a Customer object
aggregates Account objects.

We did the modeling using Rational Rose. This forced the introduction of
some classes (Date and TimeStamp) that, being trivial, should normally be
implemented as structures.

3.3 Rational Rose Model in Object Builder

The Rational Rose model can be used as input to the Object Builder via the
Rational Rose Bridge. In order to do so, the model has to be extended to
reflect the fact that all its classes (which will be mapped to business objects)
inherit from the class IManagable. Initially, the catalogs boim.cat,
services.cat, and managed.cat should be loaded into Rational Rose from the
CBroker\rose subdirectory.

As recommended in the IBM CBConnector Cookbook Collection: First Steps,
redbook, SG24-2033, the Managed Object Framework is imported into a new
Rational Rose model before beginning the creation of the object model. This
provides the essential Object Builder (and thus CBConnector) components.

The Rational Rose object model is migrated to Object Builder using the new
operation added to the Rational Rose File menu. The bridge will start Object
Builder, which then begins the translation process.

Three steps steps are necessary in the translation process:

1. Top-level classes and packages from Rational Rose are exported as either
separate Object Broker models or as a single model. Each class and
package has a selection checkbox for choosing its inclusion in the created
models. Multiple models should be selected when more than one person
will work on the ensuing models. This option is also useful when any
non-trivial number of classes are used. This allows individual compilation
of model components without the need for total model compilation (which
30 CBConnector Bank Implementation

in Object Builder 1.2 would compile every Java file on any source
modification).

2. Classes are mapped into Business Object interfaces in the model but the
user may also select Implementation, Key, and Copy Helper generation.
These are best attempts at generating components that Object Builder will
use. For example, the key will include any attributes marked as
isPrimaryKey in the Rational Rose model and the Copy Helper all public
attributes.

3. Mappings from Rational Rose one-to-many associations into Object
Builder representations. These can be either object relationships or simple
sequences of object references. Object relationships will automatically
generate add, remove, and list operations, while the sequences must be
manually programmed by the user.

The exported model should finally be examined to verify the generated
business object interfaces and the Implementation, Key, and Copy Helpers
that were generated.

3.4 A Bridge Too Far

The Rational Rose model was generated following our early analysis and
design process. We made an early decision not to maintain the model in step
with changes in the Object Builder model. Thus, we used a one-off bridging
process to produce an initial Object Builder model and then maintained this
model within the Object Builder environment. This had both disadvantages
and advantages. Our initial learning curve with the Object Builder and
CBConnector environment was steep, and our early development phase often
required reimplementation of the application. We learned about restrictions
with Object Builder Release 1.2, which guided our eventual implementation.

Unfortunately, our final Object Builder model could have taken advantage of
many facilities in the bridge, but we were not aware of the potential use of
these at the time we built the Rational Rose model. The lesson here is that
the analysis, design, and implementation of any application is an iterative
task. Given more time, we would now redefine the model in Rational Rose
and once again export to Object Builder. By keeping as much code as
possible out of Object Builder, it can easily be hooked into a new Object
Builder model using Business Object external code referencing.
Rational Rose Implementation 31

In the spirit of the iterative design model, a final Rational Rose model is
shown in Figure 17. The final model file is included on the sample CD-ROM in
CBBank\CBroker\Common\RationalRose\FinalModel.mdl.

Figure 17. Final Rational Rose Model

As described in 2.2.3, “Amended CBConnnector Bank Business Object
Model” on page 18, the model is a flat structure that uses only simple data
types. The IManageable, IHome, and IQueryableIterableHome are provided
by CBConnector. Further description of this model and the subsequent
implementation in Object Builder is described in 5.3, “Persistent
Implementation” on page 68.

Teller

lastName : string
firstName : string
title : string
id : string
password : string

IManageable

ManagedObjectName : string

getPrimaryKeyString()
getHome()
getHandleString()

(from IManagedClient)

Customer

dateOfBirth : string
homePhone : string
workPhone : string
gender : short
lastName : string
firstName : string
title : string
physicalAddress : Address
postalAddress : Address
id : string
key : string

listNotes()
listSavingsAccounts()
listCheckAccounts()

Address

street : string
city : string
state : string
postCode : string
country : string

CheckAccount

customerKey : string
dateCreated : string
name : string
status : short
balance : double
creditInterestRate : float
debitInterestRate : float
serviceFee : double
minLimit : double
key : string

freeze()
unfreeze()
credit()
debit()
requestCheckBook()
listTransactions()

SavingsAccount

ManagedObjectName : string
customerKey : string
dateCreated : string
name : string
status : short
balance : double
creditInterestRate : float
debitInterestRate : float
serviceFee : double
overDraftLimit : double
key : string

getPrimaryKeyString()
getHome()
getHandleString()
freeze()
unfreeze()
credit()
debit()
listTransactions()

CustomerWrapper

customerKey : string
firstName : string
lastName : string

Note

customerKey : string
text : string
dateCreated : string
timeCreated : string
key : string
creatorId : string

creator()

TransactionRecord

customerKey : string
accountKey : string
transKind : short
timeCreated : string
dateCreated : string
description : string
amount : double

CBBankPolicy

AddressHome

createAddress()

IHome

findByPrimaryKeyString()
createFromPrimaryKeyString()
createFromCopyString()
getPrimaryKeyClass()
getManagedObjectClass()

(from IManagedClient)

CheckAccountHome

createCheckAccount()
transfer()

CustomerHome

createCustomer()
findCustomer()
updateCustomer()
deleteCustomer()
findCustomerByName()

IQueryableIterableHome
(from IManagedAdvancedClient)

NoteHome

createNote()

SavingsAccountHome

createSavingsAccount()
transfer()

TransactionRecordHome

createTransactionRecord()
32 CBConnector Bank Implementation

Part 2. Implementation

In Part 2, we discuss the client sample development approach, the middle tier
and our legacy system implementation. We recommend that you work in
concert with the CDROM while studying the model and implementations on
all three tiers. Now we proceed to the walkthrough of the CBConnector Bank
implementation.
© Copyright IBM Corp. 1998 33

34 CBConnector Bank Implementation

Chapter 4. Client Implementation

In this chapter, we illustrate the client implementation as a sample approach
to the client development paradigm.

4.1 Introduction

We begin by describing the design and implementation of the CBConnector
Bank application client. For reasons of modularity, we decided to split the
client into two logical partitions–the "client front-end" and the "client
back-end". The client front-end is concerned with the presentation layer and
the GUI interactions with the user. The back-end is concerned with handling
the interactions with CORBA and the distributed objects that make up the
application. The intent is to hide from the GUI programmer all the
complexities of the distributed world. Another advantage of this approach is
that it will facilitate the development of different types of client front-end. So,
for example, an applet-based client could communicate with the back-end
through the use of Java servlets.

It must be stressed that the approach we have adopted here is merely an
example of how you might structure your client application. There are many
possible approaches that are equally valid and how you structure your own
applications will depend on your own particular circumstances and
requirements.

4.2 The Client Back-End

The client back-end is structured as described in chapter 10 of the IBM
CBConnector Cookbook Collection: First Steps, SG24-2033, redbook. For a
complete description, please refer to that redbook. We describe the structure
briefly here.

The components of the CBConnector Bank client application are shown in
Figure 18 on page 36. There are two general classes, CBCBase and
CBProxy, and one Proxy class for every Business Object that exists in the
application. We describe each component below.

Graphical User Interface
The graphical user interface sees the world completely in terms of the
Business Object proxies. It has no interaction with any Component
Broker facilities.
© Copyright IBM Corp. 1998 35

CBCBase
CBCBase is an abstract class which contains only static methods. It
provides a selection of utility methods for carrying out common
ORB-related functions such as:

 • resolveORB - initialize the ORB

 • resolveNameService - get a reference to the Name Service

 • resolveFactoryFinder - get a Factory Finder for a given scope

 • resolveHome - get a home for a given Factory Finder and object
interface

Figure 18. The Structure of the CBConnector Bank Proxies

CBProxy
CBProxy is an abstract class from which all the Business Object
proxies inherit. It defines instance variables for holding generic objects
such as a Factory Finder and a home which are common to all proxies.
It provides methods to carry out some functions which must be
provided by all proxies, for example:

. . . .

GUI

BO1Proxy BOnProxy

CBProxy

ORB

CBProxy

CBCBase

Client Front-End

Client Back-End
36 CBConnector Bank Implementation

 • init - do the proxy initialization

 • createMO - create a Managed Object

 • findMO - find a Managed Object

Business Object Proxies
A Business Object proxy exists for each Business Object. It is
implemented as a JavaBean and is described more fully in the next
section.

4.2.1 The Role of A Proxy
The primary role of the proxy is to provide the GUI client with a complete
interface to the distributed world. It does this by wrapping underlying
CBConnector objects and then providing either a straight delegation model
or, for certain functions, a purpose build mapping to equivalent CBConnector
facilities.

The proxy encompasses the following CBConnector elements:

 • A Copy Helper - The Copy Helper is used to hold a local copy of the state
of the remote Business Object. The proxy provides JavaBean-compatible
getter and setter methods for all the attributes of the Business Object
which are delegated to the corresponding methods on the Copy Helper.

 • A Key Helper - The key helper is for constructing the Primary Key of the
underlying object.

 • A Specialized Home - Most Business Objects have a specialized home
which provides extra facilities in addition to those found in a normal home.
For example, a specialized home in the CBConnector Bank application is
often used to create the Business Object.

 • The (remote) Business Object - This is the CORBA object reference of the
remote Business Object. All the operations on the Business Object will be
mirrored on the proxy and will be delegated to the Business Object when
invoked by the (GUI) client.

4.2.2 Using a Proxy
This section describes the process for using Proxy Objects.

4.2.2.1 Creation/Initialization
Proxy creation takes places in two stages–object creation using the
normal Java mechanisms and proxy initialization. Every proxy has an init
method that must be called before the proxy becomes usable. The init
Client Implementation 37

method takes a scope as a parameter and performs its initialization at three
levels:

 • Base Initialization

This is performed only once per session (by CBCBase) and carries out
such tasks as ORB initialization and acquiring a reference to the
naming service.

 • Generic Proxy Initialization

This level is carried out by CBProxy and is responsible for finding a
Factory Finder (using the scope provided as a parameter) and then
using that Factory Finder to find a home for the Business Object
represented by the proxy. If multiple homes are located in the same
scope, then finding a Factory Finder is optimized by the use of a local
hashtable, which maps scopes to Factory Finders.

 • Specific Proxy Initialization

Any initialization that is relevant only to the proxy being created is
performed here. For example, a specialized home may be "created" by
narrowing the reference to the home acquired in the generic
initialization stage.

In addition to the default constructor and the init method, every proxy
provides an additional constructor with a scope parameter so that these
two steps can be combined.

Once initialized, the proxy is ready to accept requests from clients.

4.2.2.2 The CRUD Methods
In addition to the operations defined on the Business Object’s interface,
most proxies provide a set of standard create, read, update and delete
methods. (These methods may not be on all proxies if, for example, it is
not appropriate for a client to create a Business Object of that type).

 • Create

To create a Business Object, the client will first set all the relevant
attributes. The proxy provides Java Bean-compatible setter methods so
that the client can automatically tie the bean to the user interface. As
the user enters values into fields, they are automatically propagated to
the corresponding setter method which places them in the Copy Helper
attribute. When all the attributes are set, the client invokes the create()
method which will cause the Business Object to be created using either
the facilities of the home or, if one is provided, the specialized home.
This will return a reference to the remote Business Object which is held
locally in the proxy for future use.
38 CBConnector Bank Implementation

 • Read

A read operation is provided to allow the state of a Business Object to
be acquired and copied to the local Copy Helper. The proxy must have
an object reference to the Business Object. Because the proxy is
implemented as a bean with bound properties, a user interface bean
that is connected to the proxy will have its fields updated automatically.

 • Update

The update method allows the contents of the local Copy Helper to be
written to the remote Business Object.

 • Delete

The delete method allow the removal of the remote Business Object. It
uses the remove() method, which causes the permanent deletion of
the object.

4.2.2.3 Exception Handling
In keeping with the objective of completely encapsulating the CORBA
world, the proxies will trap all exceptions generated while accessing the
ORB infrastructure or by remote invocations. Two groups of exceptions are
defined by the CBConnector BankProxy package. CBBankException is
the superclass of all exceptions of interest to the client. Whenever a proxy
catches a remote exception, it generates the equivalent exception in the
CBBankException hierarchy. Whenever an unexpected ORB exception is
caught, it is logged by the proxy, and the generic ORBException is
passed back to the client. This allows the GUI to alert the user that a
failure has occurred and that details can be found in the system log.

4.2.2.4 Transactions
In the CBConnector Bank application, most transactions are controlled at
the server. The exceptions to this are whenever the Query Service is being
used. This happens explicitly in the client in
CustomerMapperProxy.findAllCustomerKeys and queryAccount in
both CheckAccountProxy and SavingsAccountProxy. It also happens in
the listTransactions method of the Account proxies because the server
implementation uses the Query Service and relies on the client to start
and commit the transaction.

4.2.3 The CBConnector Bank Proxies
In this section, we describe in more detail the behavior of the individual Proxy
Objects that comprise the CBConnector Bank client back-end.
Client Implementation 39

4.2.3.1 Customer
The customer is the primary Business Object in the CBConnector Bank
application. We describe here some of its more interesting and
non-standard behavior.

 • Address attributes. In addition to the attributes with primitive types
such as firstname, lastname, and so forth., the customer has two
address attributes (physical address and postal address) which are
defined as interface types. These must be handled in a special way in
the customer proxy. In effect, it allows the client to see these as
address Proxy Objects. To do this, the customer proxy defines two
instance variables of type AddressProxy and provides special versions
of the corresponding getter and setter methods. Instead of delegating
direct to the CustomerCopy , the setter will set the local variable with
the supplied proxy, and the getter will simply return the AddressProxy
object. How are these AddressProxy objects created? When creating
a new customer, the onus is on the client to first create the address
proxies for both addresses, set their attributes as normal, and then to
invoke the setters on the CustomerProxy . The create method on the
CustomerProxy will then ensure that both address Business Objects
are created and the corresponding attributes in the CustomerCopy
updated, before the customer Business Object is created. On a
customer read operation, the CustomerProxy is responsible for
creating the AddressProxy objects. There are a pair of private utility
methods–readPhysicalAddress and readPostalAddress–that
facilitate this operation.

 • Key attribute. The Customer Interface has a key attribute that is kept
hidden from the GUI client. This refers to a system generated key that
is unique for every customer. This attribute is needed because of the
persistence requirements of the model. This key must be made
available to other proxies (such as the Account proxies) which need to
be associated with a particular customer. The CustomerProxy
provides a utility method, findCustomerKey, which returns the
customer key based on the customer’s firstname and lastname. Both of
these attributes must be set in the customer before this method can be
called. The findCustomerKey method has two approaches to
providing this mapping. The simplest is to use the
findCustomerByName method on the customer specialized home and
then to access the key of the returned customer Business Object. This
approach assumes that there is only one customer with a given name.
If there is more than one, it simply returns the first. This is probably an
acceptable limitation in a demonstration application. The
40 CBConnector Bank Implementation

findCustomerByName method uses a CustomerMapper on the
server side to find the key.

 • Direct Query. Another approach is to use the CBConnector Query
service directly on the CustomerMapper object from the client side.
This is a more efficient mechanism and also provides the ability to get
all customers keys for customers with the same name. We use the
findCustomerKey method on the CustomerMapperProxy object. This
returns a Vector of all customer keys which match the given first and
last names. The CustomerMapperProxy object is not made available
to the GUI client (its constructors are made private). It can, however,
access its functionality by using the static findAllCustomersKeys
method and supplying the firstname and lastname as parameters.

 • dateOfBirth attribute. This attribute is handled in a special way because
of the different ways dates are represented at the server and at the GUI
client level. The server represents dates as a string with a set format.
The GUI client likes to handle dates as an instance of the
GregorianCalendar class. The getters and setters of the dateOfBirth
attribute provide this transparency by using the methods
fromGregorian and toGregorian to provide the transformations.

 • Lists. The Customer Business Object provides several methods for
iterating over CheckAccounts, SavingsAccounts and Notes that
belong to the customer. The customer proxy wraps these list operations
with its own versions, such as listNotes, which returns a Java
Enumeration to the client instead of the CORBA Iterator. The client
must step through the Enumeration, and each iteration will result in a
remote access to the server. As a convenience, the customer proxy
also provides methods, such as listAllNotes, which carry out the
iteration and return a Vector of all the results. While this can be more
convenient for the client, it must be used with care since it could
potentially result in a large number of accesses across the ORB.

4.2.3.2 Address
The Address Business Object is the only object in the CBConnector Bank
application that does not have a key. It is always accessed through the
Customer. Accordingly, the CRUD methods of the AddressProxy are
protected and cannot be accessed directly from the client. Otherwise, the
AddressProxy does not have any interesting features.

