
Lecture 15: Caching: Demand Paged Virtual Memory

15.0 Main Points:
Concept of paging to disk
Replacement policies

For implementation details, read Levy and Lipman paper!

15.1 Demand Paging

Up to now, all of a job's virtual address space must be in
physical memory.

But programs don't use all of their memory all of the time. In
fact, there is a 90-10 rule: programs spend 90% of their time in
10% of their code.

Instead, use main memory as a cache for disk. Some pages in
memory, some on disk.

virtual
address
space

page table

physical
memory

disk

Benefits:
Bigger virtual address space: illusion of infinite memory

Allow more programs than will fit in memory, to be running at
same time

15.2 Demand Paging Mechanism

1. Page table has "present" (valid) bit
 if present, pointer to page frame in memory
 if not present, go to disk

2. Hardware traps to OS on reference to invalid page
 (In MIPS/Nachos, trap on TLB miss, OS checks page table
valid bit)

3. OS software:
 a. choose an old page to replace
 b. if old page has been modified, write contents back to disk
 c. change its page table entry and TLB entry
 d. load new page into memory from disk
 e. update page table entry
 f. continue thread

All this is transparent: OS just runs another job in the
meantime.

15.2.1 Software-loaded TLB
Instead of having the hardware load the TLB when a
translation doesn't match, the MIPS/Snake/Nachos TLB is
software loaded. Idea is, if have high TLB hit rate, ok to trap
to software to fill TLB, even if it's a bit slower.

How do we implement this? How can a process run without
access to a page table?

Basic mechanism (just generalization of above):

1. TLB has "present" (valid) bit
 if present, pointer to page frame in memory
 if not present, use software page table

2. Hardware traps to OS on reference not in TLB

3. OS software:

 a. check if page is in memory
 b. if yes, load page table entry into TLB
 c. if no, perform page fault operations outlined above
 d. continue thread

Paging to disk, or even having software load the TLB -- all this
is transparent -- job doesn't know it happened.

15.2.1 Transparent page faults

Need to transparently re-start faulting instruction.

Hardware must help out, by saving:
1. faulting instruction (need to know which instruction caused

fault)
2. processor state

What if an instruction has side effects (CISC processors)?

 mov (sp)+,10

Two options:
 unwind side-effects
 finish off side-effects

Are RISCs easier? What about delayed loads? Delayed
branches?

 ld (sp), r1

What if next instruction causes page fault, while load is still in
progress? Have to save enough state to allow CPU to restart.

Lots of hardware designers don't think about virtual memory.
For example: block transfer instruction. Source, destination
can be overlapping (destination before source). Overwrite part
of source as instruction proceeds.

dest begin

dest end

source begin

source end

No way to unwind instruction!

15.3 Page replacement policies

Replacement policy is an issue with any caching system.

15.3.1 Random?
Typical solution for TLB's. Easy to implement in hardware.

15.3.2. FIFO?
Throw out oldest page. Be fair -- let every page live in
memory for the same amount of time, then toss it.

Bad, because throws out heavily used pages instead of those
that are not frequently used.

15.3.3. MIN

Replace page that won't be used for the longest time into the
future.

15.3.4. LRU

Replace page that hasn't been used for the longest time.

If induction works, LRU is a good approximation to MIN.
Actually, people don't use even LRU, they approximate it.

15.3.5 Example

Suppose we have3 page frames, and 4 virtual pages, with the
reference string: A B C A B D A D B C B (virtual page references)

What happens with FIFO?

reference
phys slot

A B C A B D A D B C B

1 A D C

2 B A

3 C B

Page faults in physical memory, with FIFO replacement

What about MIN?

reference
phys slot

A B C A B D A D B C B

1 A C

2 B

3 C D

Page faults in physical memory, with MIN replacement

What about LRU? Same decisions as MIN, but won't always be
this way!

When will LRU perform badly? When next reference is to the
least recently used page.

