
1

12/8/99 OS 1

OS Lecture 9

Computationally difficult problems in
Operating Systems

etc.

12/8/99 OS 2

Plan

• Operating System Issues in Multi-Processor
Systems

• Red line in Java: user-mode/kernel-mode
separation in Java

• Page replacement techniques
– Belady’s anomaly: more memory may increase

number of page faults! (lecture 15)

– Clock algorithm



2

12/8/99 OS 3

Plan

• Computationally hard problems in OS

• Error-correcting codes (ECC, : see
Tanenbaum, page 155 for use of error-
correcting codes in device controllers. They
play an important role in wireless
communications, etc.

• IO systems (Anderson, lecture 16)

• File systems (Anderson, lecture 17)

12/8/99 OS 4

Computationally difficult
problems

• Scheduling
– Resource constrained scheduling

• Network design
– Shortest total path length spanning tree



3

12/8/99 OS 5

Resource constrained scheduling

• Instance: Set T of tasks, each having length L(t) =
1, positive integer m of processors, positive
integer r of resources, resource bounds Bi for i
between 1 and r, resource requirements Ri(t) less
than Bi for each task t and resource i, and an
overall deadline D (positive integer).

• Question: Is there an m-processor schedule S for T
that meets the overall deadline D and obeys the
resource constraints?

12/8/99 OS 6

Example: 2 processors

R1 R2 R3 L

T1 0.25 0.33 0.25 7

T2 0.33 0.5 0.25 5

T3 0.66 0.5 0.5 1
T3 T1

T2
Deadline=8
7 ??

Bi = 1



4

12/8/99 OS 7

More precisely

• I.e., such that for all u>=0, if S(u) is the set
of all t for which S(t) <= u <S(t) + L(t), then
for each resource i the sum of Ri(t) over all t
in S(u) is at most Bi.

12/8/99 OS 8

Shortest total path length
spanning tree

• Instance: Graph G=(V,E), positive integer
bound K.

• Question: Is there a spanning tree T for G
such that the sum, over all pairs of vertices
u,v in V of the length of the path in T from
u to v is no more than K?



5

12/8/99 OS 9

Example: K=2

A B C D

A B C D

A B C D

3

2

Not optimal

12/8/99 OS 10

Minimum cost spanning tree

• Instance: Graph G=(V,E), positive edge
weight for each edge, positive integer k.

• Question: Is there a spanning tree with cost
at most K.



6

12/8/99 OS 11

Example: K=6

A B C D

A B C D

6

optimal

2 13

4

Greedy algorithm:
polynomial.

12/8/99 OS 12

Complexity theory excursion

• Problem kinds:
– decision problems: Is x in X?

– optimization problem: For x in X find smallest
(largest) element y in X with property p(x, y).

• Decision problems:
– Is Boolean formula always true?

– Is a grammar ambiguous?

– Are two class graphs object-equivalent?



7

12/8/99 OS 13

Three levels of algorithmic
difficulty

• Unsolvable: no algorithm exists
– Is grammar ambiguous?

– Define 2 grammars the same language?

• Only slowly solvable (no polynomial-time
algorithm exists or is currently known): NP-
hard/co-NP-hard problems
– Is Boolean formula always true? (co-NP hard)

• Efficiently solvable (polynomial-time)
– Are two class graphs object-equivalent?

12/8/99 OS 14

Levels of algorithmic difficulty

polynomial

NP-hard/co-NP-hard

unsolvable



8

12/8/99 OS 15

Open research problem

polynomial

NP-hard/co-NP-hard

polynomial =NP-hard/co-NP-hard ??
 

12/8/99 OS 16

Word of caution

• Complexity theory is an asymptotic theory.

• All algorithmic problems of finite size can
be solved by a computer (Turing machine).

• But all practical algorithmic problems are of
finite size.

• Complexity theory still practically very
useful: It guides your search for algorithms.



9

12/8/99 OS 17

 Other NP-hard problems

• Has a Boolean formula a satisfying truth
assignment? (in NP, hence NP-complete)

• Exists there a class graph x which is object-
equivalent to y but of smaller size? (in NP)

• Can we color the nodes of a graph with
three colors so that no two adjacent nodes
have the same color (in NP).

12/8/99 OS 18

Why are they all NP-hard?

• They can be reduced to one another by
polynomial transformations similar to the
transformation:
– Law of Demeter (LoD) transformation: a

program which violates LoD can be
transformed to satisfy LoD with small increase
in size.



10

12/8/99 OS 19

Error detecting and correcting
codes

• Relating to John Sung’s viewgraphs

• Used in
– caches embedded in CPUs

– satellite communications

• Several different ways to construct such
codes: we look at one of them: block
designs

12/8/99 OS 20

Error correcting codes
through block designs

• A block design is an incidence system of v
objects a1, … ,av and b blocks B1, … ,Bb

such that
– each block Bj contains the same number k of

objects

– each object ai is in the same number r of blocks

– for each unordered pair ai,aj of distinct objects,
the number of blocks containing them is the
same number lambda.



11

12/8/99 OS 21

Applications of block designs

• Error-correcting codes

• Design of statistical experiments

• Testing of software

• Puzzle design (Latin squares)

• Geometry (finite projective planes)

12/8/99 OS 22

Example 13.3

• Eleven objects 1-11, eleven blocks 1-11

• We want to detect up to five errors and
correct up to two errors.

• Encode 24 possibilities. Instead of using 5
bits, we use 12 bits. But get error detection
and even error correction



12

12/8/99 OS 23

Example of block design
(incomplete)

1 3 4 5 9
2 4 5 6 10

3 5 6 7 11
1 4 6 7 8

2 5 7 8 9
3 6 8 9 10

4 7 9 10 11

12/8/99 OS 24

Formulas for block designs

• Necessary conditions:
– b*k=v*r

– r*(k-1) = lambda*(v-1)

• in Example: v=b=11, k=r=5, lambda = 2.
– 11*5 = 11*5

– 5*4 = 2*10

• They are not sufficient:
– no design for: v=b=22, r=k=7, lambda = 2.



13

12/8/99 OS 25

From block design to error
correcting code

• The first row consists entirely of 1’s.

• Rows 2-12: put a 1 in column 0 and 1’s in
further columns in which the numbers are
the numbers in a block of the design and
putting 0’s in all remaining columnar
positions. Rows 13-24 are complements of
the first 12 rows.

12/8/99 OS 26

Error correcting code

0 1 2 3 4 5 6 7 8 9 10 11
1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 0 0 0 1 0 0
1 0 1 0 1 1 1 0 0 0 1 0
1 0 0 1 0 1 1 1 0 0 0 1
1 1 0 0 1 0 1 1 1 0 0 0

24 items use 12 bits



14

12/8/99 OS 27

Cannot correct 3 errors

0 1 2 3 4 5 6 7 8 9 10 11
0 0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 1 1 0 1 1

12/8/99 OS 28

Context switch



15

12/8/99 OS 29

Operating systems and aspect-
oriented programming

• Cross-cutting is a key theme

• How does the working set of a task show up
in a program? How can you influence the
working set? Most likely will have to
modify many classes.

• Working set is an issue that cross-cuts the
traditional module structure.

12/8/99 OS 30

Aspects in OS

• Resource utilization is an issue that cross-
cuts the traditional module structure. To
improve resource utilization, have to change
several classes.



16

12/8/99 OS 31


