
11/19/99 OS 1

Lecture 8

• Kernel and Address Spaces: Security in
Java

• Address Translation

• Hw 3: Strategy pattern, specializing
algorithms



11/19/99 OS 2

Class SecurityManager

• The current SecurityManager:
– System.getSecurityManager()

• Contains a large number of methods whose
name begins with “check”.

• Called by various methods throughout Java
libraries before those methods perform
sensitive operation.



11/19/99 OS 3

Invocation of check

SecurityManager security =
System.getSecurityManager();

if (security!= null) {

  security.checkXXX(arguments);

}

may throw SecurityException



11/19/99 OS 4

java.lang.SecurityManager

public abstract

  class SecurityManager {

  protected boolean inCheck;

  public void checkAccess(Thread t)

    throws SecurityException;

  public void checkExit(int status)

    throws SecurityException;

  public void checkExec(String cmd)

    throws SecurityException; …}



11/19/99 OS 5

Protection in Java

• java.security
– contains tools for security related functions.

– Digital signatures

– Access control lists

– Many ways to do cryptography: provides
general interface



11/19/99 OS 6

Hw 3



11/19/99 OS 7

Multilevel Feedback Queue

• A process can move between the various queues; aging can be
implemented this way.

• Multilevel-feedback-queue scheduler defined by the following
parameters:

–  number of queues

–  scheduling algorithm for each queue

–  method used to determine when to upgrade a process

–  method used to determine when to demote a process

–  method used to determine which queue a process will enter when
that process needs service



11/19/99 OS 8

Very interesting problem:
parameterization of algorithms

• Not only of interest in Operating Systems
but in software development in general.

• Large business systems: consist of basic
business processes that are specialized in
different ways

• Pricing algorithm: Negotiated, Aging,
Frequent, Discount



11/19/99 OS 9

Behavioral Patterns



11/19/99 OS 10

Strategy - Intent

Define  a family of algorithms, encapsulateDefine  a family of algorithms, encapsulate
each one, and make them interchangeable.each one, and make them interchangeable.
Strategy lets the algorithm vary independentlyStrategy lets the algorithm vary independently
from the clients that use it.from the clients that use it.



11/19/99 OS 11

Strategy - Example

SortAlgorithm

+ sort()

HeapSort

+ sort()

MergeSort

+ sort()

QuickSort

+ sort()

SortList

+ addElement()

+sorter

sorter.sort()



11/19/99 OS 12

Strategy - Structure

ConcreteStrategyA

+ algorithmInterface()

ConcreteStrategyB

+ algorithmInterface()

Strategy

+ algorithmInterface()

Context

+ request()

(from State) +strategy



11/19/99 OS 13

Strategy - Applicability

ll When many related classes differ only in theirWhen many related classes differ only in their
behavior.  Strategies provide a way to configure abehavior.  Strategies provide a way to configure a
class with one of the many behaviors.class with one of the many behaviors.

ll When you need different variants of an algorithm.When you need different variants of an algorithm.

ll To avoid exposing complex, algorithm-specificTo avoid exposing complex, algorithm-specific
data structures.data structures.

ll To move partitions of a conditional statement intoTo move partitions of a conditional statement into
its classesits classes



11/19/99 OS 14

Strategy - Consequences

üü Hierarchy of Strategy classes defines a family ofHierarchy of Strategy classes defines a family of
algorithms or behaviors for Context to reuse.algorithms or behaviors for Context to reuse.

üü An alternate toAn alternate to subclassing subclassing.  Encapsulating the.  Encapsulating the
behavior in separate Strategy class lets you varybehavior in separate Strategy class lets you vary
the algorithm independently of its Context,the algorithm independently of its Context,
making it easier to switch, understand and extend.making it easier to switch, understand and extend.

üü Eliminates conditional statements.Eliminates conditional statements.



11/19/99 OS 15

Strategy - Consequences

ûû Clients must be aware of different Strategies.Clients must be aware of different Strategies.

ûû Communication overhead between Strategy andCommunication overhead between Strategy and
Context.Context.

ûû Increased number of objects.  Flyweight can beIncreased number of objects.  Flyweight can be
used to share Strategies.used to share Strategies.



11/19/99 OS 16

How to improve program?

Scheduler

RRScheduler XQ1Scheduler

Pass Scheduler-objects around!



11/19/99 OS 17

Rule to remember

• Addition is good, modification is bad.
– Adding a new class is good, modifying

conditional statements is bad.

– Adding a new scheduler involves adding a new
subclass.

• Keep information about one issue in one
place. Information about RoundRobin
belongs to RRScheduler



11/19/99 OS 18

Device

CPU JobArrival

Scheduler

DiskScheduler RRScheduler XQ1Scheduler

Job
String name
int arrivalTime
int cpuNeeded
int ioNeededhead,tail

currentJob


