
Final project for com3362
Northeastern University, June 1999
Predrag Petkovic, predrag@ccs.neu.edu

Implementation of aspectual components

1. Introduction
This project is implementation attempt of the aspectual components in Java. This implementation of Aspectual

Components is based on “event driven action” design. Main goal achieved by this implementation is simplicity of the
deployment of the components into an existing application. This is achieved at the cost of low speed (extensive use of
reflection) and non-generality. Implementation is based on two-layer model (application classes, and components). In
this implementation we need source code for both application classes and component. We need to instrument them so
they will be prepared for connection. Once we instrument application classes and components they do not need to be
changed in order to connect them or disconnect them anywhere in our application. Original application classes should
be written in usual Java style, following principles of Object Oriented Design, no special rules need to be respected.
Components on the other side need to follow some rules, which will be stated later, but are also pure Java code and can
be compiled before instrumentation.

2. Design
In order to connect application classes and components they need to communicate in some fashion. Design of this

implementation is based on event model. In the event model some objects notify of some event, objects that are
interested in listening to that type of event by firing events to them. Upon receiving event listener performs some action
based on received event. Instrumentation of the original code (of both application classes and components) is made in
order to enable them to notify all interested listeners of what method is invoked on them, by firing MethodEvents. Once
they are instrumented the connector object is one that listens to the MethodEvents and based on the map decides what
to do, what method to invoke. Map is an object that contains information for deployment of the component into
application classes. Once application classes and components are instrumented they can be re-used in different
mappings. Application classes and component classes communicate through the connector that receives MethodEvent
from one side of connection, translate it to the other's side names, using map and invoke appropriate method.

Example: of connecting and then disconnecting component.

Connector conn = Aspect.connect("deployment_file.dpl");
....
conn.disconnect();

3. Components
Component is one public abstract class that has several public inner classes representing participants. Component

has to be written in one public class that doesn’t implement any interface. Participants have to be written as public
inner classes of the component. Component normally should not have any other members (constructors, methods or
fields). All non-public inner class will not be regarded as a component, neither will any public inner classes nested
inside inner classes.

Aspectual component’s participants can have five types of methods:
• before/after

Methods that are activated before/after invocation of application class methods.
• expected

Methods that are expected to be find in application class, and are used inside participant’s code.
• replaced

Methods from application classes are replaced by implementation provided by participant.
• participant’s

Methods that are local to the participant.

All of them have to be public and expected methods have to be abstract too. They need to follow naming conventions
in order to be recognized when component is mapped.

• before name starts with before_
• after name starts with after_
• expected name starts with expected_
• replaced name starts with replace_
• participant’s do not need to follow any convention

Restrictions in writing components:

• No new instantiations of participants.
• Instead of using this, component writer should use getHost() method, that should be declared as

public abstract Object getHost() .

• No behavior can be attached on one instance of the application class (e.g. counter that counts accesses to
some object, counts accesses for all instance of a class together).

• Participant methods shouldn’t be overloaded
Following is forbiden:

before_set(int i) {...}
before_set(float f) {...},

 because mapping uses only methods names.
• There can not be mapping of constructors (for now, later will this also be implemented)

Example of component:
package components;
public class AutoReset {
 public abstract class DataToReset {
 public abstract void expected_reset();
 public void after_setOp() {
 if (++count >= 100) {

expected_reset();
count = 0;

 }
 }
 private int count = 0;
 }
}

4. Deployment
Deployment grammar:

Deployment = Component Applications “{“ ParticipantMaps “}”.
Component = “component” ComponentName.
Applications = “applications” ApplicationName { “,” AppliactionName } “;”.
ParticipantMaps = ParticipantMap { ParticipantMap } .
ParticipantMap = ParticipantName “->” ApplicationNameList “{“ MethodMaps “}”.
MethodMaps = MethodMap { MethodMap }.
MethodMap = ParticipantMethod “->” ApplicationMethods “;”.
ApplicationMethods = MappedMethod { “,” MappedMethod }.
MappedMethod = MappedMethodName [“*”] | “*”MappedMethodName.
ComponentName = Name.

ApplicationName = Name.
ApplicationNameList = Name { “,” Name }.
Name = IDENTIFIER { “.” IDENTIFIER }.
MappedMethodName = IDENTIFIER.
ParticipantMethod = IDENTIFIER.
ParticipantName = IDENTIFIER.