4.2.3.3 CheckAccount and SavingsAccount
The CheckAccount and SavingsAccount proxies are virtually identical to
each other. This duplication was necessary because of the absence of
inheritance from the model as explained elsewhere in this redbook.
Client Implementation 41

 • Key. The Account Business Objects have a two-part key; the first part is
the account key, and the second part is the key of the customer to
which the account belongs.

 • Creating accounts. AccountProxy objects are created in the usual
way. However, before the create method is called the client must
associate a CustomerProxy with the account. He does this by using
the useCustomer method. The CustomerProxy parameter passed to this
method must have its key field set because this how the account is
associated with the customer at the server back-end.

 • Accessing accounts. Accounts are usually accessed in one of two
ways. The first way is to use the list (or listAll) method on the
CustomerProxy to return an Enumeration or a Vector of
AccountProxies. The other way is to access the account directly using
the queryAccount method. Before this method is called, the account
key must have been set in the proxy using setKey. queryAccount uses
the Query Service to find the correct account. Note that this will
normally be invoked transparently to the GUI client; the client simply
issues the standard read request and the query will be invoked, if
required.

 • Lists. The Account proxies provide methods for iterating over the
Transaction Records that belong to the account. Two methods are
provided: listTransactions and listAllTransactions. The first returns a
Java Enumeration over that the client can iterate to access each
element one at a time. The second provides a convenient way to get all
Transaction Records returned in one operation. As for the
CustomerProxy lists, care must be taken when using this second
approach.

 • Operations. The Account Business Object provides several operations
for managing the behavior of accounts. The proxies provide straight
delegation with a couple of exceptions. The setBalance method has
been made private so that it is not invokable by the client. Generally,
the balance should only be changed by crediting or debiting funds. The
transfer method has been made accessible on the proxies although it
is actually implemented on the account (specialized) homes.

4.2.3.4 Teller
The Teller Business Object is the only object in the CBConnector Bank
application that does not have a specialized home. The TellerProxy
still has a standard create method but this is delegated to the
createUsingHome method, which creates a teller using the standard
42 CBConnector Bank Implementation

home facilities. The Teller’s key field is its id, and this must be set
before issuing a read operation.

4.2.3.5 Note
The Note Business Object is fairly straightforward.

 • Key. The Note’s key field is comprised of its own key plus the key of the
customer to which it belongs.

 • Creating Notes. NotesProxies are created in the usual way but before
calling the create method the useCustomer method must be called to
associate the correct customer key with the Note. As when creating
Accounts, the CustomerProxy parameter passed to the useCustomer
method must have its key field set because this how the note is
associated with the customer at the server back-end.

 • creator attribute. The note has a creator attribute which is an interface
type referring to the Teller who created the note. As with addresses on
the Customer, the NoteProxy handles this in a special way by defining
an instance variable of type TellerProxy and providing special versions
of the getCreator and setCreator methods. The setCreator takes a
TellerProxy as a parameter and updates both the local instance
variable and the teller in the NoteCopy. The getCreator simply returns
the local instance variable. Before creating a Note, the client must first
create a TellerProxy and ensure that it contains a reference to a teller
Business Object. On retrieval, the read method on the note is
responsible for creating the TellerProxy. A method called readCreator
is provided to do this.

4.2.3.6 TransactionRecord
The TransactionRecord object is the only object in the CBConnector
Bank application that can not be created directly by the client. As such, it
has none of the CRUD methods associated with the other proxies. The
only way a TransactionRecordProxy is created is by the
listTransactions or listAllTraSnsactions methods on the account
proxies.

The TransactionRecord defines a key field, but this is never used for
retrieval. Also, although the TransactionRecord Interface defines its
attributes as read/write, the proxy makes the setters private to prevent the
GUI client from changing them.

4.2.3.7 CustomerMapper
This object is normally only used at the server and is never made visible to
the GUI client. It provides a mapping from customer name to customer key
Client Implementation 43

which allows customers to be retrieved in a more natural way. Direct query
over customers is not possible because the Customer is implemented in a
CICS service. The use of a CustomerMapper to find customers is
described in Section 4.2.3.1

4.2.4 A Note on Proxy Optimization
For this application, we decided to introduce some optimizations to the way
proxies are initialized. At initialization time, each proxy will acquire a Factory
Finder based on a given scope and acquires a home based on a specified
object interface string. The methods to do this, resolveFactoryFinder and
resolveHome, are in the CBCBase class. The original implementation of
these methods always uses the ORB to resolve the objects. As the
CBConnector Bank application is continually creating proxies, it was decided
to optimize these methods.

A hash table called scopeTable was introduced to cache scopes and their
corresponding Factory Finders. Whenever resolveFactoryFinder is asked to
find a Factory Finder, it first looks in the scopeTable to see if the given scope
has already been resolved. If so, it simply returns the corresponding Factory
Finder. Otherwise, it goes to the Name Service, and when the Factory Finder
is found, it caches it in the scopeTable.

Another hash table, called ffTable, was created to map from Factory Finders
to the homes found by that Factory Finder. The mapping to the home is
actually from the object interface string; so the ffTable provides a link from the
factoryFinder to another hash table which stores this relationship. When
resolveHome is called with a Factory Finder and an object interface, it first
looks up the ffTable to find the factoryFinder entry. The hash table referenced
by this factoryFinder is then searched to find the home corresponding to the
object reference. If an entry exists, then the home is simply returned.
Otherwise, the Factory Finder is used to resolve the home in the normal way,
and a new entry is put in the table.

4.3 The Client Front-End (Graphical User Interface)

The design of the front-end for the CBConnector Bank application has to
satisfy certain functional and quality criteria. It had to be implemented in Java
so that it could be used both as a stand-alone application by a bank teller and
as a home banking user interface running as an applet within a browser. Of
course, the available functionality should vary due to different access rights of
the teller operating the program in the bank and of the customer doing so
from a browser over the World Wide Web.
44 CBConnector Bank Implementation

To simplify maintenance and logistics, only one version of the front-end
program should exist, being capable of both running as a Java application or
as an applet.

The front-end functionality had to provide for the basic teller functions of
maintaining customer information (creating, querying, updating or deleting
customer information, querying the customer’s accounts and changing their
status), maintaining account information, withdrawing or depositing money.

A fully functional bank teller application would undoubtedly go far beyond the
scope of this project. So emphasis was given to developing a subset of the
full functionality while trying to satisfy the various design criteria as much as
possible. Therefore, we dare ask the benevolent reader to attribute functional
omissions and/or simplifications, which will be easily spotted by the
experienced bank IT specialist, to the restricted scope of this project.

The interaction with the user should be straightforward and intuitive, and it
should enable the user to freely organize his/her desktop by optimally
resizing the graphical user interface components.

Furthermore, the development being part of a larger development, the
front-end design had to account for having to cope with an iterative
development and implementation process. To do so, the design emphasized
the strict division of the model and the view parts. It concentrated the
interactions with the Component Broker middle tier in the model (the client
back-end). It placed all user interaction and concurrency aspects in the client
front-end.

The front-end part provides the user with a frame containing four panes:

 • The context pane presents a hierarchical view of the model structure
(bank, customers, products) and of operations that can be performed on
the objects.

 • The action pane contains detailed information pertinent to an operation in
progress.

 • The utility pane allows certain utility operations.

 • The operation status pane allows easy tracking of multiple operations in
progress.
Client Implementation 45

Figure 19. The CBConnector Bank Sample Application User Interface

Additionally, a logging frame can be displayed containing log information
about operations performed or currently in progress.

Selecting an operation in the context pane loads the action pane with the
appropriate interaction view. Typically, the user provides some information
necessary to perform the operation and then requests to proceed with the
operation. To perform the operation, the view will request some actions from
the model part of the front-end. The model part will occasionally have to
cross the Object Request Broker to fulfill the request. Depending on the
system architecture and the current workload, this process may take some
time. To avoid disabling the user and thus effectively impeding his/her
productivity, the operation in progress should proceed without blocking the
graphical user interface. That way, the user can initiate several operations in
parallel.
46 CBConnector Bank Implementation

The operation status pane is at any time providing information on the status
of operations in progress using color-coded, light-emitting-diode (LED) icons.
The icons can be conveniently used to select the interaction view for the
corresponding operation to view the details of the operation.

The following figure depicts the typical steps involved in performing an
operation.

Figure 20. Typical Steps in Performing an Operation

4.3.1 The View Structure
An operation is performed through a series of steps. There are basically two
different types of the steps:

1. Data entry and/or viewing steps, where certain data is displayed to the
user and/or the user can enter or modify data. To perform these steps, the
program must present a graphical user interface and wait for user
interaction.

select operation in
context pane

interaction view
loaded into action
pane

fill in the information
needed

request performing
the operation

operation in
progress, yellow
LED

operation finished,
LED changes
color

select LED
interaction view
loaded into action
pane

parallel execution
thread

do something
Client Implementation 47

2. Data retrieval and processing steps, during which the program is
communicating with distributed objects to update its data or performing
other tasks that do not request human interaction.

Our client solution mirrors this situation by providing two class families:

1. The operation panel family, inheriting from the OperationPanel class,

2. The Business Object action (BO action) family, inheriting from the
BOAction class.

The operation panel family of classes are derived from the java.awt.Panel
class and can be displayed in an application frame or an applet. The display
of the operation panel is enacted in the main thread. Only one operation
panel can be visible and active at a time in the GUI.

An operation panel provides the user interaction interface and consists of the
required data fields and one or more buttons the user can use to signal
transition to the next step. Typically, the next step after the interaction with the
operation panel will involve data retrieval or some other type of processing. A
step of this type will be defined in an object of some BO action subclass, and
the operation panel will delegate the processing to it. A BO action object has
no visual appearance.

Data retrieval or processing steps can well be time-consuming because they
may involve a lot of ORB communication and/or other time-demanding
processes. To enable the user to go on using other functions of the GUI, the
operation panel will spawn a new thread and commit the performance of the
data retrieval/processing step to it. Therefore, the BO action object has to be
a Runnable object, its run method performs the processing needed.

The operation panel provides a field (a Label or a TextField) to receive the
status of the retireval step. The BO action object provides three methods to
signal the busy state, normal completion and the error completion status by
placing color-coded messages in the status field of the operation panel.
These methods also handle the creation and state transitions of the
status-reporting LEDs.

Before starting the processing step, the BO action object’s run method
creates the CBConnector Proxy Objects needed and sets their state to reflect
the data supplied by the operation panel (this may be only a subset of the
proxy’s state, depending on the operation requested). It then performs the
actual processing and reflects the changes in the operation panel.
48 CBConnector Bank Implementation

4.3.2 Operation Panels
The operation panel object is a subclass of java.awt.Panel and is typically
displayed in the action pane of the graphical user interface. Its visual
appearance presents operation-relevant data fields for inspection or update.
It also provides one or more buttons the use of which activates the next step
of the operation. A status field of type java.awt.TextField is provided in the
panel to inform the user of the status of data retrieving/processing steps
performed by the BO action objects.

One of the quality criteria we have pursued was the flexibility of the user
interaction, such as his/her freedom of organizing the desktop according to
his/her needs and preferences. Therefore, the user interface had to be able to
graciously cope with resizing actions the user does.

Of course, there are practical limits to the size of the user interface that can
be meaningfully handled. To enforce these limits, a user trying to resize the
application frame below them will be overridden, and the frame will "bounce
back" to the minimal size acceptable. Upon start of the application, the user
interface uses the whole available screen. These resizing strategies can’t, of
course, be applied when the application is run as an applet within a browser.
In that case, the responsibility for supplying an acceptable size lies with the
HTML-page designer.

The behavior we just described enforces just the size limits within which the
user may freely resize the user interface. It is important that the interface can
adapt to these different sizes and preserve an agreeable look. Of very
practical interest is that components of the user interface don’t simply
"disappear" from it by being clipped when the frame gets too small (provoking
unnecessary delay and frustration as the user searches for the component).
To satisfy the stated criteria, we have implemented all operation panel
classes using java.awt.GridBagLayout as the layout manager.

It is unproductive and frustrating when an initiated data retrieval or
processing step fails because of incomplete or inconsistent data entered. To
reduce the possibility of such mistakes, buttons that initiate the steps are
disabled when the user-supplied data needed is missing or inconsistent. The
criteria vary, of course, between different operational panels, and they are
implemented in the processChange method. Any change in the relevant data
fields causes processChange to be executed, readjusting the enablement of
the step-initiating buttons.

For productivity and consistency reasons, we implemented some parts of the
operation panels as separate panel subclasses and aggregated them.
Client Implementation 49

Operation panels were produced using VisualAge for Java. This limited, to
some extent, the use of inheritance since it is not possible to modify and
extend the visual appearance in the subclass.

4.3.3 BO Action Classes
The only functionality provided by a BO action class is performing a data
retrieval or processing step in the operation. It is a typical "command" class,
having no visual appearance. It implements the java.lang.Runnable
Interface to be able to be run in a separate thread. The only method (apart
from the constructors) a specific subclass of BOAction has to implement is
the run method, and it should contain all the code needed to perform the step.

The run method first informs the user that this step is under way by invoking
the method signalBusy (inherited, together with signalErrorCompletion
and SignalOKCompletion, from the BOAction class). It then creates Proxy
Objects where needed and invokes methods on them.

Upon termination of the run method execution the step has been performed
and the spawned thread dies. However, the step could have been
successfully performed or it may have failed. It is the responsibility of the run
method implementation to inform the user of the success or failure by using
the methods signalErrorCompletion or SignalOKCompletion, respectively.

4.3.4 Common Data Container
The need arises for some information to be accessible through all of the
application. Information on scope names, for instance, will be needed in many
places. The same applies to some object references.

To provide a consistent facility for accessing common information, we
implemented the CommonDataContainer class. In principle, it is a dictionary
used for storing information available to keyed access. It provides the set
method to store the piece of common information and methods get and
getObject to retrieve String data or general object references, respectively.
To enable the setting of not-hardcoded information (data provided through an
external source, such as a file), the setup method is provided. It parses the
stream input and initializes common data items. However, only String items
can be acquired that way. The format of the stream data follows the same
section notation and comment syntax as described in the Hierarchy class. It
parses the section common data container for data item definitions of the
following form:

<key>=<value>
50 CBConnector Bank Implementation

The following is an example of the section:

//**
common data container
//**

// parameters related to the ORB

hostName=coffee04.lagaude.ibm.com // the bootstrap host name
portNumber=900 // the port number used

// parameters related to the business objects

customerScope=/host/resources/factory-finders/TomatoScope
addressScope=/host/resources/factory-finders/TomatoScope
accountScope=/host/resources/factory-finders/TomatoScope
checkAccountScope=/host/resources/factory-finders/TomatoScope
savingsAccountScope=/host/resources/factory-finders/TomatoScope
noteScope=/host/resources/factory-finders/TomatoScope
tellerScope=/host/resources/factory-finders/TomatoScope

4.3.5 DataSupplier Class
Reading the CommonDataContainer file when executing the program as an
applet within a browser presents a sandbox problem. To avoid the use of the
file, the applet mode of the program uses a DataSupplier object to get the
information needed. DataSupplier provides the information in equivalent
format. Although it has to be present when compiling this software, the
DataSupplier class will not be used in application mode.

The DataSupplier class has to mirror the information in the
CommonDataContainer file. When this information is altered, you should
produce a new DataSupplier class. You can do so by calling the utility
DataSupplierCreator, which is included with the application.

To run DataSupplierCreator, type on the command line:

java DataSupplierCreator CommonDataContainerFile

or

java DataSupplierCreator CommonDataContainerFile DataSupplierPath

The CommonDataContainerFile parameter should specify the fully qualified file
name of the file containing the common data information. The
DataSupplierPath, if present, is the directory where the DataSupplier class
will be created. If you omit the second parameter, the DataSupplier class is
created in the current directory.
Client Implementation 51

Note: For the DataSupplierCreator program to run correctly, the javac
compiler must be installed and accessible (through the PATH environment
variable).

4.3.6 Hierarchy
The Hierarchy class presents the user with a hierarchical context menu. It
reflects the hierarchy of the application objects and the operations that can be
invoked on them.

Figure 21. Hierarchy List Panel

The objects are represented in the hierarchy by nodes that can be exploded
to show lower hierarchy levels, or the nodes can be imploded to hide them.
The leaves represent operations that can be performed on the objects.
Selecting a leaf generates the OperationSelectedEvent. In the application,
52 CBConnector Bank Implementation

this event triggers the corresponding operation by loading the appropriate
operation panel into the action pane.

The Hierarchy-type object, being the view part, collaborates with its
corresponding model that is represented by a HierarchyNode object. This
node is the root of the actual hierarchy tree.

