
Lecture 12: Protection: Kernel and Address Spaces

12.0 Main Points:
Kernel vs. user mode
What is an address space?
How is it implemented?

Physical memory Abstraction: virtual memory

No protection

Limited size
Sharing visible to programs

Easy to share data between
programs

Each program isolated from all
others and from the OS

Illusion of infinite memory
Transparent -- can't tell if

memory is shared
Ability to share code, data

12.1 Operating system organizations

12.1.1 Uniprogramming without protection

Personal computer operating systems: application always runs
at the same place in physical memory, because each application
runs one at a time (application given illusion of dedicated
machine, by giving it reality of a dedicated machine). For
example, load application into low memory, operating system
into high memory. Application can address any physical
memory location.

Application

Operating
System

00000

ffffff

Physical
Memory

12.1.2 Multiprogramming without protection: Linker-loader

Can multiple programs share physical memory, without
hardware translation? Yes: when copy program into memory,
change its addresses (loads, stores, jumps) to use the addresses
of where program lands in memory. This is called a l inker-
loader . Used to be very common.

Application1

Operating
System

00000

ffffff

Physical
Memory

Application220000

UNIX ld does the linking portion of this (despite its name
deriving from loading!): compiler generates each .o file with
code that starts at location 0. How do you create an executable

from this? Scan through each .o, changing addresses to point to
where each module goes in larger program (requires help from
compiler to say where all the relocatable addresses are stored).

With linker-loader, no protection: bugs in any program can
cause other programs to crash, or even the OS.

a program that has a bug in it!

12.1.3 Multiprogrammed OS with protection

Goal of protection:
 Keep user programs from crashing OS
 Keep user programs from crashing each other

How is protection implemented?

Hardware support:
address translation
dual mode operation: kernel vs. user mode

Har dwar e

Machine- dependent OS layer

Por tab le OS layer

Applicat ion

Applicat ion lib r ar y

User m ode

Ker nel m ode

 Typical Operating System Structure

12.3 Address translation

Address space: literally, all the addresses a program can
touch. All the state that a program can affect or be affected by.

Restrict what a program can do by restricting what it can
touch!

Hardware translates every memory reference from virtual
addresses to phyiscal addresses; software sets up and manages
the mapping in the translation box.

CPU

Translation
 Box
 (MMU)

Physical
Memory

Virtual
Address

Physical
Address

Data read or write
(untranslated)

 Address Translation in Modern Architectures

Two views of memory:
 view from the CPU -- what program sees, virtual memory
 view from memory -- physical memory

Translation box converts between the two views.

Translation helps implement protection because no way for
program to even talk about other program's addresses; no way
for them to touch operating system code or data.

Translation can be implemented in any number of ways --
typically, by some form of table lookup (we'll discuss various
options for implementing the translation box later). Separate
table for each user address space.

12.4 Dual mode operation

Can application modify its own translation tables? If it could,
could get access to all of physical memory. Has to be restricted
somehow.

Dual-mode operation
 when in the OS, can do anything (kernel-mode)
 when in a user program, restricted to only touching that
program's memory (user-mode)

Hardware requires CPU to be in kernel-mode to modify
address translation tables.

In Nachos, most UNIXes, and other non-PC OS’s:
 OS runs in kernel mode (untranslated)
 User programs run in user mode (translated)

Want to isolate each address space so its behavior can't do any
harm, except to itself.

A couple issues:
 1. Share CPU between kernel and user programs
 2. How do programs interact?
How does this work?
 Kernel -> user
 User -> Kernel

12.4.1 Kernel -> user:

To run a user program, create a thread to:
allocate and initialize address space control block
read program off disk and store in memory
allocate and initialize translation table (point to program
memory)
run program (or to return to user level after calling the
kernel):
 set machine registers

 set hardware pointer to translation table
 set processor status word (user vs. kernel)
 jump to start of program

12.4.2 User-> kernel:

How does the user program get back into the kernel?

Voluntarily user->kernel: System call -- special instruction to
jump to a specific operating system handler. Just like doing a
procedure call into the operating system kernel -- program
asks OS kernel, please do something on procedure's behalf.

Can the user program call any routine in the OS? No. Just
specific ones the OS says is ok. Always start running handler at
same place, otherwise, problems!

How does OS know that system call arguments are as expected?
It can’t -- OS kernel has to check all arguments -- otherwise,
bug in user program can crash kernel.

Involuntarily user->kernel: Hardware interrupt, also
program exception

Examples of program exceptions:
bus error
segmentation fault

page fault (important for providing illusion of infinite
memory)

On system call, interrupt, or exception: hardware atomically
sets processor status to kernel
changes execution stack to kernel
saves current program counter
jumps to handler in kernel
handler saves previous state of any registers it uses

Context switching between programs: same as with threads,
except now also save and restore pointer to translation table.
To resume a program, re-load registers, and jump
to old PC.