Reference string: A B C D A B C D A B C D

reference
phys slot

A B C D A B C D A B C D

1 A D C B

2 B A D C

3 C B A D

Page faults in physical memory, with LRU replacement

Same behavior with FIFO! What about MIN?

reference
phys slot

A B C D A B C D A B C D

1 A B

2 B C

3 C D

Page faults in physical memory, with MIN replacement

15.3.6 Does adding memory always reduce the number of
page faults?

Yes, for LRU, MIN. No, for FIFO (Belady's anomaly)

reference
phys slot

A B C D A B E A B C D E

1 A D E

2 B A C

3 C B D

reference
phys slot

A B C D A B E A B C D E

1 A E D

2 B A E

3 C B

4 D C

Example of Belady's Anomaly with FIFO replacement

With FIFO, contents of memory can be completely different
with different number of page frames.

By contrast, with LRU or MIN, contents of memory with X pages
is a subset of contents with X +1 pages. So with LRU or MIN,
having more pages never hurts.

15.4 Implementing LRU

15.4.1. Perfect
Timestamp page on each reference
Keep list of pages ordered by time of reference

15.4.2 Clock algorithm
Approximate LRU (approx to approx to MIN)

Replace an old page, not the oldest page

Clock algorithm: arrange physical pages in a circle, with a
clock hand.

1. Hardware keeps use bit per physical page frame

2. Hardware sets use bit on each reference

If use bit isn't set, means not referenced in a long time

3. On page fault:

 Advance clock hand (not real time)
 check use bit
 1 -> clear, go on
 0 -> replace page

Will it always find a page or loop infinitely? Even if all use bits
are set, it will eventually loop around, clearing all use bits ->
FIFO

What if hand is moving slowly?
 Not many page faults and/or find page quickly

What if hand is moving quickly?
 Lots of page faults and/or lots of reference bits set.

One way to view clock algorithm: crude partitioning of pages
into two categories: young and old. Why not partition into
more than 2 groups?

15.4.3 Nth Chance

Nth chance algorithm: don't throw page out until hand has
swept by n times

OS keeps counter per page -- # of sweeps

On page fault, OS checks use bit:

 1 => clear use and also clear counter, go on
 0 => increment counter, if < N, go on

else replace page

How do we pick N?

Why pick large N? Better approx to LRU.

Why pick small N? More efficient; otherwise might have to
look a long way to find free page.

Dirty pages have to be written back to disk when replaced.
Takes extra overhead to replace a dirty page, so give dirty
pages an extra chance before replacing?

Common approach:
 clean pages -- use N = 1
 dirty pages -- use N = 2 (and write-back to disk when N=1)

15.4.4 State per page table entry

To summarize, many machines maintain four bits per page
table entry:

use : set when page is referenced, cleared by clock algorithm
modified : set when page is modified, cleared when page is

written to disk
valid : ok for program to reference this page
read-only : ok for program to read page, but not to modify it

(for example, for catching modifications to code pages)

15.4.5 Do we really need a "modified" bit?

No. Can emulate it (BSD UNIX). Keep two sets of books:
 (i) pages user program can access without taking a fault
 (ii) pages in memory

Set (i) is a subset of set (ii). Initially, mark all pages as read-
only, even data pages. On write, trap to OS. OS sets modified
bit, and marks page as read-write.

When page comes back in from disk, mark read-only.

15.4.6 Do we really need a "use" bit?

No. Can emulate it, exactly the same as above:

(i) Mark all pages as invalid, even if in memory.
(ii) On read to invalid page, trap to OS.
(iii) OS sets use bit, and marks page read-only.
(iv) On write, set use and modified bit, and mark page read-

write.
(v) When clock hand passes by, reset use bit and mark page as

invalid.

But remember, clock is just an approximation of LRU. Can we
do a better approximation, given that we have to take page
faults on some reads and writes to collect use information?
Need to identify an old page, not the oldest page!