A node aggregates a number of objects, all of them being HierarchyNode or
HierarchyLeaf objects. It can, on request, provide a collection of its
aggregations. It has also knowledge of its exploded or imploded state. A
HierarchyLeaf has an operation panel associated to it, and this panel is
activated when the leaf is selected.

Figure 22. Segment of the Hierarchy Model

There are a number of ways to provide the hierarchy information to the
Hierarchy. One is to assemble the tree by creating node and leaf objects
within the application, build the structure and pass it (the reference of the root

Customer

Products

Savings

Check

Deposit

Withdraw

SavDepOperation-
Panel

SavWthOperation-
Panel

nodes leaves operation panels
Client Implementation 53

node) to the Hierarchy object. Another is to provide a BufferedReader
containing the hierarchy information to the Hierarchy object. That way, the
hierarchy structure can be modified without the need for code modification.
The next section provides a brief informal description of the specification
format.

As a convenience, the Hierarchy can extract the same information from a file
when given a string file name.

To enable the use of Hierarchy in untrusted applet configurations, the
external structure data can be provided by an object of the class
DataSupplier. The drawback of using a DataSupplier object is that it
contains the hardcoded hierarchy structure, so that, to change the structure,
the code of the class has to be changed. To simplify this process, a Java
utility program, DataSupplierCreator, is included. The first, mandatory
command line parameter is the name of the file containing the structure
definition. The second parameter, if supplied, is the directory path where the
DataSupplier class will be generated. If no path is supplied, the class is
generated in the current directory. To run the DataSupplierCreator, the JDK
must be installed and javac-accessible through the PATH environment variable.
The result of the DataSupplierCreator execution will be a DataSupplier.class
file for use with the Hierarchy.

4.3.7 Hierarchy Specification Format
The specification of the hierarchy structure in a file has to adhere to the
following rules.

Any part of a source line following a double slash (//) is regarded as a
comment and ignored. Blank lines are also ignored.

The file can contain more sections, each one preceeded by a section header
in the form of a number sign (#) followed by the section name. The section
containing the hierarchy structure information has to be preceeded by

hierarchy tree

and terminated by the start of another section or by the end of file. All other
sections are ignored by the Hierarchy.

A node is specified by a node statement, followed by its subnodes and/or
leaves and the end statement. The node statement has the form:

Nxtext|exploded

or
54 CBConnector Bank Implementation

Nxtext|imploded

where x is the authorization level and text the node’s name that will be
displayed in the hierarchy list. exploded or imploded define the initial state of
the node when it is first displayed.

The end statement has the simple form:

E

A leaf is defined by a leaf statement of the form:

Lxtext|operationPanel

where x is the authorization level for this operation, text is the leaf’s name to
be displayed in the hierarchy list, and operationPanel is the name of the
operation panel to be activated by this leaf. The package name has to be
provided in dotted notation. operationPanel is the suffix automatically added
to the name.

The following is an example of the hierarchical tree definition as it appears in
the specification file. The given text may be preceded by other textual
information, pertinent to other program segments and will be ignored by the
hierarchy tree. Additional text at the end, if starting with a section header of
the form #<sectionName>, is ignored, too.

//***
// Sample hierarchy tree definition
//***
hierarchy tree
// Bank context
 N0Bank | exploded
// Customer context
 N0Customer | exploded
 L0Create a Customer | CreateCustomer
 L0Query a Customer | RetrieveCustomer
 L0Remove a Customer | DeleteCustomer
 L0Update Customer Information | ChangeCustomer
// Customer’s products context
 N0Products | exploded
// Customer Savings Accounts
 N0Savings Account | exploded
 L0Query Savings Account | QuerySavingsAccount
 L0Deposit | DepositSavingsAccount
 L0Withdraw | WithdrawSavingsAccount
 L0Transfer | TransferSavingsAccount
 L0Open a Savings Account | OpenSavingsAccount
Client Implementation 55

 E
// Customer Checking Accounts
 N0Checking Account | exploded
 L0Query Savings Account | QueryCheckAccount
 L0Deposit | DepositCheckAccount
 L0Withdraw | WithdrawCheckAccount
 L0Transfer | TransferCheckAccount
 L0Open a Checking Account | OpenCheckAccount
 E
 E
 E
 E
// end of operation tree definition (may be followed by # ...)

4.4 Automatic Proxy Generation

In this section, we will discuss how you can make accessing Business
Objects a lot easier and faster by creating Business Object Proxies
automatically.

4.4.1 Introduction
To simplify client programming with Component Broker, we introduced the
Business Object Proxy. The mission of this proxy is to hide Component
Broker-specific details from the client developer. The client developer sees
the attributes and the methods of the proxy, but doesn’t need to bother about
initializing the ORB, CORBA types, narrowing Managed Objects, and other
Component Broker-specific things.

The proxy will mainly act as a wrapper to the Business Object. It holds a
reference to the Business Object, and gets and sets its parameters, and
passes methods to it.

However, creating a proxy for each Business Object is a tedious and
repetitive chore that practically begs to be automatically generated. From the
IDL specifications generated by Object Builder, it is possible to build 90 to 95
percent of the proxy accessing the Business Object. This has two big
advantages. First of all, you don’t need to write the same code n times for n
Business Objects, and second, if you change the code for your proxy
implementation, you can just regenerate your proxies to apply these changes
to all the proxies at once.

In order to make a proxy generator, you need to read the Business Object
information from the IDL specification. Each interface in the IDL file will
correspond to a Business Object, which in turn will be the basis of a proxy.
56 CBConnector Bank Implementation

From this specification, you may create a proxy that wraps each of the
Business Objects based on method templates.

The main concepts behind a proxy generation module are:

 • A Proxy Information Object that holds the information read in the IDL file

 • An IDL parser that reads the information you need from the IDL file and
puts it in the Proxy Information object

 • A Proxy Factory that generates the proxy source code based on the Proxy
Information object

4.4.2 The Proxy Information Object
When we parse an interface in the idl file, we need an object where we can
put all the information we need in order to generate a proxy later on. We call
this object a ProxyInfo object. This object contains the name of the interface,
a collection of fields, or attributes of the interface, a collection of the methods
that this interface implements, and a special collection of methods that
access object relationships.

4.4.2.1 The ProxyField
To hold attribute information, we created a ProxyField object that has a
name, a type, and an extra field. The extra field is used to hold additional
information, like if this attribute is read-only or if it is a Business Object.

4.4.2.2 The ProxyMethodField
For methods, we extended the ProxyField to hold information about the
parameters that this method takes as input, and which exception it may throw.
The type field is used to store the method’s return type. This field is called the
ProxyMethodField.

4.4.3 The IDL Parser
The IDL parser creates a new ProxyInfo object for each defined interface,
and fills it with the information specified for this interface.

In our Object Builder model, we defined a separate module for each object.
This results in a separate IDL file for each object. We have a method that lists
all the interfaces we want to read and goes through each file in turn. All
exceptions are defined in a separate constructs file.

In each IDL file, an interface is defined with fields and methods. Below, we
give a description of which strategy we used to extract the information of the
file, without giving code details. The code may be read from the CD-ROM.
Client Implementation 57

All manipulation of the file will be executed on a string representation of the
file. The method that converts the file to a string is:

String fileString = ProxyMgr.IdlParser.readFullyIdlFile(String
fileNameAndPath);

4.4.3.1 Reading the Interfaces
Normally, this method would be called by a ProxyFactory, to know which
interfaces are specified by this file. It returns a collection of interface names
that can be iterated through to create a ProxyInfo object for each interface.

The interfaces start with the keyword interface and are listed separated by
semicolons and a new line.

The method to get all interfaces is:

Vector ProxyMgr.IdlParser.getInterfaces(String fileString);

Note: Since we have the solution of one object per file, we have our
interfaces listed in the proxyMgr.ProxyFactory.getModuleList method
instead.

4.4.3.2 Reading the Exceptions
After the interfaces have been defined, a definition of exceptions follows.
Similar to reading the interface definitions, reading and generating the
exceptions would be done by the ProxyFactory before the generation of the
proxies begin.

Exceptions are defined by the keyword exception, followed by the exception
name. The name is captured, and we find the next exception by looking for
the next exception keyword:

Vector ProxyMgr.IdlParser.getExceptions(String fileString);

Note: Since we have the solution of one object per file, we have our
exceptions listed in a separate constructs file, and the method to generate
them is the ProxyMgr.ProxyFactory.generateExceptions method.

4.4.3.3 Reading the Business Object Specification
We’re now all set to do the actual work, namely to generate a proxy for each
of the interfaces we’ve found. The IdlParser takes the interface name as
input and returns a ProxyInfo object containing lists of the attributes and
methods defined for the interface.
58 CBConnector Bank Implementation

When attributes and methods are read, we need to make sure that we read
them within the current interface scope, so that we don’t mix these attributes
up with attributes defined for another interface. An interface scope begins
with the interface keyword followed by the interface name, and the scope
ends with the keyword end followed by the interface keyword and interface
name. We pass these positions on to the readAttributes and readMethods
methods to make sure they operate within the correct attribute scope.

The method that reads the interface is as follows:

ProxyInfo readIdlFile(String fileString, String interfaceName)

Reading the attributes
Attributes are defined by the attribute keyword attribute, followed by the
name of the attribute and the type, and are separated by semicolons. For
each attribute read, a new ProxyField object is created and populated with
the data, and added to the current ProxyInfo object’s attributes list.

The attribute definitions are read from right to left. We know that the definition
begins with the attribute keyword and ends with the a semicolon. The word
right before the semicolon is the attribute name, then follows the type,
delimited by blanks. If the read-only keyword precedes the attribute keyword,
the field’s extra field is set to read-only.

When the attribute definition has been read, the type undergoes some
evaluation and conversion methods.

First, the type is looked up in a table of IDL types and their corresponding
proxy types to return the correct type value for an untranslatable type. The
type for a string is represented as string in the IDL file, and it needs to be
converted to String. Similarly, IManagedCollections::IIterator is changed to
com.ibm.ICollectionsBase.IIterator.

Second, certain naming rules are presumed when analyzing attribute types.
All :: notation in the IDL is converted to .; For example,
CBBank::TransactionRecord is converted to CBBank.TransactionRecord. If the
type begins with the Business Object package name, here CBBank, it is
assumed that this should be a proxy type wrapping the Business Object, and
not the Business Object itself. Only if the type ends with Type is it assumed
that this is a defined enumerated type and not a proxy.

The method returns the last position of the attribute definitions, so that the
next process, reading the methods, knows where to begin.

The method call to read attributes for an interface is as follows:
Client Implementation 59

int endAttributes = readAttributes(ProxyInfo proxyInfoObject, String
fileString, int startInterface, int endInterface)

Reading the methods
Methods don’t have any keywords associated with them; so we trust that they
begin where the attribute definition ended and that they are separated by
semicolons. The methods are also read from right to left. Right before the
semicolon, the exceptions are defined, followed by the keyword raises. Some
methods don’t raise exceptions. Then follows a list of parameters and their
corresponding types, if any. Finally, the method name and the return type is
defined.

For each method read, a new ProxyMethodField object is created and
populated with the data in the interface, and added to the current ProxyInfo
object’s methods list.

Parsing the methods is a relatively complex task; so we divided it into three
subtasks, namely parsing the exceptions, parsing the parameters, and
parsing the name and return type.

Parsing the exceptions
The exceptions follow the keyword raises and are separated by commas. For
each exception, a new ProxyField object is created and added to the
exceptions list of the current method.

The exceptions have three naming aspects: the exception name given in the
IDL file, the exception that the Business Object method raises, and finally the
name that the proxy will raise for this exception. As an example, the method
findAccount(Object acccountKey) raises an exception that an element with
the given key does not exist. The exception is defined in the IDL file as
ICollectionsBase::IElementNotFound. The exception thrown by the Business
Object is named com.ibm.ICollectionsBase.IElementNotFound. Finally, the
exception the client sees, the one thrown by the generated proxy, is
CBBankNotFoundException. The exception string is looked up in a hand-coded
exception table where a ProxyField is returned that holds all three exception
names.

Parsing the parameters
Parameters are defined within two parentheses and are separated by
commas. The IDL notation of in and out is ignored; so only the parameter
name and type are used to populate the ProxyField parameter that is added
to the method’s parameter list. In the same way as the attributes, the types
are validated and converted.
60 CBConnector Bank Implementation

Parsing the method info
The method name is set for this method, and the return type is set. Finally,
the method field is added to the methods list of the current ProxyInfo object.

If the method’s return type is an iterator type, the method needs special
treatment, and the extra field is set to iterator. The method is added to the
iterator methods list. The type of object this method iterates upon is found by
looking up what the return type of the method accessing the iterator returns.
The type is put in the extra field of the method. If there are no methods
accessing the iterator, a dummy type is set, which needs to be manually
corrected.

The method that reads all the method definitions for an interface follows:

readMethods(ProxyInfo proxyInfoObject, String fileString, int
startMethods, int endInterface)

4.4.4 The Proxy Factory
So, now that we have an object that holds all the necessary information about
our Business Object, how do we generate the source code for a Proxy Object
to access it?

The Proxy Object is described in Section 4.2. To generate such an object, we
need to generate the class definition, with its import statements, variables
and so on. Then we generate the “general” methods, such as constructors
and the create, update and delete methods. After that, it’s time to look at our
ProxyInfo object, and generate getter and setter methods for all the
attributes defined here. Finally, we generate methods to represent all the
methods defined in the ProxyInfo object.

The main method to generate source code from a ProxyInfo object is the
following:

void ProxyMgr.ProxyFactory.generateProxy (ProxyInfo proxyInfoObject)

This method takes the ProxyInfo object as input and generates the source
file for a Proxy Object. This generated proxy wraps a Business Object of the
type this ProxyInfo object describes.

The method is divided into submethods, where each method returns a string
representing the code for a method in the generated Proxy Object. The
particularities of each method are described below.
Client Implementation 61

4.4.4.1 Creating the Class Definition
The class definition needs to include the packages that this proxy depends
upon. How the import statements should look depends on how the Object
Builder model is defined. Nevertheless, given the model, it should be easy to
automatically define which packages this proxy uses.

If the proxy has attributes that have another Business Object proxy as type,
make sure to import the package for this Business Object.

The Proxy class has an abstract proxy class as a superclass. This is the
class that contains the general, interface-independent methods for the
proxies.

If an interface has an attribute which is another Business Object, for instance,
it has a Proxy Object as its type. Accessing this object requires additional
effort. The proxy can’t access a Business Object directly; so the class
definition must include an attribute that holds the reference to the Business
Object proxy.

4.4.4.2 Creating Getter and Setter Methods
For each attribute defined in the ProxyInfo attributes list, we create a getter
and setter method to access the attribute. The getter method calls the
Business Object’s getter method for this attribute. The setter method, you
guessed it, calls the Business Object’s setter method for this attribute.

However, there is a catch; the setter methods are bound in order to update
the user interface when an attribute has changed. To make an attribute
bound, the firePropertyChange method is called with the new and old
attribute values. The firePropertyChange method only takes objects as
parameters. If the attributes are of a primitive type, they need to be converted
to objects. For example, int is converted to Integer. To achieve this, the type
is looked up in a type table to see whether the type is a primitive, and if so,
what the corresponding object is for this primitive.

Also, if the attribute to be accessed is not a regular type but another Business
Object proxy, it is the attributes defined in the class definition that are to be
accessed.

String createGetSetMethods(ProxyInfo proxyInfoObject)

4.4.4.3 Creating Methods
For each method defined in the ProxyInfo methods list, we create a method
to access the corresponding Business Object method. Methods are defined
with a name, a return type, parameters, and exceptions.
62 CBConnector Bank Implementation

To build a proxy method accessing a Business Object method, we need to
build the method declaration from the method return type, name, parameters
and exceptions, as defined in the ProxyMethodField object. Then we build
the catch statement, where each Business Object exception raised for this
method is caught, and the corresponding proxy method is thrown.

The method string created consists of the method declaration, the
corresponding method call to the Business Object, and a catch exception
statement after the method call.

String ProxyMgr.ProxyFactory.createMethods(ProxyInfo proxyInfoObject)

4.4.4.4 Creating Iteration Methods
Object relationships denoting a one-to-many relationship between Business
Objects require special attention in our proxy, as described earlier in Section
4.2.3.1.

These are different from objects acting as attributes, since this is a
one-to-one relationship, while object relationships implement a one-to-many
relationship.

We need to create the extra methods hiding the Business Object iterator from
the client developer and create an Iterator class that can be treated as a
regular Enumeration class from the client side.

String ProxyMgr.ProxyFactory.createIterationMethods(ProxyInfo

proxyInfoObject)

4.4.4.5 Creating Iteration Classes
The iteration methods refer to an iteration class, which implements an
enumeration on the proxy class. This is the class that the main proxy has an
object relationship with. For each method in the iteration methods list of the
ProxyInfo object, we create an Iteration class for the type defined in the
extra field of the method field. The Iteration class implements the same
interface as the Enumeration class.

