
1

Lecture 7

Discuss midterm

Scheduling

Alternative Directory Structure

• See hw 1 and hw 2.

• This one more aligned with UNIX directory
structure.

• Idea for implementing processing is the
same: at least conceptually separate
traversal from maximum computation.

2

Directory
DirectoryEntry

INode FileName

Mode

RegularFile

*entries

inode
filename

Size
int i;

mode

Ident

Block

*
blocks

UNIX style directory structure

Directory
DirectoryEntry

INode FileName

Mode

RegularFile

*entries

inode
filename

Size
int i;

mode

Ident

Block

*
blocks

Maximum RegularFile size

Traversal: from Directory to RegularFile

3

Directory
DirectoryEntry_List

INode

Mode

RegularFile

*

entries

inode

Size
int i;

mode

Maximum RegularFile size: implementation structure

Vector
DirectoryEntry

Object

Collecting Information
during traversal

• Java does not have call by reference like
C++ or Pascal.

• Use IntegerRef class instead:
class IntegerRef {

 private int i_;

 IntegerRef(int i) { i = i_;}

 public int getValue() {return i_;}

 public void setValue(int n) {i_ = n;}

}

4

From IntegerRef to Visitor
pattern

• Using class IntegerRef is not optimal: The
code for computing the maximum is mixed
with the traversal code.

• A better but more elaborate solution would
be to apply the visitor design pattern:
instead of an IntegerRef-object, we give a
MaxVisitor-object to the traversal.

MaxVisitor

class MaxVisitor {

 private int max; int size;

 MaxVisitor() { max = 0;}

 public int get_result() {return max;}

 public void before(INode host)

 {size = host.get_size();}

 public void before(RegularFile host)

 {if (size > max) max=size;}

}

// this visitor takes care of transporting size

// the traversal is: from Directory to RegularFile

5

DJ

• If you use a library like DJ you can easily
program in this style.

• DJ: www.ccs.neu.edu/research/demeter/DJ

• To learn about software development
technology in general and Demeter in
particular, take the COM 3360 class in the
fall of 2000. See my home page.

Vector in Java 2

• Vector now implements ListInterface. Use
following idiom to iterate through list:

for (ListIterator I = this.listIterator();
I.hasNext();) {

 … I.next(); …

}

• Start using Collection framework as much
as possible.

6

Semaphores in Java:
Compare with WaitingStack

public final class CountingSemaphore {
 private int count_ = 0;
 public CountingSemaphore(int inC) {
 count_ = inC;}
 public void P() { // down -- pop
 while (count_ = 0)
 try {wait();}
 catch (InterruptedException ex) {}
 --count_;}
 public void V() { // up -- push
 ++count_; notifyAll(); }
} From: Concurrent Programming in Java by Doug Lea

N1 N2

N1 C2T1 T2T1 T2C1 N2

N1 T2T1 N2

T1 C2C1 T2

0

1

Puzzle: what is this?

7

State modeling: two-process
mutual exclusion

N1 N2

N1 C2T1 T2T1 T2C1 N2

N1 T2T1 N2

T1 C2C1 T2

N: noncritical region
T: trying region
C: critical region 0

1

Note: it is
important to have
two (T1,T2)

State modeling: two-process
mutual exclusion

N1 N2

N1 C2T1 T2T1 T2C1 N2

N1 T2T1 N2

T1 C2C1 T2

N: noncritical region
T: trying region
C: critical region 0

1

AF(C1) true in 1
EF(C1 and C2) false in 0

8

Reasoning about concurrency

• Abstract from code

• Computation tree logic reasons about
systems at this level

• Uses model-checking techniques

Symbolic Model Checking

• Determine correctness of finite state
systems.

• Developed at Harvard and later at CMU by
Clarke/Emerson/Sistla

• Specifications are written as formulas in a
propositional temporal logic.

• Temporal logic: expressing ordering of
events without introducing time explicitly

9

Temporal Logic

• A kind of modal logic. Origins in Aristotle
and medieval logicians. Studied many
modes of truth.

• Modal logic includes propositional logic.
Embellished with operators to achieve
greater expressiveness.

• A particular temporal logic: CTL
(Computation Tree Logic)

Computation Tree Logic

• Used to express properties that will be
verified

• Computation trees are derived from the
state transition graphs

• State transition graphs unwound into an
infinite tree rooted at initial state

10

a

b

b

c

a

c

S0

S0

S1

S2

S1

S1 S2

S2

S0

S1 S0structure

computation tree for S0

Computation Tree Logic

• CTL formulas built from
– atomic propositions, where each proposition

corresponds to a variable in the model

– Boolean connectives

– Operators. Two parts
• path quantifier (A, E)

• temporal operator (F,G,X,U)

11

Computation Tree Logic

• Paths in tree represent all possible
computations in model.

• CTL formulas refer to the computation tree

)(ackAFimpliesreqAG
If the signal req is high then eventually ack will also be high

