
10/12/99 OS 3 1

Lecture 3

Operating Systems

10/12/99 OS 3 2

Lecture

• Anderson: synchronization continued:
– lec4: Independent versus cooperating threads

– lec6: hardware synchronization

– lec7: semaphores

– lec8: monitors

• Wrapper Pattern (also called Buffer Pattern)

• Runnable Service Pattern

• Hw 2

10/12/99 OS 3 3

Runnable Service Pattern

• Design and implementation convention for
encoding a single method as a standalone
service.

• Motivation: a time consuming method
should be run by a separate thread if it can
be run in parallel to the caller.

• Examples: File and network I/O are
encapsulated within threads.

10/12/99 OS 3 4

Design choices

• In hw 1 you read from an input stream using
a separate thread and you read from the
error stream using a separate thread.

• The Runnable Service Pattern describes
some of the design choices you have

10/12/99 OS 3 5

Form of Runnable Service
public class ClassForMethod implements Runnable {
 private ARG1 arg1_;
 private ARG2 arg2_;
 public ClassForMethod(ARG1 arg1, ARG2 arg2){
 arg1_ = arg1; arg2_ = arg2;
 }
 public void run() {
 // code that was in Method
 // use data members arg1, arg2 instead of
 // parameters
 }
}

Runnable r = new ClassForMethod(a1,a2);
Thread t = new Thread(r);
t.start();
other_in_parallel();

10/12/99 OS 3 6

Explanation

• run can neither take arguments nor return
results. Therefore this control information
must be managed by runnable command
object.

• Use constructor to send parameters.

• Many runnable service objects are used
only once.

10/12/99 OS 3 7

Client-controlled versus server-
controlled activation

• Client-controlled: Object that constructs
Runnable object also constructs and starts an
associated thread.

• new Thread(new
ClassForMethod(a1,a2)).start();

Runnable r = new ClassForMethod(a1,a2);
Thread t = new Thread(r);
t.start();
other_in_parallel();

10/12/99 OS 3 8

Client-controlled versus server-
controlled activation

• server-controlled: Runnable object itself
creates and starts thread.

• new Thread(this).start()

10/12/99 OS 3 9

Semaphores in Java
public final class CountingSemaphore {
 private int count_ = 0;
 public CountingSemaphore(int inC) {
 count_ = inC;}
 public void P() { // down
 while (count_ <= 0)
 try {wait();}
 catch (InterruptedException ex) {}
 --count_;}
 public void V() { // up
 ++count_; notify(); }
} From: Concurrent Programming in Java by Doug Lea

10/12/99 OS 3 10

Readers and Writers

public abstract class RW {
 protected int activeReaders_ = 0; //threads executing read_
 protected int activeWriters_ = 0; //always zero or one
 protected int waitingReaders_ = 0; //threads not yet in read_
 protected int waitingWriters_ = 0; // same for write_

 protected abstract void read_(); //implement in subclasses
 protected abstract void write_();//implement in subclasses
 public void read(){beforeRead(); read_();afterRead();}
 public void write(){beforeWrite(); write_();afterWrite();}
 protected boolean allowReader() {
 return waitingWriters_ == 0 && activeWriters_ == 0;}
 protected boolean allowWriter() {
 return activeReaders_==0 && activeWriters_ == 0;}

From: Concurrent Programming in Java by Doug Lea

10/12/99 OS 3 11

Readers and Writers
// continued: public abstract class RW {
 protected synchronized void beforeRead() {
 ++ waitingReaders_;
 while (!allowReader())
 try {wait();} catch (InterruptedException ex) {}
 -- waitingReaders_;
 ++ activeReaders_; }
 protected synchronized void afterRead() {
 --activeReaders_;
 notifyAll();}

10/12/99 OS 3 12

Readers and Writers
// continued: public abstract class RW {
 protected synchronized void beforeWrite() {
 ++ waitingWriters_;
 while (!allowWriter())
 try {wait();} catch (InterruptedException ex) {}
 -- waitingWriters_;
 ++ activeWriters_; }
 protected synchronized void afterWrite() {
 --activeWriters_;
 notifyAll();}
}