String ProxyMgr.ProxyFactory.createIteratorClasses(ProxyInfo

proxyInfoObject)

4.4.4.6 Creating General Methods
For the remaining methods, such as create, delete, update, and the like,
there is a method defined in the ProxyFactory for each of these methods that
returns a string which is the source code for this method. These methods are
mostly a copy of the method as defined in the template Proxy Object, with all
Client Implementation 63

references to names and types replaced by the information stored in the
ProxyInfo object.

Some methods, such as init and update, go through all the attributes of the
Proxy Object and set or get a value. In this case, the attributes list in the
ProxyInfo object is iterated through to generate a code statement.

If the object has attributes that have another Business Object proxy as their
type, these attributes get special attention in some methods. They need to be
created and initialized in the create method. In addition, a read method for
each attribute must be defined, and these read methods are called by the
main read method.

4.4.5 Putting It All Together
We have a set of IDL files in ProxyMgr.ProxyFactoy.getSourceDirectory(),
which contain the interfaces specified by
ProxyMgr.IdlParser.getModuleList. The following method will generate all
the source code for the interfaces in the
ProxyMgr.ProxyFactory.getTargetDirectory:

void ProxyMgr.ProxyFactory.generateAllProxies()

The method will generate source code for the exceptions in the constructs
file, generate a ProxyInfo object for each interface, and create source code
for each ProxyInfo object.

When the source code is generated, it may be imported into the developing
too to see if there are any unresolved problems. To avoid too many problems,
make sure that the rest of the model is imported, such as the Business
Objects, enumerated types and so on. Also, make sure the abstract
superclass for the proxy is loaded.

The most common problem that will arise is that there are erroneous
references to packages, and some typing problems may appear. It is
important to go through the code, and set the correct initial values in the init
method of the proxy, see that the correct exceptions are thrown, and that the
type names are correct. You may need to update the exception table and type
conversion table.

It is important to keep in mind that a proxy generation tool is useful to
generate 90 to 95 percent of your code that otherwise would have to be
hand-coded, but human intervention is necessary for the last validation.
64 CBConnector Bank Implementation

4.4.6 Four Steps to Creating Your Own Proxy Generator
The proxy generator presented here may be reused, but most probably you’ll
need to modify it to fit your project’s development style. This section
describes the things you should consider when building a proxy generator.

4.4.6.1 Create a Template Proxy
First of all, you need to create the template proxy, or a Proxy Object for a
given Business Object, that implements the methods you need for all your
proxies. This proxy should inherit from an abstract proxy class, where all the
common, interface-independent methods are defined. For example, if you
have a Business Object Customer, you create a proxy
CBBank.CustomerProxy that inherits from CBBankProxy. When this proxy
behaves like you want it to, you can use this proxy as a generic template for
all the methods you define for an automatically generated proxy.

4.4.6.2 Create a ProxyInfo Object
The ProxyInfo object acts as a bridge form the IDL file to the generated
source code. You may find that the ProxyInfo object presented in this book is
sufficient to hold all the information you need, or you may want to modify it if
your model requires it.

4.4.6.3 Create the IDL Parser
The IDL parser presented here is taIlor-made for the code generated by the
model we have used and is not very robust. Other models may introduce
additional considerations in order to obtain all the information correctly.

We defined that every object is defined in separate modules. If you choose to
have one module for all objects, and thereby in one IDL file, the file needs to
be parsed differently. Only the task of reading the files will change because
parsing each interface will be the same.

There are other and more robust ways to obtain information about Business
Objects than parsing the IDL file. If the objects have been installed on the
Component Broker server, they may be read by accessing the Interface
Repository. Following naming standards to separate attribute getters and
setters from the other methods, you may, by reflection methods, access the
Business Objects’ attributes and methods.

4.4.6.4 Create the Proxy Factory
Taking the template proxy’s source code, you must create methods to
generate this source code for a given ProxyInfo object. The simplest way to
do this is to copy the code of your proxy template object into a method that
generates source code for this method. In this method, replace all specific
Client Implementation 65

references to the template proxy, and its Business Object reference, with
generic ones retrieved from the ProxyInfo object.

When this work is finished, you may verify if the methods are generated
correctly by loading the generated code for the template proxy’s IDL file and
comparing the template proxy with the newly generated proxy. The next step
is to generate proxies for different IDL files, and most probably, you’ll have to
go back to take out some forgotten references to your template proxy!

If there are places where it is impossible to generate correct code, such as
setting a default value for an enumeration type, it is a good solution to
generate code you know will provoke an unresolved problem. In this way, you
will be forced to correct the error before you publish the proxy.
66 CBConnector Bank Implementation

Chapter 5. Middle Tier

Having explained the client application development approach, we now
describe the middle tier of the CBConnector Bank.

5.1 Introduction

This chapter shows how we implemented CBConnector Bank objects with the
Object Builder Component Broker Toolkit. During the residency that produced
this redbook, we started with a transient implementation and then moved to
the persistent implementation. However, in this chapter, we present only the
persistent implementation.

5.2 Architecture of the Middle Tier

The core of CBConnector lies in its middle-tier application server. The
architecture of the CBConnector middle tier is presented in IBM CBConnector
Cookbook Collection: First Steps, SG24-2033. Please consult that redbook
for complete details. This section is a quick summary of the middle tier.

Figure 23. Global Architecture

Client Middle Tier Server Runtime

Object Request Broker

Naming
Service

LifeCycle
Service

Transaction
Service

Proxy

Managed Object
Container

IHome

Container

Client

Proxy

UDB

BO

MO DO

PO
MixIn

Application
Adapter

CICS

Specialized
Home
© Copyright IBM Corp. 1998 67

5.3 Persistent Implementation

This section defines the terminology we used in the rest of the document.

5.3.1 Managed Object Container
The managed object container consists of application adaptors and the
Managed Object framework. It manages the container that holds the business
logic.

5.3.1.1 Generic Home Objects
These are the factory and collection homes. They provide generic lifecycle
functionality for objects. They are also used to implement the query facility as
well as iteration over the set of objects they contain.

5.3.1.2 Specialized Home Objects
The specialized home allows you to customize the LifeCycle functions. They
also allow the client to have additional methods.

5.3.2 Containers
The container controls the processing and memory management. It contains
the Business Object (BO), Data Objects (DO) and the Persistent Object (PO).

5.3.2.1 Business Objects (BO)
The Business Object (BO) contains the actual business logic of the server. It
contains the signature and the implementation of methods.

5.3.2.2 Data Objects (DO)
The Data Object (DO) contains the logic to store, update, retrieve, and delete
objects from UDB (Universal Database DB2). It isolates the BO from specific
back-end database and transaction monitors. It collaborates with the
application adaptor to implement the BO methods.

5.3.2.3 MixIn
The main role of the MixIn Object is to synchronize method calls on DOs so
that invocations are thread safe. It also provides various mechanisms, such
as policy management of DOs or refreshment of DO data, when a transaction
is rolled back.
68 CBConnector Bank Implementation

Figure 24. Address Hierarchy

5.3.2.4 Persistent Objects (PO)
The Persistent Object (PO) encapsulates the embedded SQL statements
needed to access UDB. It allows insertion, update, deletion, and retrieval of
persistent data. It provides communication with UDB.

5.3.2.5 Managed Objects (MO)
The Managed Objects (MO) wrap the DO and BO. They contain the set of
interfaces (CORBA IDL), implementations, and conventions that must be
followed in order to create and use business objects in Component Broker.

5.4 CBConnector Bank Architecture

This section describes the architecture of CBBank. It includes the
CBConnector functions we used and the description of objects.

5.4.1 Functions Used in the CBConnector Bank Sample
The following features of CBConnector were exploited in the CBConnector
Bank samples.

 • Specialized Home.
 • Iterator over generic and Specialized Home.
 • PAA: Procedural Application Adaptor. A PAA provides a context for

Managed Objects. We use the DB2 application adaptor that is a BOIM
(Business Object Application Adaptor) framework with appropriate
configurations and additional mechanisms that support DB2 access with
caching.

 • Transaction (over CICS and the Object Transaction Service (OTS)).
Middle Tier 69

 • Session: PAA uses the notion of session to help manage resources within
the context of a unit-of-activity scope.

 • Transient Objects (objects that lack a persistent store).
 • Persistent Objects (backed with UDB).
 • CICS and UDB back-end. Transactions are run through two databases.

UDB(NT) on one and UDB with CICS on MVS on the other hand.
 • Query Service: The language for the Component Broker Query Service is

Object Oriented-Structured Query Language (OO-SQL). OO-SQL is used
in the Policy Manager.

5.4.2 CBConnector Banking Objects
The 16 objects we created are listed in Figure 25 on page 71. The graphic
shows the graphical interface of Object Builder. We created two types of
objects:

 • Default (Normal) Object: This object is a Managed Object. It contains all
the methods associated with an object. The delete, create, and retrieval of
the object are provided by the associated default home.

 • Specialized Home Object: The specialized home is also a Managed
Object. It provides a richer interface to homes than what is provided by the
default. Its functionality is limited. In this book we mainly use it to find,
create and delete Managed Objects but it could be used to create your
own interface to manipulate the Home Object.
70 CBConnector Bank Implementation

Figure 25. CBConnector Bank Objects

The model and the objects involved in the model were presented in Chapter
2, “Design” on page 11. The CBConnector Bank Customer object is the core
object of the architecture in Figure 26 on page 72.

Relations between objects are iterators. The Customer object has iterators
over CheckAccount, SavingsAccount, and Notes. CheckAccount and
SavingsAccount, in turn, have iterators over TransactionRecord. A
TransactionRecord is appended to Check/Savings Account each time a
method on the object is invoked.

The Teller creates Notes for a Customer and queries on the list of
Check/Savings Account, Notes, and TransactionRecord belonging to a
Customer.

All objects can query (get/set) the Policy Manager. We mainly use it to store
default and dynamic values, such as the name of a server or
default_interest_rate for Customers.
Middle Tier 71

Figure 26. Architecture

The rest of this chapter describes, one by one, all CBConnector Bank objects.
The CBBankAddress and CBBankAddressHome objects are among the
first objects that we describe. Thus we will detail the Address objects by
showing a few lines of code. Other objects are created in the same fashion,
but we will not go into details.

5.4.3 CBConnector Bank Scenario
This section describes the different steps we have to undertake to get the
whole CBConnector Bank working. We describe it as a scenario.

The middle Tier is driven by the GUI client front end. The client GUI is a teller
that allows you to create your own Banking scenario. The GUI is described in
details in 4.3, “The Client Front-End (Graphical User Interface)” on page 44.
All objects of CBConnector Bank and their methods can be instantiated and
called by the teller as the menus in Figure 27 on page 73 show.

SavingsAccountSavingsAccount CheckAccountCheckAccount NotesNotes AddressCheckAccount

Customer

Teller(Client GUI)

AddressNotes

freeze/unfreeze

SavingsAccount

Policy

Object stored with DB2 on NT
Object stored with DB2 CICS on IMS

Create
Notes

get/set

m methods

A

B
A refers to B

Address

(A iterates other B)

Record
Transaction

Record
Transaction
72 CBConnector Bank Implementation

The instantiation of the Policy Manager is out of the scope of the GUI; we
assumed that it is running together with the CBConnector Bank server.

The typical scenario that a teller undertakes is as follows

1. Create a Customer (see Figure 27 on page 73).

2. Create a Checking or Savings Account for a Customer.

3. Record a Note for a Customer.

4. Transfer (Debit/Credit) an amount of money in a transaction from one
account to another. A TransactionRecord is associated with each debited
and credited account.

5. A Customer can list the Checking/Savings Accounts or Note he/she
owns.

Figure 27. Teller GUI
Middle Tier 73

5.4.4 CBConnector Bank Configuration
This section describes the different configurations we have made during the
implementation phase with CBC Object Builder.

5.4.4.1 Business Objects
Buisness Object, Data Object and Persistent Objects were built with the
following approaches:

 • Most of the methods are written in Java, except the method for specialized
Home Objects that had to be written in C++ (as Java support for
specialized was not available). The code for methods are stored in
external files to ease software evolution and group programming. It also
allows separate testing of methods.

 • All objects are associated with home objects except the Teller. Home
objects are unique and allow us to control the creation of the object as well
as methods to find them.

 • All object are queryble except the Customer.

 • All object interfaces are defined in a separate file and separate module
(see Figure 31 on page 80) so that we have clean name-scoping, and
each object can be tested and compiled separately.

 • The Pattern for Handling Data State is Delegating for all the objects.

5.4.4.2 Persistent and Data Objects
This section gives some details about the CICS and Procedural Application
Adaptor. The specification of the PO and DO are straightforward. The DOImpl
contains the mapping between the PO and the DO. The mapping is based on
the (UDB) database schema defined in the back-end.

5.4.4.3 Importing Beans (CICS/Procedural Adaptor)
When you start working with Object Builder, you must include the .jar file
created with CICON to your CLASSPATH. The easiest and cleanest way to do it
is to copy ob.bat, and modify this newly created batch file to include a .jar file
to the CLASSPATH. Thus, the .jar file is always in the CLASSPATH whenever you
start Object Builder. Do not forget to enable Object Builder beta capabilities.

After opening the project you must import the bean (User defined PAO
schemas -> Import bean). The Object Builder asks you for the name of the
class or let's you select a class from the .jar file. This class or .jar file must be
in the CLASSPATH. See the CICS & IMS Application Adaptor Quick Beginnings
guide for more details.
74 CBConnector Bank Implementation

5.4.4.4 Implementing the Data Object
During the configuration of the DO, make sure that you select the correct
options when implementing the DO. The options are

 • BOIM with any key (Environment)

 • Procedural Adaptors (Form of persistent behavior)

 • Delegating (Data access pattern)

 • Default (Handle for storing pointers)

These options make DO to inherit from
IPAAExtLocalToServer::IDataObject, which delegates all method calls to
the PAO.

Figure 28. Data Object Inheritance

5.4.4.5 Using Mapping Helpers
If the target PAO attributes happen to differ from your BO interface attributes
(for instance, you are aggregating objects), then you must use mapping
helpers to resolve this problem. The mapping helper is a C++ class
containing only methods, because this class is never instantiated by the DO
implementation.

By using mapping helpers, you can do whatever mapping is required between
DO implementation and PAO. Objects are always passed in methods in
general form, such as a handle string. In Object Builder, you can define the
name of class which does the mapping and names of methods for mapping
the data in both directions.
Middle Tier 75

While you are doing the bindings between DO and PAO, Object Builder
automatically asks you to enter the name of mapping helper class if you have
incompatible bindings (such as enumeration to string).

The following example shows a mapping helper, which maps enumeration
GenderType to String in the PAO and vice versa.

void GenderMapper::PAOToEnum(const CORBA::String& strGender,
CBBankConstructs::GenderType& gender)

{

if(*strGender == ’F’)

gender = CBBankConstructs::FEMALE;

else

gender = CBBankConstructs::MALE;

}

void GenderMapper::enumToPAO(const CBBankConstructs::GenderType&
gender,

CORBA::String& strGender)

{

if(gender == CBBankConstructs::FEMALE)

strGender = CORBA::string_dup("F");

else

strGender = CORBA::string_dup("M");

}

The mapping gets more complex when you need to map imbedded objects to
CICS. Our sample implements mapping helper to move Address objects
back and forth to CICS while Customer is being stored/retrieved. If your
object contains more than one attribute, you need to map the given object to
many PAO attributes and define the name of the mapping helper class and
mapping methods.
76 CBConnector Bank Implementation

Figure 29. Persistent Objects

5.4.4.6 Packaging
The packaging concerns the way the server is handles. The following
configuration was adopted:

 • Each object is managed in a separate container. Each container handles
policies (termination, memory management, transaction) and the caching
mechanism for the Managed Object. If the caller is outside a transaction, a
transaction is automatically created; otherwise a transaction is not
created.

 • If an exception occurs within an active transaction, the transaction is rolled
back. If the call is outside a transaction, the call is abandoned.
Middle Tier 77

5.4.5 Constructs
The following table shows the functions of CBBankConstructs.

Table 3. Role of Note Objects

5.4.5.1 CBBankConstructs
All exceptions and enumerations of the CBConnector Bank Objects are
declared in CBBankConstructs. This module does not have any interfaces
and thus methods. The list of CBBankConstructs enumerations and
exceptions is shown in Figure 31 on page 80. This approach implies that each
object that uses these constructs must scope it with the name of the
CBConnector Bank module.