VAX/VMS didn't have a use or modified bit, so had to come up
with some solution. Idea was to split memory in two parts --
mapped and unmapped:
 i. Directly accessible to program (marked as read-write)

(managed FIFO)
 ii. Second-chance list (marked as invalid, but in memory)

(managed pure LRU)

mapped
pages
(FIFO)

second
chance
(LRU)

A

Reference to page on second chance list

On page reference:
 if mapped, access at full speed
 otherwise page fault:

if on second chance list, mark read-write
 move first page on FIFO list onto end of second chance

list (and mark invalid)
 if not on second chance list, bring into memory

 move first page on FIFO list onto end of second chance
 replace first page on second chance list

How many pages for second chance list?
 if 0, FIFO
 if all, LRU, but page fault on every page reference

Pick intermediate value. Result is:
+ few disk accesses (page only goes to disk if it is unused

for a long time)

- increased overhead trapping to OS (software/hardware
tradeoff)

15.4.7 Does software-loaded TLB need a use bit?

What if we have a software-loaded TLB (as in Nachos)? Two
options:

1. Hardware sets use bit in TLB; when TLB entry is replaced,
software copies use bit back to page table.

2. Software manages TLB entries as FIFO list; everything not in
TLB is second-chance list, managed as strict LRU.

15.4.8 Core map

Page tables map virtual page # -> physical page #

Do we need the reverse? physical page # -> virtual page #?

Yes. Clock algorithm runs through page frames. What if it ran
through page tables?
 (i) many more entries
 (ii) what if there is sharing?

15.5 Thrashing

Thrashing: memory overcommitted, pages tossed out while still
needed.

Example: One program, touches 50 pages (each equally likely).
Have only 40 physical page frames

If have enough pages, 200 ns/ref

If have too few pages, assume every 5th page reference, page
faul t

 4 refs x 200 ns
 1 page fault x 10 ms for disk I/O

 result: 5 ref, 10 ms + 800ns => 2 ms/ref

Problem: system doesn't know what it's getting into.

Log more and more users into the system, eventually:

 total # of pages needed > # of pages available

So what do you do about this?

1. One process alone too big? Change program so it needs less
memory, has better locality. For example, split matrix multiply
up into smaller sub-matrix multiplies, that each fit into
memory.

2. Several jobs?

 - figure out needs/process (working set)

 - run only groups that fit (balance sets)
 kick other processes out from memory

Remember: issue here is not toal size of process, but rather
total number of pages being using at the moment.

How do we figure needs/process out?

Working set (Denning, MIT, mid-60's)

Informally, collection of pages process is using right now

Formally, set of pages job has referenced in last T seconds.

How do we pick T?
 1 page fault = 10 msec
 10 msec = 2 million instructions

So T needs to be a lot bigger than 1 million instructions.

How do you figure out what working set is?

(a) Modify clock algorithm, so that it sweeps at fixed intervals.
Keep idle time/page -- how many sec since last reference

(b) With second chance list -- how many seconds since got put
on 2nd chance list

Now that you know how many pages each program needs, what
to do?

Balance set
 1. if all fit? done
 2. if not? throw out fat cats. Bring them back eventually.

What if T is too big?

 waste memory; too few programs fit in memory

What if T is too small?

 thrashing

Too big is better than too small!

15.6 Fairness
On a page fault, do you consider all pages in one pool, or only
those of the process that caused the page fault?

Global replacement (UNIX) -- all pages in one pool.

More flexible -- if my process needs a lot, and you need a little,
I can grab pages from you. Problem -- one turkey can ruin
whole system (want to favor jobs that need only few pages!)

Per-process (VMS) -- give each a separate pool, for example,
a separate clock for each process. Less flexible.

Example:
 intermittent interactive job (emacs)
 batch job (compilation)

When compilation is over, emacs pages have to be brought
back in, and no history information.

