
1

Advanced Object-Oriented
Systems

Karl Lieberherr

Themes

• Design Patterns and UML

• Generic Programming
– STL

– GraphLog

• OO Software Architecture and OO Software
Components

• Aspect-Oriented Programming

Something wrong with OO

Soren Lauesen,
Real-Life Object-Oriented Systems,
IEEE Software, 1998, March/April,
PAGES 76-83.

http://www.cbs.dk/~slauesen/OOcaseStudies/

It was like "reading a road map through a soda straw".



2

He means that 
the soda straw is pointing to one class at 
a time and you have to figure
out what the collaborations are.

Another argument for separating high-level operations from
the objects
derives from GTE's experience with large OO systems.
GTE did not succeed until it put control flow and business
processes -- high-level operations --
outside class behavior. If built into the classes involved, it
was impossible to get an overview of the control flow.
It was like "reading a road map through a soda straw".

TAPOS Vol. 2/Number 1
Special Issue: Patterns

• Understanding and Using Patterns in
Software Development (Riehle,
Zuellighofen)



3

Abstract

• Patterns: effective means of capturing and
communicating software design experience

• What are the crucial aspects of patterns?

• Pattern types, forms

• Pattern handbooks

Outline

• 2: definition of pattern

• 3: different pattern types

• 4: pattern presentation forms

• 5: experiences with pattern sets

• 6: pattern handbook

• 7: related work

• 8: conclusions

Pattern Definitions and
Characteristics

• Def: A pattern is the abstraction from a
concrete form which keeps recurring in
specific contexts.

• GOF: A pattern is a solution to a recurring
problem in a context

• Alexander: Each pattern is a 3 part rule
which expresses a relation between a
context, a problem, and a solution.



4

Pattern Definitions

• Alexander (a building architect): The timeless way
of building, Oxford University Press

• Pattern: a relationship between forces that keep
recurring in a specific context and a configuration
that resolves these forces

• Coad: A pattern is a template of objects with
stereotypical responsibilities and interactions

Pattern Definitions:
Form and Context

• The form of a pattern consists of a finite
number of visible and distinguishable
components and their relationships.

• Example: When analyzing an application domain
we identify those objects of the domain which can
be interpreted as either tools or materials. (2 types
of components; tools working on appropriate
materials. Pattern of the distinction of Tools and
Materials.)

Pattern Definitions:
Form and Context

• A pattern is used to create, identify and
compare instances of the pattern.

• Instance of Distinction of Tools and
Materials:
– tool = pencil, material = form (analysis pattern

helping to understand an application domain)

– tool = methods, material = object graph



5

Pattern Definitions:
Form and Context

• Pattern instances appear only in specific
contexts which raise and constrain the
forces that give birth to a concrete form

• A pattern is a form that appears in a context

• Both form and context of a pattern are
abstractions

• Forces of use context have to fit the form of
the pattern

Pattern Definitions:
Form and Context

• The form of a pattern is finite, but the
form of its instances need not be finite.
The context is potentially infinite.

• Example: Chain of Responsibility pattern.
Chain can be arbitrarily long.

Patterns and Models

• Relationship of patterns to models

• Three models
– application domain model

• Conceptual patterns

– software design model
• Design patterns

– implementation model
• Programming patterns



6

Patterns and Models
Conceptual Patterns

• A conceptual pattern is a pattern whose
form is described by means of the terms
and concepts from an application domain

• Guide perception of an application domain

• Future systems are constructed from
conceptual patterns

Patterns and Models
Conceptual Patterns

• Conceptual patterns do not serve a general
purpose

• Balance between too abstract and too
concrete

• Too abstract: too general to guide design
– “active collaborating object”

• Too specific: only usable in one project

Patterns and Models
Conceptual Patterns

• Examples of conceptual patterns
– Distinction of Tools and Materials

– Agents



7

Patterns and Models
Design Patterns

• A design pattern is a pattern whose form
is described by means of software design
constructs, for example objects, classes,
inheritance, aggregation and use
relationships

• Important to have as little semantic
difference between conceptual model and
software design model as possible

Patterns and Models
Design Patterns

• Design patterns should fit or complement
the conceptual space opened by
conceptual patterns

• Relate design patterns to conceptual
patterns

Patterns and Models
Programming Patterns

• A programming pattern is a pattern
whose form is described by means of
programming language constructs

• Used to implement a software design

• Sometimes called idioms or cliches.