Name Function Performed Remarks

CBBankConstructs Contains the definitions,
exceptions, and enumerations
used in CBConnector Bank

CBBankConstruct is a
module in the Object
Builder terminology. It is
not an object.
78 CBConnector Bank Implementation

Figure 30. CBBankConstructs IDL and Graphics

5.4.6 Address
CBBankAddress and CBBankAddressHome are modules related to
Address (see Figure 24 on page 69). CBBankAddress has all the persistent
attributes, no methods and BO, MO, DO. CBBankAddressHome has only a

module CBBankConstructs {

 exception Frozen {
 }; // end exception Frozen
 exception Unfrozen {
 }; // end exception Unfrozen
 exception Closed {
 }; // end exception Closed
 exception NegativeAmount {
 }; // end exception NegativeAmount
 exception BeyondDebitLimit {
 }; // end exception BeyondDebitLimit
 exception ProcessingFailed {
 string details;
 }; // end exception ProcessingFailed
 enum StatusType {
 FROZENSTATUS,
 OPENSTATUS,
 CLOSEDSTATUS
 }; // end enum StatusType
 enum TransactionType {
 CREDIT,
 DEBIT

 }; // end enum TransactionType
 enum GenderType {
 MALE,
 FEMALE
 }; // end enum GenderType

IDL

Object Builder Graphical
Interface
Middle Tier 79

80 CBConnector Bank Implementation

BO and MO and one method that creates and returns a unique Primary Key.
The functionality of each Address object is described in Table 4 on page 80.

Figure 31. CBBankAddress and CBBankAddressHome

The following table shows the functionality of CBBankAddress and
CBBankAddressHome.

Table 4. Role of Address Objects

5.4.6.1 CBBankAddress
The IDL for CBBankAddress is:

Object Name Function Performed Remarks

CBBankAddress Stores persistent Address
attributes (street, city....)

see 5.4.6.1,
“CBBankAddress” on
page 80, for the IDL
description

CBBankAddressHome creates a CBBankAddress
object and its Primary Key.
(see Figure 34 on page 82 for the
code)

see 5.4.6.2,
“CBBankAddressHome
” on page 81, for the IDL
description

Figure 32. CBBankAddress IDL

5.4.6.2 CBBankAddressHome
The IDL of the CBBankAddressHome is:

Figure 33. CBBankAddressHome IDL

The createAddress method creates a CBBankAddress object from the
copyString parameter. The code is shown in Figure 34 on page 82.

module CBBankAddress {
interface Address : IManagedClient::IManageable
 {
 attribute string street;
 attribute string city;
 attribute string state;
 attribute string postcode;
 attribute string country;
 }; // end interface Address
}; // end of module CBBankAddress

module CBBankAddressHome {
interface AddressHome : IManagedClient::IHome
 {
 CBBankAddress::Address createAddress(in ::ByteString copyString)
raises (IManagedClient::IDuplicateKey,IManagedClient::IInvalidKey,
IManagedClient::IInvalidCopy,CBBankConstructs::ProcessingFailed);
 }; // end interface AddressHome
}; // end of module CBBankAddressHome
Middle Tier 81

Figure 34. CBBankAddressHome createAddress

5.4.7 Customer
We created three types of objects related to Customer. They are
CBBankCustomer, CBBankCustomerHome, and
CBBankCustomerMapper.

A CBBankCustomer object is created through the CBBankCustomerHome.
The CBBankCustomer creates a Primary Key associated with the new
CBBankCustomer object. All attributes of the CBBankCustomer are made
persistent through CICS. Thus, a key is needed to query on customers. CICS
allows you to query on Customer if and only if you know the key. Therefore,
you have to memorize the key of the object when it is created. This is too
constraining for the client. We created a CBBankCustomerMapper to map a

{
CBBankAddress::Address createAddress(in ::ByteString copyString)
{...

// Create an addressCopy
 addressCopy = CBBankAddressCopy::AddressCopy::_create();
 addressCopy->fromString(copyString);

// generate a Primary Key
 keyGenerator = IBOIMExtLocal::IUUIDPrimaryKey::_create();
 keyGenerator->generate();

// create an address from a Primarykey
 object = createFromPrimaryKeyString(*keyGenerator->toString());
 address = CBBankAddress::Address::_narrow(object);

// Fill the new address object from addressCopy
 address->street(addressCopy->street());
 address->city(addressCopy->city());
 address->postcode(addressCopy->postcode());
 address->state(addressCopy->state());
 address->country(addressCopy->country());
return address;
...
}

82 CBConnector Bank Implementation

Primary Key with a lastname or firstname back-ended with UDB so that the
client can find a Customer by name.

Table 5. Role of Customer Objects

5.4.7.1 CBBankCustomer
CBBankCustomer makes all attributes persistent that are related to
Customer. It has iterators for SavingsAccount, CheckingAccount, and
Note.

Object Name Function Performed Remarks

CBBankCustomer -Store attributes(firstname,....);
-Relation to listSavingsAccounts
and listcheckAccounts
-DO, PO (mapping to UDB
schema)

UDB-CICS backend

CBBankCustomerHome -create CBBankCustomer and
generates unique key from a
string that the client pass in.

- <delete, update, find>
Customer

-createCustomer call
CBBankCustomerWrap
per to create a tuple
<key, firstname,
lastname> so that the
client can retrieve a
customer by name.

CBBankCustomerMapp
er

create <key, firstname,
lastname> tuple
This object is mapper between
key and <firstname, lastname>.

UDB backend
Middle Tier 83

Figure 35. CBBankCustomer IDL

5.4.7.2 CBBankCustomerHome
CBBankCustomerHome is a specialized home that contains the methods to
create CBBankCustomer, findCustomer, updateCustomer, and
deleteCustomer.The IDL is described in Figure 36 on page 85.
findcustomer requires a firstname or lastname, and the object reference is
returned. The CBBankMapper object is contacted to retrieve a key by name.

module CBBankCustomer {
 interface Customer : IManagedClient::IManageable
 {
 attribute string dateOfBirth;
 attribute string homePhone;
 attribute string workPhone;
 attribute ::CBBankConstructs::GenderType gender;
 attribute string lastname;
 attribute string firstname;
 attribute string title;
 attribute CBBankAddress::Address postalAddress;
 attribute CBBankAddress::Address physicalAddress;
 attribute string id;
 attribute string key;
 IManagedCollections::IIterator listsavingsAccounts();
 IManagedCollections::IIterator listcheckAccounts();
 ::IManagedCollections::IIterator listnotes();
 }; // end interface Customer
}; // end of module CBBankCustomer
84 CBConnector Bank Implementation

Figure 36. CBBankCustomerHome IDL

5.4.7.3 CBBankCustomerMapper
This object maps a CBBankCustomer Primary Key to a customer’s lastname
and firstname. This object was created to find a customer by name.

Figure 37. CustomerMapper IDL

module CBBankCustomerHome {
interface CustomerHome : IManagedClient::IHome
 {
 CBBankCustomer::Customer createCustomer(in ::ByteString copyString
) raises (IManagedClient::IDuplicateKey,IManagedClient::IInvalidKey,
CBBankConstructs::ProcessingFailed);
 CBBankCustomer::Customer findCustomer(in ::ByteString
primaryKeyString) raises
(IManagedClient::IInvalidKey,IManagedClient::INoObjectWKey,
CBBankConstructs::ProcessingFailed);
 void updateCustomer(in CBBankCustomer::Customer customer,
in::ByteString copyString) raises
(CBBankConstructs::ProcessingFailed);
 void deleteCustomer(in CBBankCustomer::Customer customer) raises
(CBBankConstructs::ProcessingFailed);
 }; // end interface CustomerHome
}; // end of module CBBankCustomerHome

module CBBankCustomerMapper {
interface CustomerMapper : IManagedClient::IManageable
 {
 attribute string customerKey;
 attribute string firstName;
 attribute string lastName;
 }; // end interface CustomerMapper
}; // end of module CBBankCustomerMapper
Middle Tier 85

5.4.8 Teller
A teller is implicitly created when the GUI interface is launched. The user has
to input a login name and a password to be a Teller.

Table 6. Role of Customer Objects

5.4.8.1 CBBankTeller
The following IDL shows the attributes of Teller.

Figure 38. CBBankTeller IDL

5.4.9 Note
Notes are sent by the Teller to a Customer. We have two objects:
CBBankNote and CBBankNoteHome associated with Note.

Table 7. Role of Note Objects

5.4.9.1 CBBankNote
The following IDL shows the attributes of CBBankNote.

Object Name Function Performed Remarks

CBBankTeller -Store attributes (firstname,....);
-DO, PO (mapping to UDB
schema)

The Teller role is
represented as a GUI
interface.

Object Name Function Performed Remarks

CBBankNote Store persistently all attributes of
Note.

Store in UDB NT

CBBankNoteHome Create a CBBankNote with a
unique key.

module CBBankTeller {
interface Teller : IManagedClient::IManageable
 {
 attribute string position;
 attribute string lastname;
 attribute string firstname;
 attribute string title;
 attribute string id;
 attribute string password;
 }; // end interface Teller
}; // end of module CBBankTeller
86 CBConnector Bank Implementation

Figure 39. CBBankNote IDL

5.4.9.2 CBBankNoteHome
The following figure shows the createNote method of CBBankNoteHome.

Figure 40. CBBankNoteHome IDL

5.4.10 CBBankCheckAccount
CheckAccount and SavingsAccount are implemented in a very similar way.
They both have a specialized home.

Table 8. Role of Note Objects

Object Name Function Performed Remarks

CBBankCheckAccount -Make persistent attributes such
as balance, interest_rate ...
-credit/debit
-freeze, close, open account
- get the interest_rate from the
Policy Manager

Backed with UDB on NT.

CBBankCheckHome - Create a CheckingAccount
- Transfer amount

module CBBankNote {
 interface Note : IManagedClient::IManageable
 {
 attribute string customerKey;
 attribute string text;
 attribute CBBankTeller::Teller creator;
 attribute string dateCreated;
 attribute string timeCreated;
 attribute string key;
 }; // end interface Note
}; // end of module CBBankNote

module CBBankNoteHome {
interface NoteHome : IManagedAdvancedClient::IQueryableIterableHome
{
 CBBankNote::Note createNote(in ::ByteString copyString) raises
(IManagedClient::IDuplicateKey,IManagedClient::IInvalidKey,
IManagedClient::IInvalidCopy,CBBankConstructs::ProcessingFailed);
 }; // end interface NoteHome
}; // end of module CBBankNoteHome
Middle Tier 87

5.4.10.1 CBBankCheckAccount
The following figure shows the methods and attributes of
CBBankCheckAccount.

Figure 41. CBBankCheckAccount IDL

5.4.10.2 CBBankCheckAccountHome
The following IDL shows the methods of CBBankCheckAccountHome.

module CBBankCheckAccount {
 interface CheckAccount : IManagedClient::IManageable
 {
 attribute string customerKey;
 attribute string dateCreated;
 attribute string name;
 attribute ::CBBankConstructs::StatusType status;
 attribute double balance;
 attribute float creditInterestRate;
 attribute float debitInterestRate;
 attribute double serviceFee;
 attribute double overDraftLimit;
 attribute string key;
 void freeze() raises
(CBBankConstructs::Frozen,CBBankConstructs::Closed);
 void unfreeze() raises
(CBBankConstructs::Unfrozen,CBBankConstructs::Closed);
 void credit(in double amount) raises
(CBBankConstructs::NegativeAmount,CBBankConstructs::Frozen,
CBBankConstructs::Closed,CBBankConstructs::ProcessingFailed);
 void debit(in double amount) raises
(CBBankConstructs::NegativeAmount,CBBankConstructs::BeyondDebitLimit,
CBBankConstructs::Frozen,CBBankConstructs::Closed,
CBBankConstructs::ProcessingFailed);
 void requestCheckBook(in unsigned short Number) raises
(CBBankConstructs::Frozen,CBBankConstructs::Closed,
CBBankConstructs::ProcessingFailed);
 ::IManagedCollections::IIterator listTransactions();
 }; // end interface CheckAccount
}; // end of module CBBankCheckAccount
88 CBConnector Bank Implementation

Figure 42. CBBankCheckAccountHome IDL

5.4.11 SavingsAccount
The following table shows the different functions of CBBankSavingsAccount
and CBBankSavingsAccountHome.

Table 9. Role of Note Objects

5.4.11.1 CBBankSavingsAccount
The following IDL shows the attributes and methods of
CBBankSavingsAccount.

Object Name Function Performed Remarks

CBBankSavingsAccount -Make persistent attributes such
as balance, interest_rate...
-credit/debit
-freeze, close, open account
- get the interest_rate from the
Policy Manager

Backed with UDB on NT.

CBBankSavingsHome - Create a SavingsAccount
- Transfer amount

module CBBankCheckAccountHome {
interface CheckAccountHome :
IManagedAdvancedClient::IQueryableIterableHome
 {
 CBBankCheckAccount::CheckAccount createCheckAccount
(in ::ByteString copyString) raises
(IManagedClient::IDuplicateKey,IManagedClient::IInvalidKey,
IManagedClient::IInvalidCopy,CBBankConstructs::ProcessingFailed);
 void transfer(in CBBankCheckAccount::CheckAccount fromAccount,
in CBBankCheckAccount::CheckAccount toAccount,in double amount)
raises
(CBBankConstructs::Frozen,CBBankConstructs::Closed,
CBBankConstructs::NegativeAmount,CBBankConstructs::BeyondDebitLimit,
CBBankConstructs::ProcessingFailed);
 }; // end interface CheckAccountHome
}; // end of module CBBankCheckAccountHome
Middle Tier 89

Figure 43. CBBankSavingsAccount

5.4.11.2 CBBankSavingsAccountHome
The following IDL shows the methods of CBBankSavingsAccountHome in
IDL.

module CBBankSavingsAccount {
interface SavingsAccount : IManagedClient::IManageable
 {
 attribute string customerKey;
 attribute string dateCreated;
 attribute string name;
 attribute CBBankConstructs::StatusType status;
 attribute double balance;
 attribute float creditInterestRate;
 attribute float debitInterestRate;
 attribute double serviceFee;
 attribute double minLimit;
 attribute string key;
 void freeze() raises
(CBBankConstructs::Frozen,CBBankConstructs::Closed);
 void unfreeze() raises
(CBBankConstructs::Unfrozen,CBBankConstructs::Closed);
 void credit(in double amount) raises
(CBBankConstructs::NegativeAmount,CBBankConstructs::Frozen,
CBBankConstructs::Closed,CBBankConstructs::ProcessingFailed);
 void debit(in double amount) raises
(CBBankConstructs::NegativeAmount,CBBankConstructs::BeyondDebitLimit,
CBBankConstructs::Frozen,CBBankConstructs::Closed,
CBBankConstructs::ProcessingFailed);
 ::IManagedCollections::IIterator listTransactions();
 }; // end interface SavingsAccount
}; // end of module CBBankSavingsAccount
90 CBConnector Bank Implementation

Figure 44. CBBankSavingsAccountHome IDL

5.4.12 TransactionRecord
The following table shows the function of TransactionRecord objects.

Table 10. Role of Note Objects

5.4.12.1 CBBankTransactionRecord
The following IDL shows the attribute of CBBankTransactionRecord.

Object Name Function Performed Remarks

CBBankTransactionRec
ord

Make persistent
TransactionRecord attributes
such as time created,
description...

UDB back-end

CBBankTransactionRec
ordHome

Creates a
CBBankTransactionRecord
object

module CBBankSavingsAccountHome {
interface SavingsAccountHome :
IManagedAdvancedClient::IQueryableIterableHome
 {
 CBBankSavingsAccount::SavingsAccount createSavingsAccount
(in ::ByteString copyString) raises
(IManagedClient::IDuplicateKey,IManagedClient::IInvalidKey,
IManagedClient::IInvalidCopy,CBBankConstructs::ProcessingFailed);
 void transfer(in CBBankSavingsAccount::SavingsAccount
fromAccount,in CBBankSavingsAccount::SavingsAccount toAccount,
in double amount) raises
(CBBankConstructs::Frozen,CBBankConstructs::Closed,
CBBankConstructs::NegativeAmount,CBBankConstructs::BeyondDebitLimit,
CBBankConstructs::ProcessingFailed);
 }; // end interface SavingsAccountHome
}; // end of module CBBankSavingsAccountHome
Middle Tier 91

Figure 45. CBBankTransactionRecord IDL

5.4.12.2 CBBankTransactionRecordHome
The following IDL shows the methods of CBBankTransactionRecordHome
in the IDL.

Figure 46. CBBankTransactionRecordHome IDL

5.4.13 Policy
The Policy was developed independently in another model. The current
CBConnector Bank model has a link to the Policy Model.

