Lecture 7

Discuss midterm
Scheduling

Alternative Directory Structure

* Seehw 1 and hw 2.

» This one more aligned with UNIX directory
structure.

* |ldeafor implementing processing isthe
same: at least conceptually separate
traversal from maximum computation.




UNIX style directory structure

filename

*

blocks

Maximum RegularFile size

filename

*

blocks

Traversal: from Directory to RegularFile




Maximum RegularFile size: implementation structure

Directory entries >
DirectoryEntry_List
inode
INode DirectoryEntry
modeN\y Mode \

RegularFile

Collecting Information
during traversal

 Javadoes not have call by referencelike
C++ or Pascal.

» Use IntegerRef class instead:
cl ass IntegerRef {
private int i_;
IntegerRef(int i) { i =1i_;}
public int getValue() {returni_;}
public void setValue(int n) {i_ =n;}

}




From IntegerRef to Visitor
pattern

» Using class IntegerRef isnot optimal: The
code for computing the maximum is mixed
with the traversal code.

A better but more elaborate solution would
be to apply the visitor design pattern:
instead of an IntegerRef-object, we give a
MaxVisitor-object to the traversal.

MaxVisitor

class MaxVisitor {
private int max; int size;
MaxVisitor() { max = 0;}
public int get_result() {return nmax;}
public void before(l Node host)
{size = host.get_size();}
public void before(Regul arFile host)
{if (size > max) nmax=size;}
}
/1 this visitor takes care of transporting size
/1 the traversal is: fromDirectory to RegularFile




DJ

 |f you usealibrary like DJyou can easily
program in this style.
» DJ www.ccs.neu.edu/research/demeter/DJ

» To learn about software development
technology in general and Demeter in
particular, take the COM 3360 classin the
fall of 2000. See my home page.

Vector in Java 2

 Vector now implements ListInterface. Use
following idiom to iterate through list:

for (Listlterator | =this.listlterator();
I . hasNext ();) {

..l.next(); ..

}
 Start using Collection framework as much

as possible.




Semaphoresin Java:
Compare with WaitingStack

public final class CountingSemaphore {
private int count_ = O;
publ i ¢ Counti ngSemaphore(int inC ({
count _ = 1inC}
public void P() { // down -- pop
while (count_ = 0)
try {wait();}
catch (InterruptedException ex) {}
--count _;}
public void V() { // up -- push
++count _; notifyAll(); }

} From: Concurrent Programming in Java by Doug Lea

Puzzle: what is this?




State modeling: two-process
N: noncritical regiqutual eXCI USi 9]

T: trying region
C: critical region

0

Note: itis
important to have
two (T1,T2)

State modeling: two-process
N: noncritical regiqutual eXCI USi on

T: trying region
C: critical region

0

AF(C1) truein 1
EF(Cland C2) falsein O




Reasoning about concurrency

» Abstract from code

« Computation tree logic reasons about
systems at this level

» Uses model-checking techniques

Symbolic Model Checking

» Determine correctness of finite state
systems.

» Developed at Harvard and later at CMU by
Clarke/Emerson/Sistla

» Specifications are written asformulasin a
propositional temporal logic.

» Temporal logic: expressing ordering of
events without introducing time explicitly




Temporal Logic

A kind of modal logic. Originsin Aristotle
and medieval logicians. Studied many
modes of truth.

» Modal logic includes propositional logic.
Embellished with operators to achieve
greater expressiveness.

» A particular temporal logic: CTL
(Computation Tree Logic)

Computation Tree Logic

» Used to express properties that will be
verified

« Computation trees are derived from the
state transition graphs

 State transition graphs unwound into an
Infinite tree rooted at initial state




_ @-

S1

structure S1

S1

0 S1

S2 9

computation tree for SO

Computation Tree Logic

e CTL formulas built from

— atomic propositions, where each proposition
corresponds to a variable in the model

— Boolean connectives

— Operators. Two parts
* path quantifier (A, E)

* temporal operator (F,G,X,U)

10



Computation Tree Logic

» Pathsin tree represent all possible
computations in model.

o CTL formulas refer to the computation tree

AG(reqimplies AF ack)

If the signal req is high then eventually ack will also be high

11