Deployment restrictions:
• application class can be mapped only to one participant
• participant’s expected method can be mapped to only one application method
• participant’s expected method has to be mapped
• mapped application and participant methods have to be compatible

Examples of compatibility:
Participant Method Application Method

void before_setOp() void setX(int),
Object set(Integer, String)

Object expected_method(String) String toString()

Integer replace_get() Object getSome(int)

Example of deployment file:
component components.AutoReset;

applications application.Point;

{

DataToReset -> application.Point {

setOp -> set*;
reset -> reset;

}
}

5. Implementation details
Instrumentation of aspectual components and application classes is made using parser written in JavaCC. Key role

in instrumentation of application classes play Invoker class. One instance of Invoker is added to every application class.
Every public method of application class is transformed into private (“hidden”) method. New public method only
passes MethodEvent, which contain arguments and hidden method, to the Invoker and retrieve result from it. Invoker
upon receiving MethodEvent fires before event, then invoke method and fires after event.

class Invoker {

... // register/unregister methods for Before/After listeners

void receiveMethodEvent(MethodEvent event) {

try (fireBefore()) {

invokeMethod(evt);
} catch (ArroundException e) {}

fireAfter();

}

}

Connection between application and component is established when connector register itself as a listener to
the Invoker (precisely it register at application class that delegate call to the Invoker). AspectConnector is connection
between application and component. It takes a map object, establish connection and using map translate events that
receives from application class to call to the participant's methods and vice verses.

Before connection is established connector needs to have map, upon which it is going to work. In order to get
the map, we need to read deployment file. Deployment file is parsed using DelpoymentParser, which is also created by
JavaCC. DeploymentParser returns ComponentMap object that contains map structure represented by strings
(ParticipantMap, MethodMap and ApplicationMap are parts of the returned ComponentMap). Now the ComponentMap
need to be checked with the component and application classes. The checking is done inside getMap() method of the
Mapper. It checks the deployment and return Map that now contains Method and Class objects, as opposed to
ComponentMap that contains their names.

All this is done just in one call:
Connector conn = Aspect.connect("deployment_file.dpl");

Aspect connector implements Connector interface that has only one method disconnect() that allows to
disconnect component from application.

• Instrumentation of components
Example: (Original code was given earlier in the text.)
Generated code:

public class AutoReset implements Component {

public class DataToReset {

public void expected_reset() {

connector.receiveMethodEvent(new MethodEvent(getHost(),
MethodEvent.NORMAL, resetMethod, new Object[]{}); }

private int count = 0;
public void after_setOp() {

if (++count >= 0) { expected_reset(); count = 0; }
}

}
private Method resetMethod;
{ try {

resetMethod =
AutoReset.DataToReset.class.getMethod("expected_reset", new Class[]{});
} catch(Exception e) {} }

public DataToReset DataToReset; // an instance for every participant
private Connector connector;
public void initComponent(Connector c) {

connector = c;
DataToReset = new DataToReset();

}
public Object getHost() {

return connector.getHost();
}

}

• Instrumentation of application classes
Example:
Original code :

public class Point {

public int getX() { return x; }

public int getY() { return y; }

public void setX(int i) { x = i; }

public void setY(int i) { y = i; }
private int x = 0;
private int y = 0;

}

Generated code (part):
public class Point {

public static void addBeforeListener(BeforeListener l) {
invoker.addBeforeListener(l);}

public static void removeBeforeListener(BeforeListener l) {

invoker.removeBeforeListener(l); }
public static void addAfterListener(AfterListener l) {

invoker.addAfterListener(l); }
public static void removeAfterListener(AfterListener l) {

invoker.removeAfterListener(l); }
private static Invoker invoker = new Invoker(Point.class);

private static Method getXMethod;
.....
static { try {

getXMethod = Point.class.getMethod("hidden_getX",new Class[] {});
.....

} }
public int getX() {

invoker.receiveMethodEvent(new MethodEvent(this,MethodEvent.NORMAL,
 getXMethod, new Object[]{}));

return ((Integer)invoker.getReturnValue()).intValue();
}
public int hidden_getX() {

return x;
}
.....

}