The Policy Objects allow you to set, get and delete <name, value> pairs
stored persistently in UDB. Names are structured as strings in a logical tree.
Policy provides you the ability to dynamically change the value of static
variables used in the CBConnector Bank application.

module CBBankTransactionRecord {
interface TransactionRecord : IManagedClient::IManageable
 {
 attribute string customerKey;
 attribute string accountKey;
 attribute ::CBBankConstructs::TransactionType transKind;
 attribute string timeCreated;
 attribute string dateCreated;
 attribute string description;
 attribute double amount;
 }; // end interface TransactionRecord
}; // end of module CBBankTransactionRecord

module CBBankTransactionRecordHome {
interface TransactionRecordHome :
IManagedAdvancedClient::IQueryableIterableHome
 {
 CBBankTransactionRecord::TransactionRecord
createTransactionRecord(in ::ByteString copyString) raises
(IManagedClient::IDuplicateKey,IManagedClient::IInvalidKey,
IManagedClient::IInvalidCopy,CBBankConstructs::ProcessingFailed);
 }; // end interface TransactionRecordHome
}; // end of module CBBankTransactionRecordHome
92 CBConnector Bank Implementation

Such functionality can be used to implement various types of services. Our
policy can be used as a Name Service or even as a database.

For example, it allows you to set a default policy such as

//account/default_interest_rate = 5.7"

and eventually change it without recompiling the whole model.

It allows the retrieval of values even if the full name doesn’t match the name
stored in the database.

Example:

Let say we have a database with:

setPolicy("/account/default_interest_rate", 5.7)

getPolicy("/account/check/Clint.Eastwood/default_interest_rate")

This will return 5.7 because the database has a default_interest for all
types of account.

Figure 47. Policy Naming Hierarchy

5.4.13.1 Policy Description
The following table shows the function of Policy Objects.

Table 11. Role of Policy Objects

Object Name Function Performed Remarks

CBBankPolicy -Store persistently <name,
value> with getPolicy and
setPolicy

UDB NT backend

Management/ Account/

Savings/ Check/

Clint Eastwood/

Default_interest_rate = 5.7

.....
Middle Tier 93

5.4.13.2 CBBankPolicy Exceptions
The listPolicy method described in the Policy Manager are supposed to
return a list of Policys. However, the current version of Object builder does not
support sequence as a return value. Therefore, we had to return a string and
insert a delimiter between each item. The following exceptions were defined
for CBBankPolicy.

Figure 48. CBBankPolicy Exceptions IDL

5.4.13.3 CBBankPolicy
The following IDL shows the attributes of CBBankPolicy.

Figure 49. CBBConnector Bank Policy IDL

5.4.13.4 Policy Manager
The Policy Manager Interface provides methods that iterate over policies.

CBBankPolicyManager - get/setPolicy
- List all policies
- Execute OO-SQL clause

Only the manager sees
the CBBankPolicy

Object Name Function Performed Remarks

module CBBankPolicy {
exception InvalidName {
 }; // end exception InvalidName
 exception InvalidValue {
 }; // end exception InvalidValue
 exception NotFound {
 }; // end exception NotFound
 exception ProcessingFailed {
 }; // end exception ProcessingFailed
 exception InvalidDelimiter {
 }; // end exception InvalidDelimiter
 exception InvalidQuery {
 }; // end exception InvalidQuery
}; // end of module CBBankPolicy

 interface Policy : IManagedClient::IManageable
 {
 attribute string<100> name;
 attribute string<50> value;
 }; // end interface Policy
94 CBConnector Bank Implementation

Figure 50. CBBankPOlicy Manager IDL

5.5 CBConnector 1.2 Limitations

This section outlines the limitations we encountered while we were building
the CBC Banking sample. We encountered these limitations at three stages.
They are the Object Builder, CICS and runtime. These limitations changed
significantly the model we aimed to build. The final model looks pretty much
like an Entity/Relationship (E/R) model. We recommend you read the
Late-Breaking News document supplied with the product.

Object Builder:

 • The return type cannot be a sequence or any complex structure. We use
strings and put delimiters on a string to simulate a structure.

 • Object relationship is not supported; we use iterators instead.

interface PolicyManager : IManagedClient::IManageable
 {
 readonly attribute string singletonKey;
 void setPolicy(in string<100> name,in string<50> value) raises
(CBBankPolicy::InvalidName,CBBankPolicy::InvalidValue,
CBBankPolicy::ProcessingFailed);
 string<50> getPolicy(in string<100> name) raises
(CBBankPolicy::InvalidName,CBBankPolicy::NotFound,
CBBankPolicy::ProcessingFailed);
 void deletePolicy(in string<100> name) raises
(CBBankPolicy::InvalidName,CBBankPolicy::NotFound,
CBBankPolicy::ProcessingFailed);
 string listPolicies(in string sqlWhereClause,in string delimiter)
raises
(CBBankPolicy::InvalidQuery,CBBankPolicy::InvalidDelimiter,
CBBankPolicy::ProcessingFailed);
 string allPolicies(in string delimiter) raises
(CBBankPolicy::InvalidDelimiter,CBBankPolicy::ProcessingFailed);
 string listPolicyNames(in string sqlWhereClause,in string delimiter
) raises
(CBBankPolicy::InvalidQuery,CBBankPolicy::InvalidDelimiter,
CBBankPolicy::ProcessingFailed);
 string allPolicyNames(in string delimiter) raises
(CBBankPolicy::InvalidDelimiter,CBBankPolicy::ProcessingFailed);
 }; // end interface PolicyManager
Middle Tier 95

 • Inheritance is not supported; as far as we know, there is no clean way to
simulate inheritance.

 • The generated IDL is wrong when the enumerated type is added. In order
to remedy the problem, we manually changed the IDL and imported it into
the model. A similar approach can be taken with XML.

 • CORBA Any type is not supported in the Copy Helper.

CICS:

 • Sessions and transactions: CICS has to be called in a session meaning
that the current transaction has to be suspended.

 • The following corrections must be done for the DO implementation file
generated by Object Builder.

 • All occurrences of the isolated word string must be changed to
CORBA::String_var.

 • All occurrences of TempHandle imbedded in an identifier should be
changed to HandleTemp. By imbedded, we mean identifiers that contain
more text than simply the word tempHandle.

 • Access to CICS back-end from Java client

In order to successfully access the CICS back-end from the Java client,
we have to implement the following:

We created a Transient Object called CustomerWrapper with the same
interface as the Customer Object on the client.

The CustomerWrapper can maintain the sessions and all attributes of the
Customer Object. If you would like to study the code, please load the
CICS Customer Model to the Object Builder.

5.6 Conclusion

The chapter showed how we implemented the model we defined in Chapter 2,
“Design” on page 11. All objects, together with their IDLs, were detailed. The
relationships and interactions between objects were also presented. The
CBConnector Bank sample demonstrated the use of important features of
CBConnector. We outlined the limitation of the current version of the toolkit
and suggested solutions to remedy these limitations. This sample can be
used as a guide to build other complex applications with CBConnector.
96 CBConnector Bank Implementation

Chapter 6. Persistent Implementation

This chapter explains the import process of the JavaBean to Object Builder
after creation in the CICON tool. Please, refer to the CICS and IMS
Application Adaptor Quick Beginnings guide and to the IBM CBConnector
Cookbook Collection: First Steps redbook for additional information.

6.1 Importing the Bean to Object Builder

When you start working with Object Builder, you must include the .jar file
created with CICON to your CLASSPATH. The easiest and cleanest way to do
this is to copy ob.bat, and modify this newly created batch file to include a .jar
file to the CLASSPATH. This way, the .jar file is always in the CLASSPATH whenever
you start Object Builder. Don’t forget to enable Object Builder beta
capabilities.

After opening the project, you must import the bean (User defined PAO
schemas -> Import bean). The Object Builder asks you for the name of the
class or lets you select a class from the .jar file. This class or .jar file must be
in the CLASSPATH. The only thing you have to do after loading the .jar file is to
select key fields from the fields in the .jar file. See the CICS & IMS Application
Adaptor Quick Beginnings guide for more details.

6.2 Implementing the DO

Be sure that you select the correct options when implementing the DO. The
options are

 • BOIM with any key (Environment)

 • Procedural Adaptors (Form of persistent behavior)

 • Delegating (Data access pattern)

 • Default (Handle for storing pointers)

These options make DO to inherit from
IPAAExtLocalToServer::IDataObject, which delegates all method calls to
the PAO.
© Copyright IBM Corp. 1998 97

Figure 51. Data Object Inheritance

6.3 Using Mapping Helpers

If the target PAO attributes happen to differ from your BO interface attributes
(for instance, you aggregating objects), you must use mapping helpers to
resolve this problem. The mapping helper is a C++ class containing only
methods, because this class is never instantiated by the DO implementation.
Using mapping helpers, you can do whatever mapping is required between
the DO implementation and the PAO. Objects are always passed in methods
in general form, such as a handle string. In Object Builder, you can define the
name of class that is doing the mapping and names of methods for mapping
the data in both directions. While doing the bindings between the DO and
PAO, Object Builder automatically asks you to enter the name of mapping
helper class if you have incompatible bindings (such as enumeration to
string).

Here’s an example of the mapping helper that maps enumeration GenderType
to String in the PAO and vice versa.
98 CBConnector Bank Implementation

Figure 52. GenderType Conversion in PAO

The mapping gets more complex when one needs to map imbedded objects
to CICS. Our sample implements a mapping helper to move Address objects
back and forth to CICS while Customer is being stored/retrieved. If your
object contains more than one attribute, you need to map a given object to
many PAO attributes and define the name of the mapping helper class and
mapping methods.

void GenderMapper::PAOToEnum(
const CORBA::String& strGender,
CBBankConstructs::GenderType& gender)

{
if (*strGender == ’F’)

gender = CBBankConstructs::FEMALE;
else

gender = CBBankConstructs::MALE;
}

void GenderMapper::enumToPAO(
const CBBankConstructs::GenderType& gender,
CORBA::String& strGender)

{
if (gender == CBBankConstructs::FEMALE)

strGender = CORBA::string_dup ("F");
else

strGender = CORBA::string_dup ("M");
}

Persistent Implementation 99

Figure 53. Mapping Objects with PAO

6.4 Fixing Generated Code

The following corrections must be done for the DO implementation file
generated by Object Builder.

 • All occurrences of the isolated word string must be changed to
CORBA::String_var.

 • All occurrences of TempHandle imbedded in an identifier should be changed
to HandleTemp. By imbedded, we mean identifiers that contain more text
than simply the word tempHandle.
100 CBConnector Bank Implementation

Chapter 7. Legacy Tier

This chapter briefs you about our legacy tier. Please study this on our
CD-ROM in the Legacy subdirectory.

7.1 Data Implementation

As you have seen in 2.4, “Data Model” on page 23, the data model reflects
some of the familiar entities in a banking domain. We decided on a relational
database implementation for our data model and selected DB2 for the
physical implementation. A separate DB2 database was created for the data
implementation. On this database, we created separate tables for the entities
reflected on the data model shown in Figure 15 on page 24.

Although all the DB2 tables were created, we decided to only use the
CUSTOMER and ADDRESS tables on the 'legacy tier'. We did not want to
create a full banking application, but rather demonstrate that we could use
DB2 and CICS in a distributed computing environment.

The data management is done through a series of CICS programs. The data
logic has been separated from the business logic and screen handling. We
did this by implementing the CRUD methods for the data in separate
IO-modules for each DB2 table. The physical implementation of the data for
any of the other tables can therefore be done with the minimum effort by
copying any of the existing IO modules and changing only the column names
to reflect those of the specific table.

We are confident that if the need arises, the data implementation would be
able to be used and expanded to reflect any true banking environment.

7.2 Host CICS Transaction

Most mainframe sites have applications running under Customer Information
Control System (CICS), and these applications have been developed and
extended over the years. The idea behind the Component Broker Connector
Procedural Application Adaptor (PAA) is to enable customers to use their
existing CICS applications in new applications written for Component Broker
Connector.

In the residency that produced this redbook, we were in the opposite
situation; we had to create a CICS application that had to be representative of
what would be found in customer sites.
© Copyright IBM Corp. 1998 101

The tool provided by IBM to support the PAA is the CICS and IMS Connecting
(CICON) tool. The CICON tool is an extension to VisualAge for Java
(VAJava). CICON supports two methods of communication with CICS: Basic
Mapping Support (BMS) "screen-scraping" and by use of the CICS External
Call Interface (ECI). The result of the CICON process for screen-scraping, or
ECI, is a JavaBean that is imported into Component Broker Connector.

The screen-scraping technique may be used on most existing CICS systems,
just as people have used 3270 emulator Application Programming Interface
(API) in order to make front-ends to existing CICS systems.

The ECI approach, however, is a little more demanding when it comes to the
design of the original CICS application. Because the ECI is a Remote
Procedure Call (RPC) mechanism, it expects a certain structure to the
modularity of the CICS application. In our case, we could design the
application so that both approaches could be used, as described below. Due
to time constraints, we only implemented the JavaBean doing the
screen-scraping.

7.2.1 Host Flow Example
Our CICS COBOL application was designed around an extendable menu and
is supported by a program named CBCPGC01. For every type of function
supported on the menu, an additional program is needed. In our sample, only
the Customer function is supported, and it is represented by the CBCPGCUS
program.

The Customer function processes the following information: first name, last
name, title, ID number, date of birth, gender, home phone, and work phone. In
addition, two types of address information are processed, each with five fields
of information.

When the Customer function is selected from the menu (by entering CUST in
the function field), a CICS LINK to the CBCPGCUS program is performed.
This program is responsible for collecting the necessary information through
its own map (CUSTDTL) and presenting the information to the appropriate IO
module. It communicates with the IO module using the Communication Area
of the CICS LINK feature. The result of the IO operation is presented by
CBCPGCUS on its associated map.

Each IO module supports the create, retrieve, update, delete (CRUD)
methods of a specific SQL table. The communication area used for passing
information between CBCPGCUS and the IO modules (a customer table IO
module and an address table IO module) consists of a general part and an
102 CBConnector Bank Implementation

application-specific part. The general part contains an action field specifying
the CRUD method to execute, a return code field and a message field. The
application part contains all the information necessary to perform the relevant
CRUD methods.

The main reason for this design is to be able to support both screen scraping
and ECI with the same application. The ECI implementation bypasses the
menu program (CBCPGC01) and the customer function program
(CBCPGCUS) and communicates directly with the appropriate IO module.
The picture below shows the flow.

Figure 54. Flow of the CICS Host Application

Menu
map Scrape Customer

map

CBCPGC01 CBCPGCUS

CICS LINK

CICS LINK

Module
ECI IO
Legacy Tier 103

7.3 Creating Procedural Adaptor Object

The Procedural Adaptor Object (PAO) interacts with the Data Objects of the
Component Broker Connector server so that the attributes of a Data Object
are maintained transparently by the PAO. The PAO, on the other hand, is
supported by CICS Transaction Objects (TO), performing either screen
scraping or ECI to CICS.

The PAO is created by using CICON. Consult the CICS and IMS Application
Adaptor Quick Beginnings guide and the IBM CBConnector Cookbook
Collection: First Steps redbook to learn the exact steps you have to perform
in order to create the PAO class.

The PAO class is created as a new class inheriting from the
CBProceduralAdaptorObject class. You have to specify the attributes
(called properties in VAJava) through the BeanInfo tab. Note that you must
specify either #key# or #general# in the short description field of every
attribute; otherwise the CICON parsers will not see the attributes.

7.3.1 Screen Scraping - Implementation
The screen-scraping mechanism uses the API of the Host on Demand 3270
emulator to put data into CICS BMS maps as well as for retrieving data from
them.

The CICON tool helps you to perform the following tasks:

 • Initial Navigation and Logon

 • Creation of Transaction Objects (TO)

Consult the CICS and IMS Application Adaptor Quick Beginnings and the IBM
CBConnector Cookbook Collection: First Steps redbook in order to learn the
exact steps you have to perform in order to do the tasks mentioned above.

The Initial Navigation and Logon is dependent on your specific operating
environment; so we will not try to explain how to do it. Note, however, that
when you create your logon class, you have to add an attribute named ANY (of
type String) to the class in order to get it to work.

You need to create your Transaction Objects, one per CRUD method. This is
done by using the visual composition mode of VAJava. You must create a
closed loop of connections from the Start Object (of type Start) through your
CICS objects, and finally back to the Start Object.
104 CBConnector Bank Implementation

It seems that you have to make an artificial transition from the last CICS
object in the loop to the Start Object. A dummy map with a field of 50 bytes
from position 0 is used as the transition criteria, together with the CLEAR
action.

The different CICS objects represent the appropriate states of your
application in order to specify input and output for the screen scraping
process.

The TO classes created for the different CRUD methods need some manual
update in order to function. The reason is that the error handling associated
with screen scraping normally involves interpreting error messages given by
the application, and targeted for the end user.

When the visual composition is finished, you have to generate the CRUD
method of the TO by selecting the Class Settings on the Property setting of
the visual background. The general advice on this method generation, is to
create the method as an internal method, and then create the CRUD method
manually and invoke the generated method. In this way, you may handle
errors in your handwritten CRUD method.

