Lecture 3

Operating Systems

10/12/99 OS3

L ecture

« Anderson: synchronization continued:

— lec4: Independent versus cooperating threads
— lec6: hardware synchronization
— lec7: semaphores
— lec8: monitors

* Wrapper Pattern (also called Buffer Pattern)

 Runnable Service Pattern
e Hw 2

10/12/99 OS3

Runnable Service Pattern

* Design and implementation convention for
encoding a single method as a standalone
Service.

« Motivation: atime consuming method
should be run by a separate thread If it can
berun in parallel to the caller.

e Examples: File and network 1/O are
encapsulated within threads.

10/12/99 OS3

Design choices

* In hw 1 you read from an input stream using
a separate thread and you read from the
error stream using a separate thread.

* The Runnable Service Pattern describes
some of the design choices you have

10/12/99 OS3

Form of Runnable Service

public class C assForMet hod i npl enents Runnabl e {
private ARGL argl ;
private AR&R arg2 ;
public C assFor Met hod(ARGL argl, ARG arg2){
argl = argl; arg2_ = arg2;

}
public void run() {

/[l code that was in Method
/'l use data nenbers argl, arg2 instead of

\ /1 paranmeters pnnabler = new ClassForMethod(al,a2):
Thread t = new Thread(r);
t.start();
other_in_parallel();

}

10/12/99 OS3 5

Explanation

* I un can neither take arguments nor return

results. Therefore this control information
must be managed by runnable command
obj ect.

e Use constructor to send parameters.

« Many runnable service objects are used
only once.

10/12/99 OS3

Client-controlled versus server-
controlled activation

 Client-controlled: Object that constructs
Runnable object also constructs and starts an
assoclated thread.

e new Thread(new
Cl assFor Met hod(al,a2)).start();

Runnabl e r = new C assFor Met hod(al, a2);
Thread t = new Thread(r);

t.start();

other in _parallel();

10/12/99 OS3 7

Client-controlled versus server-
controlled activation

 server-controlled: Runnable object itself
creates and starts thread.

e new Thread(this).start ()

10/12/99 OS3

Semaphores in Java

public final class CountingSemaphore {

private int count = O;
publ i ¢ Counti ngSemaphore(int inC {
count _ = 1nC }

public void P() { // down
while (count <= 0)
try {wait();}
catch (I nterruptedException ex) {}
--count _;}
public void V() { // up
++count ; notify(); }
} From: Concurrent Programming in Java by Doug Lea
10/12/99 0S3

Readers and Writers

public abstract class RW{
protected int activeReaders = 0; //threads executing read_
protected int activeWiters_ = 0; //always zero or one
protected int waitingReaders = 0; //threads not yet in read_
protected int waitingWiters = 0; // sanme for wite_

protected abstract void read (); //inplenment In subclasses
protected abstract void wite ();//inplenment In subclasses
public void read(){beforeRead(); read ();afterRead():}
public void wite(){beforeWite(); wite ();afterWite();}
prot ect ed bool ean al | owReader () {

return waitingWiters == 0 & activeWiters == 0;}
protected boolean allowNiter() {
return activeReaders ==0 &% activeWiters_ == 0;}

From: Concurrent Programming in Java by Doug Lea

10/12/99 OS3 10

Readers and Writers

/'l continued: public abstract class RW{

protected synchroni zed voi d beforeRead() {
++ wal ti ngReaders_;
while (!'all owReader())

try {wait();} catch (InterruptedException ex) {}

-- wai ti ngReaders_;
++ activeReaders ; }

protected synchroni zed void afterRead() {
--activeReaders_;
noti fyAll();}

10/12/99 OS3

11

Readers and Writers

/'l continued: public abstract class RW{

protected synchroni zed void beforeWite() {
++ waitingWiters
while (lallowWiter())

try {wait();} catch (InterruptedException ex) {}

-- waitingWiters_;
++ activeWiters ; }

protected synchroni zed void afterWite() {
--activeWiters_;
noti fyAll();}

10/12/99 OS3

12

