
1

Java threads and locks 1

OS Lecture 5

• Java threads

Java threads and locks 2

Threads and locks

• Java associates a lock with every object. The
lock is used to allow only one thread at a time to
execute a region of protected code.

• The synchronized statement synchronized(e)
{b} (1) locks a lock associated with the object
returned by e and (2) after executing b, it
unlocks the same lock.

2

Java threads and locks 3

Threads and locks

• As a convenience, a method may be
synchronized. Such a method behaves as if
its method were synchronized in a
synchronized statement.

synchronized void f(){b} =

void f(){ synchronized(this) {b};}

Java threads and locks 4

Threads and locks

• Code in one synchronized method may make self-
calls to another synchronized method in the same
object without blocking.

• Similarly for calls on other objects for which the
current thread has obtained and not yet released a
lock.

• Synchronization is retained when calling an
unsynchronized method from a synchronized one.

3

Java threads and locks 5

Example

Class A{

 synchronized void f(){this.g();}

 synchronized void g(){…};

}

…

A a; a.f();

// The a-lock will be acquired
twice and released twice.

Java threads and locks 6

Threads and locks
• Only one thread at a time is permitted to lay claim

on a lock, and moreover a thread may acquire the
same lock multiple times and doesn’t relinquish
ownership of it until a matching number of unlock
actions have been performed.

• An unlock action by a thread T on a lock L may
occur only if the number of preceding unlock
actions by T on L is strictly less than the number
of preceding lock action by T on L. (unlock only
what it owns)

4

Java threads and locks 7

Threads and locks
• A notify invocation on an object results in the

following:
– If one exists, an arbitrarily chosen thread, say T, is

removed by the Java runtime system from the internal
wait queue associated with the target object.

– T must re-obtain the synchronization lock for the target
object which will always cause it to block at least until
the thread calling notify releases the lock.

– T is then resumed at the point of its wait.