7.3.2 Screen Scraping - Testing
VAJava allows you to test the client application that you have created. In
order to do this, you need a main routine in which to instantiate an object of
the PAO class, and invoke its CRUD methods. Note that it is important to
invoke the setWorkspaceId method and the find method on the PAO object
before invoking the relevant CRUD method.

Before you can do the unit test, you have to add information in the PAO
constructor about your CICS system. You must invoke the method
setLogonLogoffClassname with the name of the LogonLogoff class you
created as a parameter. The TCP/IP address of the CICS system and the port
number are specified as parameters to the methods setHostName and
setPortNumber. Finally, you may invoke the setDebugScreenEnabled
method with true as a parameter in order to monitor the actual
screen-scraping process.

When you are satisfied with your Unit Testing through CICON, it is a good
idea to export your bean, and then try to Unit Test it outside of VAJava from a
command line. In this way, you sort out the necessary CLASSPATH statements
needed for the bean to execute. S
Legacy Tier 105

106 CBConnector Bank Implementation

Chapter 8. Summary

By showing in detail all the development processes of a banking application,
this redbook is a practical guide for building a real application with
CBConnector.

In it, we address a large number of concepts covering object-oriented design
methodologies, including:

 • Rational Rose and CORBA

 • OO programming, such as C++ and Java

 • Procedural programming languages, such as COBOL

 • OO databases, such as OO-SQL

 • Procedural databases, such as DB2

 • CICS IMS adaptors, graphical interfaces and transaction processing
(CICS and OTS)

The chosen banking application gave us the opportunity to study a realistic
application that uses all the above concepts. The application also exploits
almost all the CBConnector functions needed to demonstrate the ability of
CBConnector to:

 • Integrate all the above concepts

 • Interoperate between different middlewares
© Copyright IBM Corp. 1998 107

108 CBConnector Bank Implementation

Part 3. Appendices
© Copyright IBM Corp. 1998 109

110 CBConnector Bank Implementation

Appendix A. Special Notices

This publication is intended to help designers and developers to build
application using the CBConnector development environment. The
information in this publication is not intended as the specification of any
programming interfaces that are provided by the product reference manuals.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM’s product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood,
NY 10594 USA.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer’s ability to evaluate and integrate
them into the customer’s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere.
© Copyright IBM Corp. 1998 111

Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in
other operating environments may vary significantly. Users of this document
should verify the applicable data for their specific environment.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples contain the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and
addresses used by an actual business enterprise is entirely coincidental.

You can reproduce a page in this document as a transparency, if that page
has the copyright notice on it. The copyright notice must appear on each
page being reproduced.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

CICS DB2
IBM  MVS
VisualAge
112 CBConnector Bank Implementation

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or
service marks of others.
Special Notices 113

114 CBConnector Bank Implementation

Appendix B. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

B.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 115.

 • IBM Component Broker Connector Overview, SG24-2022

 • IBM CBConnector Cookbook Collection, First Steps SG24-2033 (in press)

 • IBM CBConnector Cookbook Collection, CBConnector Bank User Guide
SG24-5121 (in press)

B.2 Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs. Order a subscription and
receive updates 2-4 times a year at significant savings.

B.3 Other Publications

These publications are also relevant as further information sources:

 • IBM Component Broker Connector - Quick Beginnings, G04L-2375
Available with the CBConnector package

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038

Lotus Redbooks Collection SBOF-6899 SK2T-8039
Tivoli Redbooks Collection SBOF-6898 SK2T-8044
AS/400 Redbooks Collection SBOF-7270 SK2T-2849

RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
RS/6000 Redbooks Collection (PDF Format) SBOF-8700 SK2T-8043

Application Development Redbooks Collection SBOF-7290 SK2T-8037
© Copyright IBM Corp. 1998 113

 • IBM Component Broker - Programming Guide, G04L-2376 - Available with
the CBConnector package

 • IBM Component Broker - CICS and IMS Application Adaptor Quick
Beginnings, G04L-2703 - Available with the CBConnector package

 • IBM Component Broker - System Administration Guide, SC09-2704 -
Available with the CBConnector package

 • IBM Component Broker - Application Development Tools, SC09-2705 -
Available with the CBConnector package

 • IBM Component Broker - Application Programming Guide, SC09-2708 -
Available with the CBConnector package

These publivcations are relevant as further information sources:

 • Orbix 2, Programming Guide

 • Orbix 2, Reference Guide

 • The Essential Distributed Objects Survival Guide, ISBN 0-471-12993-3

 • Client/Server Programming with JAVA and CORBA, ISBN 0-471-16351-1

 • Understanding CORBA, ISBN 0-13-459884-9
114 CBConnector Bank Implementation

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
CD-ROMs, workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at http://www.redbooks.ibm.com/.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

 • Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/

 • PUBORDER – to order hardcopies in the United States

 • Tools Disks

To get LIST3820s of redbooks, type one of the following commands:

 TOOLCAT REDPRINT
 TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
 TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BokkManager BOOKs of redbooks, type the following command:

 TOOLCAT REDBOOKS

To get lists of redbooks, type the following command:

 TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT

To register for information on workshops, residencies, and redbooks, type the following command:

 TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1998

 • REDBOOKS Category on INEWS

 • Online – send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

For information so current it is still in the process of being written, look at "Redpieces" on the
Redbooks Web Site (http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in
progress; not all redbooks become redpieces, and sometimes just a few chapters will be published
this way. The intent is to get the information out much quicker than the formal publishing process
allows.

Redpieces
© Copyright IBM Corp. 1998 115

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

 • Online Orders – send orders to:

 • Telephone Orders

 • Mail Orders – send orders to:

 • Fax – send orders to:

 • 1-800-IBM-4FAX (United States) or (+1) 408 256 5422 (Outside USA) – ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

 • On the World Wide Web

In United States
In Canada
Outside North America

IBMMAIL
usib6fpl at ibmmail
caibmbkz at ibmmail
dkibmbsh at ibmmail

Internet
usib6fpl@ibmmail.com
lmannix@vnet.ibm.com
bookshop@dk.ibm.com

United States (toll free)
Canada (toll free)

1-800-879-2755
1-800-IBM-4YOU

Outside North America
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(long distance charges apply)
(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-800-267-4455
(+45) 48 14 2207 (long distance charge)

Redbooks Web Site
IBM Direct Publications Catalog

http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl

For information so current it is still in the process of being written, look at "Redpieces" on the
Redbooks Web Site (http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in
progress; not all redbooks become redpieces, and sometimes just a few chapters will be published
this way. The intent is to get the information out much quicker than the formal publishing process
allows.

Redpieces
116 CBConnector Bank Implementation

IBM Redbook Order Form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
 117

118 CBConnector Bank Implementation

Glossary

Abstract Interface. An abstract interface is one
that is introduced in order to specify required
behaviors without providing an actual
implementation for them. The implementation
must be provided by a derived interface. Often,
the derived interface achieves this by delegating
responsibilities to another object.

Access Identity. The identity of a principal used
to specify access policies pertaining to that
principal.

Access Policies. The rules that define whether
a principal should be allowed to perform a
particular operation on a particular object.

Administrative Interface. The interface of an
object that defines its administrative and
systems management behavior. Typically, the
administrative interfaces of an object are only
used by Systems Management and
administration programs.

Application Access Policy. The mechanisms
built into an application to control access to
resources that it contains. Application access
policies are enforced within the application
implementation, although possibly with the
assistance of security services for acquiring
principal credentials. (See also object invocation
access policy.)

Application Adaptor (AA). Provides a home
for, and a certain quality of service to, its
Managed Objects. It is responsible for providing
systems capabilities such as identity, caching,
persistence, recoverability, concurrency, and
security to its Managed Objects.

Application Adapter MixIn. A special object
provided to a Business Object by an Application
Adaptor. The MixIn Object provides an
implementation of various interfaces that are
inherited in the CBConnector server
environment.

Application Object. An Application Object is an
object that implements the transient and
persistent state of actively executing
applications.
© Copyright IBM Corp. 1998
Attribute. An identifiable association between
an object and a value. An attribute, A, is made
visible to clients as a pair of operations: getA()
and setA(). Read-only attributes only generate a
get operation.

Audit Identity. The identity of a principal used
to audit that principal’s actions in the security
system. Typically, a principal’s audit identity is
anonymous to the principal.

Authentication. The process of assuring that a
principal is who they say they are; they are
authentic. There are numerous ways for
performing authentication which generally
depend on one or more of something the
principal knows (such as a secret or password),
something the principal has (a badge or door
key), or something the principal is (biometrics, a
signature, finger-print, voice-print,
retina-pattern, and so forth).

Basic Business Object. Single entity Business
Object containing business methods. The logic
and state is intended for use within business
applications.

Basic Object Adaptor (BOA). BOA is a
component of the ORB and exists on each
CBConnector server. Its main function is to
analyze each request received by the ORB and
dispatch it to the object implementation that is
the target of the request.

Behavior. The observable effects of an object
performing the requested operation, including
its results binding. See language binding,
dynamic invocation, static invocation, or method
resolution for alternatives.

Bind Policy. Bind policy determines which
server of a CBConnector server group should
be selected to receive the next request for a
specific object. Workload Management
determines which bind policies apply to a
particular object according to definitions done
by the CBConnector system administrator.

Business Object. An object containing
business methods (logic) and state that is
 119

intended for use within business applications.
Business Objects are Managed Objects. In some
contexts, the term Business Object in this book is
used to refer to a Business Object class. It may
also be used to refer to a composition of
Business Object classes.

Computer-Aided Software Engineering
(CASE). CASE refers to the use of computerized
tools for the collection and transformation of
application domain information necessary during
software construction. Some CASE tools
emphasize the front-end of the development
lifecycle. These are referred to as Upper CASE
tools, as distinguished from Lower CASE tools
which emphasize activities near the end of the
development lifecycle.

Common Data Representation (CDR).
Low-level data representation in the General
Inter-ORB Protocol (GIOP). The language
representation is marshaled and demarshaled to
and from the CDR format for transmission over a
wire by the ORB.

Cell Directory Service (CDS). A component of
DCE that provides the ability to assign a set of
attributes to a name structured into a directory
hierarchy. The CDS is used primarily within DCE
to store RPC bindings, but its use is not limited to
this.

Client. The code or process that invokes an
operation on an object.

Collection. A logical grouping of elements. In the
context of this book, each element is an object.

Common Data Model (CDM). The Common
Data Model is a template of the CBConnector
configuration data structure.

Common Data Store (CDS). The Common Data
Store is a mechanism for storing structured data.
The data in it is arranged as an arbitrarily
complex tree of named objects each of which can
have any number of named values.

Composed Business Object. Consists of
multiple basic Business Objects.

Compound Name. A sequence of simple names
that represents a traversal path through a Name

Tree relative to some starting point. (See also
simple name.)

Container. A component of an Application
Adaptor that provides physical and administrative
boundaries for Managed Objects. For example, a
container holds Managed Objects and defines
policies for them.

Common Object Request Broker Architecture
(CORBA). CORBA is an architectural standard
proposed by Object Management Group (OMG),
an industry standards organization, for creating
object descriptions that are portable among
programming languages and execution platforms.

CORBAservices. The CORBAservices specify
the standard interfaces of the OMG object
services.

Credentials. Information stored in a Security
Context about a principal. The information is
related to a session established between a
principal and a CBConnector server.

Data Object. An object that provides an
object-oriented rendering of application and data.
The data typically comes from data stores such
as relational databases or CICS.

Data Type. A categorization of values operation
arguments, typically covering both behavior and
representation (such as the traditional
non-object-oriented programming language
notion of type).

DII Dynamic Invocation Interface. provides a
dynamic interface to the ORB. With the help of
the Interface Repository, a client can determine
the interface at run time and dynamically invoke a
method on it.

Domain. As a concept important to
interoperability, a domain is a distinct scope,
within which common characteristics are
exhibited, common rules observed, and over
which a distribution transparency is preserved.

DSI Dynamic Skeleton Interface. Allows a client
to invoke a method on an object it had no
knowledge of at compile time.
120 CBConnector Bank Implementation

Dynamic Invocation. Constructing and issuing a
request whose signature is possibly not known
until run time.

Dynamic Skeleton. An interface-independent
type of skeleton. It is used by CBConnector.
servers to handle requests whose signatures are
not known until run time.

Embedded Aggregation. A form of aggregation
where the sub-objects remain visible from outside
of the aggregate.

Extended Naming Context (ENC). A
specialization of a naming context with
extensions for properties, query, identity,
administration, and name strings.

Externalized Object Reference. An object
reference expressed as an ORB-specific string.
Suitable for storage in files or other external
media.

Framework. Ted Lewis, et al., define a
framework as "an object-oriented class hierarchy
plus a built-in model which defines how the
objects derived from the hierarchy interact with
one another."

Home. The logical owner of a Managed Object. A
Managed Object has only one home. A home has
factory and collection interfaces.

Interface Definition Language (IDL). IDL is a
contractual, neutral, and declarative language
that specifies an object’s boundaries and its
interfaces. IDL provides operating system and
programming language independent interfaces to
all services and components that reside on a
CORBA bus.

IIOP. Internet Inter-ORB Protocol is an industry
standard protocol. It defines how General
Inter-ORB Protocol (GIOP) messages are
exchanged over a TCP/IP network. The IIOP
makes it possible to use the Internet itself as a
backbone ORB through which other ORBs can
bridge.

Implementation Interface. An interface
introduced as a derivative of the most specialized
interface of the object. The implementation
interface is intended to designate the type of a
specific implementation–the Type ID (see

CORBA specification) of the implementation
interface can be used within CORBA to
differentiate implementations of the same
interface. The implementation interface is also
used to bring together the operational interface
with the specific administrative interface relevant
to that particular implementation.

Implementation. A definition that provides the
information needed to create an object and allow
the object to participate in providing an
appropriate set of services. An implementation
typically includes a description of the data
structure used to represent the core state
associated with an object, as well as definitions
of the methods that access that data structure. It
will also typically include information about the
intended interface of the object.

Implementation Definition Language. A
notation for describing implementations. The
implementation definition language is currently
beyond the scope of the ORB standard. It may
contain vendor-specific and adaptor-specific
notations.

Implementation Inheritance. The construction
of an implementation by incremental modification
of other implementations. The ORB does not
provide implementation inheritance.
Implementation inheritance may be provided by
higher-level tools.

Implementation Object. An object that serves
as an implementation definition. Implementation
objects reside in an implementation repository.

Implementation Repository. A storage place for
object implementation information.

Inheritance. The construction of a definition by
incremental modification of other definitions. See
interface and implementation inheritance.

Instance. An object is an instance of an interface
if it provides the operations, signatures and
semantics specified by that interface. An object is
an instance of an implementation if its behavior is
provided by that implementation.

Instance Manager. See Application Adaptor.

Instance Manager MixIn. See Application
Adaptor MixIn.
 121

Interface.Proxy Object. A listing of the
operations and attributes that an object provides.
This includes the signatures of the operations
and the types of the attributes. An interface
definition ideally includes the semantics as well.
An object satisfies an interface if it can be
specified as the target object in each potential
request described by the interface.

Interface Inheritance. The construction of an
interface by incremental modification of other
interfaces. The IDL language provides interface
inheritance.

Interface Object. An object that serves to
describe an interface. Interface objects reside in
an Interface Repository.

Interface Repository. A storage place for
interface information.

Interface Type. A type satisfied by any object
that satisfies a particular interface.

Interoperability. The ability for two or more
ORBs to cooperate to deliver requests to the
proper object. Interoperating ORBs appear to a
client to be a single ORB.

Interoperable Object Reference (IOR). An IOR
keeps information about the type and key of an
object and the communications profiles needed
to contact the CBConnector server and locate the
object.

Junction. A junction represents a transition in a
Name Tree federation between different
implementations of a naming context. If a
DB-based naming context is bound into a
CDS-based naming context, that binding forms a
junction.

Language Binding or Mapping. The
conventions by which a programmer writing in a
specific programming language accesses ORB
capabilities.

Lock. A lock is used to coordinate concurrent use
of a resource.

Managed Object. An object that is managed by
an Application Adaptor. Managed Objects can
have a complex composition of inheritance and
containment relationships.

Master Container. The container owned by the
Root Application Adaptor.

Metadata. Metadata is the self-descriptive
information that can describe both services and
information. With metadata, new services can be
added to a system and discovered at run time.

Method. An implementation of an operation.
Code that may be executed to perform a
requested service. Methods associated with an
object may be structured into one or more
programs.

Method Resolution. The selection of the method
to perform a requested operation.

MixIn Object. See Application Adaptor MixIn.

Multiple Inheritance. The construction of a
definition by incremental modification of more
than one other definition.

Naming Context. A naming context is a
container of name bindings that associates a
human-readable name to an object reference.
Naming contexts support the
CosNaming::Naming Context interface. (See also
ENC.)