8

Model and Pattern
Interrelationships

• application domain model
– Conceptual patterns

• software design model
– Design patterns: fit context set by conceptual

patterns

• implementation model
– Programming patterns: fit context set by design

patterns

Goal:
little semantic
difference
between
models

Pattern Description Forms

• Best way of description depends on
intended use.
– Alexandrian Form

• Problem, Context, Solution

– Design Pattern Catalog Form
• More descriptive than generative

– A General Form
• Context and Pattern

Pattern Description Forms

• Alexandrian Form: The intended use of this
pattern form is to guide users to generate
solutions
– Problem: concise description

– Context: describes situations where problem
occurs, as well as arising forces and constraints

– Solution: describes how to resolve forces in
context



9

Pattern Description Forms

• Alexandrian Form: generative
– Analogy: Patterns can be used to derive

architectures much as a mathematical theorem
can be proved from a set of axioms

Pattern Description Forms

• Alexandrian Form
– Problem, Context, Solution

• Design Pattern Catalog Form
– More descriptive than generative

• A General Form
– Context and Pattern

Pattern Description Forms

• Design Pattern Catalog Form: also intended
to help users create solutions to problems.
Focus is less on when to apply the pattern,
but more on the actual structure and
dynamics of the pattern itself.

• Distinguish pattern from pattern form



10

Pattern Description Forms

• A General Form: To discuss the structure
and dynamics of the recurring form and its
context without promoting a specific way of
using the pattern

Pattern Description Forms:
Comparison

• Not one form superior than the others:
different intent

• Design Pattern Catalog form good for OO
design patterns

• Alexandrian form: good for problem
solving

• General form: good for general presentation

Conclusions

• Summarized pattern experiences

• Open problems: How to write pattern
handbooks. How to classify patterns



11

Design Patterns and
Language Design

• Gil/Lorenz: IEEE Computer March 1998

• Similarities/differences between design
patterns and programming language
mechanisms

• Classify patterns by how far they are from
becoming actual language features … helps
demystify them

Design Patterns and
Language Design

• A systematic approach to patterns can be
achieved only if we disregard intent -- a
much too glorified component of patterns

Design Patterns and
Language Design: Abstraction

• Abstraction: identify and capture
commonalities

• Two aspects to abstraction: process and
mechanism (means of expression)

• Process: the way we identify abstractions is
not well understood

• Mechanisms: may be subjected to an
analytic approach



12

Design Patterns and
Language Design: Abstraction

• Mathematics: good analogy for distinction:
– no mathematical theory to deal with the

intellectual process of coming up with a new
theorem

– but theorems and proofs are expressible using
well understood mathematical theory

Design Patterns and Language
Design: Abstraction in Languages
• Each language: a toolbox of abstraction

mechanisms
– Example: Object, class, inheritance are

fundamental abstraction mechanisms of oo
languages

Design Patterns and Language
Design: Abstraction in Languages
• An exact definition of a mechanism or a

feature must cover many different details

• Language design is an art as much as it is a
delicate and extremely difficult engineering
task.



13

Design Patterns and Language
Design: Abstraction in Languages
• Designer picks most useful, powerful and

definable mechanisms. Tries to strike
balance between
– utility

– complexity

Design Patterns and Language
Design: Abstraction in Languages
• Abstraction mechanisms in current oo

languages: low level

• Higher level lingual abstraction
mechanisms - those that specify
simultaneous interaction of several classes:
are a rarity
– too costly

– too specialized to justify the price

Design Patterns and Language
Design: Design Patterns

• Enhance the power of oo mechanisms

• Does not have to be a closed solution
– must not work in all circumstances

– and with all other mechanisms

• May be less precise. Are applied by an
adaptive human, not by a rigid compiler



14

Design Patterns and Language
Design: Design Patterns

• Offer a pay-per-use approach: what is saved
is the up-front expense of a well-integrated
set of general-purpose mechanisms

• Design patterns could and sometimes
should grow to be language features

Design Patterns and Language
Design: Idioms

• “If we assumed procedural languages, we
might have included patterns called
inheritance, encapsulation and
polymorphism.”

• In multi-method languages there is less of a
need for the visitor design pattern

Design Patterns and Language
Design: Unbundling the Intent

• Patterns have so far defied all attempts at
analytic description
– no pattern taxonomy

• Reason behind failure: bundling - within a
pattern - both the pattern’s internal working
and its intent

• A systematic approach can be achieved only
if intent is disregarded.



15

Design Patterns and Language
Design: Unbundling the Intent

• Intent should be broad, open to variation
and never inscribed into the pattern itself

• “If we are not careful, progress in thinking
about patterns becomes hard to recognize or
appreciate. If we are not careful, progress in
thinking about patterns might be illusory as
progress in the world of fashion.

Dotplot Patterns: A Literal Look
at Pattern Languages

• Jonathan Helfman, AT&T Research

• Abstract:


