
Lecture 9: Concurrency Conclusion

9.0 Main Points:
Summarize concurrency section
Illustrate drawbacks to threads

9.1 Concurrency Summary
Basic idea in all of computer science is to abstract
complexity behind clean interfaces. We've done that!

Physical Hardware Programming Abstraction

single CPU, interrupts,
test&set

sequential execution,
infinite # of CPUs,
semaphores and monitors

Every major operating system built since 1985 has provided
threads -- Mach, OS/2, NT (Microsoft), Solaris (new OS from
SUN), OSF (DEC Alphas). Why? Because makes it a lot easier to
write concurrent programs, from Web servers, to databases, to
embedded systems.

So does this mean you should all go out and use threads?

9.2 Cautionary Tales

Illustrate why an abstraction doesn't always work the way you
want it to.

9.2.1 OS/2
Microsoft OS/2 (around 1988): initially, a spectacular failure.
Since then, IBM has completely re-written it from scratch.

Used threads for everything -- window systems,
communication between programs, etc. Threads are a good
idea, right?

Thus, system created lots of threads, but few actually running
at any one time -- most waiting around for user to type in a
window, or for a network packet to arrive.

Might have 90 threads, but just a few at any one time on the
ready queue. And each thread needs its own execution stack,
say, 9KB, whether it is runnable or waiting.

Result: system needs an extra 1 MB of memory, mostly
consumed by waiting threads. 1 MB of memory cost $200 in
1988.

Put yourself in the customer's shoes. Did OS/2 run Excel or
Word better? OK, it gave you the ability to keep working when
you use the printer, but is that worth $200?

Moral: threads are cheap, but they're not free.

Who are operating systems features for?
 Operating system developer?
 End user?

Lots of operating systems research has been focused on making
it easier for operating systems developers , because it is so
complicated to build operating systems.

But the trick to selling it is to make it better for the end user.

9.2.2 Threads and Multiprocessors
Might think you have everything you need to know to go write
a parallel program: Just split program up into threads, so that
things can run in parallel.

Example: Matrix multiply

 for (i = 0; i < N; i++)

 for (j = 0; j < N; j++)

 for (k = 0; k < N; k++)

 C[i][j] += A[i][k] * B[j][k];

How would you parallelize this? Create a thread for every
iteration of inner loop? Each one can run concurrently, using a
lock to protect access to each element in C[i][j].

Would work, but wouldn't be efficient. In Nachos, a few
hundred instructions to create a thread. Here, maybe ten
instructions to do each iteration.

Repeat: threads are cheap, but they aren't free.

Instead: group iterations so that each thread does a fair amount
of work.