Object. A combination of state and a set of
methods that explicitly embodies an abstraction
characterized by the behavior of relevant
requests. An object is an instance of an
implementation and an interface. An object
models a real-world entity, and it is implemented
as a computational entity that encapsulates state
and operations (internally implemented as data
and methods) and responds to requestor
services.

Object Adaptor. The ORB component which
provides object reference, activation, and
state-related services to an object
implementation. There may be different adaptors
provided for different kinds of implementations.

Object Builder. This is an application
development tool that helps users develop
Business Objects in CBConnector. It provides a
set of SmartGuides to help users define their
Business Objects, and it will generate all the
necessary definition and implementation files in
IDL, C++ and/or Java.
122 CBConnector Bank Implementation

Object Creation. An event that causes the
existence of an object that is distinct from every
other object.

Object Destruction. Object destruction is a
physical deletion of an object from main memory
and permanent storage.

Object Invocation Access Policy. The
mechanisms within the systems that
transparently control access to objects. The
object invocation access policy is enforced by the
system without application involvement. An event
that causes an object to cease to exist.

Object Reference. A value that unambiguously
identifies an object. Object references are never
reused to identify another object.

Object Services. IBM’s CORBAservices
implementation and enhancements. These
include Naming, Security, LifeCycle, Event,
Externalization, Identity, Query, Transaction, and
Concurrency services.

Object Management Group (OMG). OMG is a
consortium of vendors with the mission to define
standards pertaining to object-oriented,
distributed systems. The OMG is responsible for
defining CORBA, CORBAservices, and
CORBAfacilities in accordance with the Object
Management Architecture.

One-way Request. A request where the client
does not wait for completion of the request, nor
does it intend to accept results. Contrast with
deferred synchronous request and synchronous
request.

Operation. A service that can be requested. An
operation has an associated signature, which
may restrict which actual parameters are valid.

Operational Interface. The interface of an object
that defines its operational behavior. Typically, the
operational interface of an object is used by
general business applications - also known as the
API (application programming interface). (See
also Administrative Interface.)

Object Request Broker (ORB). ORB provides
the means by which clients make and receive
requests and responses.

ORB Core. The ORB component that moves a
request from a client to the appropriate adaptor
for the target object.

Open Software Foundation (OSF). OSF is a
consortium of vendors who have collaboratively
produced a reference implementation of the
Distributed Computing Environment (DCE), along
with several other de-facto standards, such as
Motif.

Object Transaction Service (OTS). OTS is the
CORBA services specification for managing
atomic units-of-work over a series of method
requests on recoverable objects.

Parameter passing Mode. Describes the
direction of information flow for a operation
parameter. The parameter passing modes are IN,
OUT, and INOUT.

Persistent Object. An object that can survive the
process or thread that created it. A persistent
object exists until it is explicitly deleted.

Principal. A principal is a human user or system
entity that is identified (through a security name)
to the security system. Principals can be
authenticated by the security system.

Privilege Attribute. Security information
associated with a principal that can be used to
decide what that principal can access.

Propagation. A function of the Transaction
Service that transfers the transactional context of
a client along with a method request to a served
object. The Transaction Service supports both
implicit and explicit propagation of a transaction
context. Implicit propagation will occur
automatically as the result of invoking any
method on an object whose class inherits from
CosTransactions::Transactional. Explicit
propagation will occur only when the client
obtains a context object and passes that as an
explicit argument on a method request.

Recoverable Object. An object whose data is
effected by committing or rolling back a
transaction.

Proxy. The Proxy Object has the same interface
as the Server Object it represents. Instead of
 123

having the actual method implementation, its
methods communicate with the ORB.

Recoverable Server. A server containing one or
more recoverable objects.

Referential Integrity. The property ensuring that
an object reference that exists in the state
associated with an object reliably identifies a
single object.

Repository. See Interface Repository and
Implementation Repository.

Request. A client issues a request to cause a
service to be performed. A request consists of an
operation and zero or more actual parameters.

Results. The information returned to the client,
which may include values as well as status
information indicating that exceptional conditions
were raised in attempting to perform the
requested service.

Restart Daemon. A restart facility provided by
the Transaction Service that may be used to
automatically restart transactional processes.

Restart repository. A file holding information
about the transactional programs being run on a
machine. It is used by the restart daemon during
restart of failed transactional processes.

Root Application Adaptor.The Root Application
Adaptor provides a container that contains other
Application Adaptor containers. The Root
Application Adaptor Container is a bootstrap
mechanism integrated directly into the
CBConnector server environment

Security Name. The identity of a principal used
to authenticate that principal to the security
system. A set of security attributes are
associated with a principal through the principal’s
security name, including the principal’s access
identity, audit identity, privileges, and so on. The
security name is often referred to as a user ID.

Server. A process implementing one or more
operations on one or more objects.

Server Object. An object that responds to a
request for a service. A given object may be a
client for some requests and a server for other
requests.

Service Context. The Service Context is the
information that flows from the client to the server
(or from the server back to the client). The
information is used to inform the server of the
context running on the client; for any service, the
appropriate behavior on the server is defined by
the context of the client.

Service’s Context. Services often have their
own context. Service’s context is information that
is used to control the behavior of the service–that
is, the "environment" in which the service
executes.

Signature. Defines the parameters of a given
operation including their number order, data
types, and passing mode, the results if any, and
the possible outcomes (normal vs. exceptional)
that might occur.

Simple Name. A name in a naming context that
identifies a particular name binding. A simple
name is normally composed of an ID field and a
kind field. Also referred to as a name component.
(See also compound name.)

Single Inheritance. The construction of a
definition by incremental modification of one
definition. Contrast with multiple inheritance.

Skeleton. The object-interface-specific ORB
component that assists an Object Adaptor in
passing requests to particular methods.

System Management Application (SMAPPL).
SMAPPL is a central point in which definitional
configuration data is held. It also contains a copy
of the Common Data Model (CDM). Only one
host houses the central point in a management
network topology.

SMI. Systems Management Interface. An
interface supported by an object that supports
operations that allow the object to be managed
by a systems management service. Typically, the
systems management interface is introduced to
object services in the administrable interface.

State. The time-varying properties of an object
that affect that object's behavior.

Static Invocation. Constructing a request at
compile time. Calling an operation through a stub
procedure.
124 CBConnector Bank Implementation

Stub. A local procedure corresponding to a
single operation that invokes that operation when
called.

Synchronous Request. A request where the
client pauses to wait for completion of the
request. Contrast with deferred synchronous
request and one-way request.

Transactional Object. An object whose behavior
is affected by being invoked within the scope of a
transaction.

Transactional Server. A server containing one
or more transactional objects.

Transient Object. An object whose existence is
limited by the lifetime of the process or thread
that created it.

UUID. Universally Unique Identifier - A value
constructed with an algorithm that provides a
reasonable assurance that the identity value is
unique within the known universe. Typically,
UUIDs are 16 bytes long.

Value. Any entity that may be a possible actual
parameter in a request. Values that serve to
identify objects are called object references.
Workload Management enhances the ORB by
allowing management of Business Object
instances across CBConnector servers. It
minimizes client complexity by having a single
system image and single object image for objects
across groups of CBConnector servers.
 125

126 CBConnector Bank Implementation

List of Abbreviations

AA Application Adaptor

AIX Advanced Interactive
Executive

AMS Application
Management
Specification

API Application
Programming Interface

APPC Advanced
Program-to-Program
Communication

BO Business Object

BMS Basic Mapping Support

BOA Basic Object Adaptor

BOIM Business Object
Instance Manager alias
for BOIM Application
Adaptor

CASE Computer-Aided
Software Engineering

CBConnector/SM CBConnector Systems
Management

CDM Common Data Model

CDS Common Data Store

CDR Common Data
Representation

CICON CICS/IMS Connection

CICS Customer Information
Control System

CLI Call Level Interface

COM Component Object
Model

CORBA Common Object
Request Broker
Architecture

CRUD Create, Retrieve,
Update, and Delete
© Copyright IBM Corp. 1998
DAO Data Access Object

DB2 Database 2

DCE Distributed Computing
Environment

DCOM Distributed Component
Object Model

DII Dynamic Invocation
Interface

DLL Dynamic Link Library

DO Data Object

DSI Dynamic Skeleton
Interface

DSOM Distributed System
Object Model

DTD Document Type
Description (part of the
XML standard)

DTS Direct-to-SOM

ECD Edit, Compile, Debug

ECI External Call Interface

ESIOP Environment Specific
Inter-ORB Protocols

GIOP General Inter-ORB
Protocol

HOD IBM Host on Demand

HTML Hypertext Markup
Language

HTTP Hypertext Transfer
Protocol

IDE Integrated
Development
Environment

IDL Interface Definition
Language

IIOP Internet Inter-ORB
Protocol
 127

IM Instance Manager alias
for Application Adaptor

IMS Information
Management System

IOM Interlanguage Object
Model

IOR Interoperable Object
Reference

IR Interface Repository

ISV Independent Software
Vendor

JIT Just-in-Time

MDL Model Definition
Language

LU 6.2 Logical Unit Type 6.2

MFS Message Format
Services

MO Managed Object

MQSeries Message Queuing
Series

ODBC Open Database
Connectivity

OLE Object Linking and
Embedding

OLTP On-line Transaction
Processing

OO-SQL Object
Oriented-Structured
Query Language

OMG Object Management
Group

ORB Object Request Broker

PAA Procedural Application
Adaptor

PAO Procedural Adaptor
Object

PDA Personal Digital
Assistant

QOP Quality of Protection

RACF Resource Access and
Control Facility

RAS Reliability, Availability,
Serviceability

RDBMS Relational Database
Management System

RPC Remote Procedure Call

RRBC Release-to-Release
Binary Compatibility

SAO Server Administration
Object

SLI Single Logical Image

SMAPPL Systems Management
Application

SOM System Object Model

SPI System Programming
Interface

TME Tivoli Management
Environment

TO Transaction Object

TR Transaction Record

UML Unified Modeling
Language

UUID Universally Unique
Identifier

VSAM Virtual Sequential
Access Method

WLM Workload Management
Enhanced Client

.XML Extended Markup
Language
128 CBConnector Bank Implementation

Index

Symbols
/Procedural Adaptor 74

A
abbreviations 127
acronyms 127
Address 41
Audience of the book 9

B
Bean importation 97
Beans 74
BO Action Classes 50
BO Specification Reading 58
BOAction 48
Business Object 37
Business Objects 74
Business Objects (BO) 68

C
CheckAccount 41
CICS 74
CICS Transaction 101
Class Account 15, 30
Class Address 16, 22, 29, 40
Class Bank 29
Class CBCBase 36
Class CheckAccount 20, 30
Class CreditTransaction 15
Class Customer 14, 22
Class Customers 30
Class DataSupplier 51
Class DebitTransaction 15
Class Entity 14, 29
Class Hierarchy 52
Class Note 16, 22, 29
Class Party 14, 29
Class PhysicalAddress 16
Class Policy Manager 18
Class PostalAddress 16
Class Product 29
Class SavingsAccount 15, 20, 30
Class Teller 14, 22, 29
Class TransactionRecord 15, 20
© Copyright IBM Corp. 1998
Class Transactions 30
Code Generation 100
Coexist 12
Container 50
Containers 68
Copy Helper 37
createMO 37
CustomerMapper 43

D
Data implementation 101
Data Model 24
Data Objects (DO) 68
Distributed object environment 11
DO Implementation 97

E
entity 14
Environment variable BOSS_PATH 27
Environment variable ROSE_MENU_PATH 27
Exception 58
Exception Handling 39

F
findMO 37

G
Generic Home Objects 68
Graphical User Interface 35

H
Hierarchy 52
Hierarchy file format 54
Host flow 102
How to read the book 5

I
IDL Parser 57
Inheritance 11, 19
Interface 58
Interoperability 11

K
Key Helper 37
129

L
Legacy systems 12
Limitations 18

M
Managed object container 68
Managed Objects (MO) 69
Mapping Helpers 98
MixIn 68

N
Note 43

O
Object relationship 19
Object Relationships 22
Operation Panels 49
OperationPanel 48

P
PAA

Procedural Application Adaptor 69
PAO 75, 104
Persistent 74
Persistent Objects (PO) 69
Policy Description 93
Policy Model 16
Policy Namespace 17
Portability 11
Procedural Adaptor Object 104
Proxies Bank 39
Proxy 37, 57
Proxy Base 38
Proxy Factory 61
Proxy Generator 65
Proxy Generic 38
Proxy Optimization 44

R
Relational database mapping to objects 19
Relationship 23
resolveFactoryFinder 36
resolveHome 36
resolveNameService 36
resolveORB 36

S
SavingsAccount 41
Scope of the book 4
Screen Scaping 105
Screen Scraping 104
Specialized Home 37
Specialized Home Object 68, 70

T
Teller 42
TransactionRecord 43

V
View Structure 47
130 CBConnector Bank Implementation

© Copyright IBM Corp. 1998 131

ITSO Redbook Evaluation

IBM CBConnector Cookbook Collection CBConnector Bank Implementation
SG24-5119-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete
this questionnaire and return it using one of the following methods:

 • Use the online evaluation form found at http://www.redbooks.ibm.com
 • Fax this form to: USA International Access Code + 1 914 432 8264
 • Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Independent Software Vendor _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

P
ri

nt
ed

 in
 t

he
 U

.S
.A

.
SG

24
-5

11
9-

00

IBM CBConnector Cookbook Collection CBConnector Bank Implementation SG24-5119-00

	Contents
	Figures
	Tables
	Preface
	Other Redbooks in the CBConnector Series
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. Introduction
	1.1 Motivation
	1.2 Scope
	1.3 Contents
	1.4 Informal Description of the CBConnector Bank Application
	1.5 How to Read This Book
	1.6 Audience

	Chapter 2. Design
	2.1 Design
	2.2 Business Object Model
	2.2.1 Initial CBConnector Bank Business Object Model
	2.2.2 A CBConnector Policy Model
	2.2.3 Amended CBConnnector Bank Business Object Model

	2.3 Object Relationships
	2.4 Data Model
	2.5 Summary

	Chapter 3. Rational Rose Implementation
	3.1 Setting Up the Rational Rose Bridge
	3.2 The Rational Rose Model
	3.3 Rational Rose Model in Object Builder
	3.4 A Bridge Too Far

	Chapter 4. Client Implementation
	4.1 Introduction
	4.2 The Client Back-End
	4.2.1 The Role of A Proxy
	4.2.2 Using a Proxy
	4.2.3 The CBConnector Bank Proxies
	4.2.4 A Note on Proxy Optimization

	4.3 The Client Front-End (Graphical User Interface)
	4.3.1 The View Structure
	4.3.2 Operation Panels
	4.3.3 BO Action Classes
	4.3.4 Common Data Container
	4.3.5 DataSupplier Class
	4.3.6 Hierarchy
	4.3.7 Hierarchy Specification Format

	4.4 Automatic Proxy Generation
	4.4.1 Introduction
	4.4.2 The Proxy Information Object
	4.4.3 The IDL Parser
	4.4.4 The Proxy Factory
	4.4.5 Putting It All Together
	4.4.6 Four Steps to Creating Your Own Proxy Generator

	Chapter 5. Middle Tier
	5.1 Introduction
	5.2 Architecture of the Middle Tier
	5.3 Persistent Implementation
	5.3.1 Managed Object Container
	5.3.2 Containers

	5.4 CBConnector Bank Architecture
	5.4.1 Functions Used in the CBConnector Bank Sample
	5.4.2 CBConnector Banking Objects
	5.4.3 CBConnector Bank Scenario
	5.4.4 CBConnector Bank Configuration
	5.4.5 Constructs
	5.4.6 Address
	5.4.7 Customer
	5.4.8 Teller
	5.4.9 Note
	5.4.10 CBBankCheckAccount
	5.4.11 SavingsAccount
	5.4.12 TransactionRecord
	5.4.13 Policy

	5.5 CBConnector 1.2 Limitations
	5.6 Conclusion

	Chapter 6. Persistent Implementation
	6.1 Importing the Bean to Object Builder
	6.2 Implementing the DO
	6.3 Using Mapping Helpers
	6.4 Fixing Generated Code

	Chapter 7. Legacy Tier
	7.1 Data Implementation
	7.2 Host CICS Transaction
	7.2.1 Host Flow Example

	7.3 Creating Procedural Adaptor Object
	7.3.1 Screen Scraping - Implementation
	7.3.2 Screen Scraping - Testing

	Chapter 8. Summary
	Appendix A. Special Notices
	Appendix B. Related Publications
	B.1 International Technical Support Organization Publications
	B.2 Redbooks on CD-ROMs
	B.3 Other Publications

	How to Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	Glossary
	List of Abbreviations
	Index
	ITSO Redbook Evaluation