How does the system call pass arguments?
a. Use registers
b. Write into user memory, kernel copies into its memory

Except: user addresses -- translated
 kernel addresses -- untranslated
Addresses the kernel sees are not the same addresses as what
the user sees!

12.4.3 Communication between address spaces
How do two address spaces communicate? Can’t do it directly
if address spaces don’t share memory.

Instead, all inter-address space (in UNIX, inter-process)
communication has to go through kernel, via system calls.

Models of inter-address space communication:
Byte stream producer/consumer. For example,
communicate through pipes connecting stdin/stdout.

Message passing (send/receive). Will explain later how
you can use this to build remote procedure call (RPC)
abstraction, so that can have one program call a
procedure in another.

File system (read and write files). File system is shared
state!

In any of these, once you allow communication, bugs from one
program can propagate to those it communicates with, unless
each program verifies that its input is as expected.

Alternately, on most UNIXes, can ask kernel to set up address
spaces to share a region of memory, but that violates the whole
notion of why we have address spaces -- to protect each
program from bugs in the other programs.

So why do UNIXes support shared memory? One reason is that
it provides a cheap way to simulate threads on systems that
don’t support them -- each UNIX process = heavyweight thread.

12.5 An Example of Application-Kernel Interaction:
Shells and UNIX fork

Shell -- user program (not part of the kernel!)
 prompts users to type command
 does system call to run command

UNIX idea: separate notion of fork vs. exec

Karl
Java Remote Method Invocation

 fork -- create a new process, exact copy of current one
 exec -- change current process to run different program

To run a program in UNIX:

 fork a process
 in child, exec program
 in parent, wait for child to finish

UNIX fork:
 stop current process
 create exact copy
 put on ready list
 resume original

Original has code/data/stack. Copy has exactly the same thing!

Only difference between child and parent is: UNIX changes one
register in child before resume.
Child process:
 Exec program

Stop process
Copy new program over current one
resume at location 0

Justification was to allow I/O (pipes, redirection, etc.), to be set
up between fork and exec. Child can access shell's data
structures to see whether there is any I/O redirection, then
sets it up before exec.

12.6 Protection without hardware support

Does protection require hardware support? In other words, do
we really need hardware address translation and an
unprivileged user mode?

No! Can put two different programs in the same hardware
address space, and be guaranteed that they can’t trash each
other’s code or data.

Two approaches: strong typing and software fault isolation.

12.6.1 Protection via strong typing
Restrict programming language to make it impossible to misuse
data structures, so can’t express program that would trash
another program, even in same address space.

Examples of strongly typed languages include LISP, Ada,
Modula-3 (without loopholes), and most recently, Java.

Latest incarnation: Java. Want to allow people to download and
run programs over the net, but PC’s don’t support protection.
Nothing to keep program from reformatting your disk.

Even in UNIX, nothing to keep programs you download from
deleting all your files (but at least can’t crash the OS!)

Java’s solution: programs written in Java can be downloaded
and run safely, because language/compiler/runtime prevents
the program from doing anything bad (for example, can’t make
system calls).

Karl
Java security viewgraphs

Karl
strongly typed: what does it mean?all "method not understood" errors are caught at compile-time.

Applicat ion
wr it ten in Java

Java r un t im e lib r ar y

Nat ive Oper at ing
System (ker nel m ode or
unpr otected)

 Java Operating System Structure

Java also defines portable virtual machine layer, so any Java
program can run anywhere, dynamically compiled onto native
machine.

Problem: requires everyone to learn new language. Any code
not in Java can’t be safely downloaded.

12.6.2 Protection via software fault isolation.
Language independent approach: Have compiler generate
object code that provably can't step out of bounds --
programming language independent.

Easy for compiler to statically check that program doesn’t do
any native system calls.

How does the compiler prevent a pointer from being misused,
or a jump to an arbitrary place in the (unprotected) OS?

Insert code before each "store" and "indirect branch"
instruction; check that address is in bounds.

For example:

store r2, (r1)

becomes

assert “safe” is a legal address

copy r1 into “safe”

check safe is still legal

store r2, (safe)

Note that I need to handle case where malicious user inserts a
jump past the check; “safe” always holds a legal address,
malicious user can’t generate illegal address by jumping past
check.

Key to good performance is to apply aggressive compiler
optimizations to remove as many checks as possible statically.
Research result is protection can be provided in language
independent way for < 5% overhead.

12.6.3 Example applications of software protection

Safe downloading of programs onto local machine over Web:
games, interactive advertisements, etc.

Safe anonymous remote execution over Web. Web server could
provide not only data, but computing .

Plug-ins. Complex application built by multiple vendors
(example: Netscape support for new document formats). Need
to isolate failures in plug-in code from killing main application,
but slow to put each piece in separate address space.

Karl
why check safe twice?

Karl
offer services over web: use XML as interchange language. XML : extensible markup language. HTML is an example.

Kernel plug-ins. Drop application-specific code into OS kernel,
to customize its behavior (ex: to use a CPU scheduler tuned for
database needs, or CAD needs, etc.)

