
Lecture 8: Monitors, Condition Variables and
R e a d e r s - W r i t e r s

8.0 Main points:
Definition of monitors and condition variables
Illustrate their use by solving readers-writers problem

8.1 Motivation for monitors

Semaphores are a huge step up; just think of trying to do the
bounded buffer with only loads and stores. But problem with
semaphores is that they are dual purpose. Used for both mutex
and scheduling constraints. This makes the code hard to read,
and hard to get right.

Idea in monitors is to separate these concerns: use locks for
mutual exclusion and condition variables for scheduling
constraints.

8.2 Monitor Definition

Monitor : a lock and zero or more condition variables for
managing concurrent access to shared data

Note: Tanenbaum and Silberschatz both describe monitors as a
programming language construct, where the monitor lock is
acquired automatically on calling any procedure in a C++ class,
for example. No widely-used language actually does this,
however! So in Nachos, and in many real-life operating
systems, such as Windows NT, OS/2, or Solaris, monitors are
used with explicit calls to locks and condition variables.

8.2.1 Lock
The lock provides mutual exclusion to the shared data.
Remember:

Karl
JAVA!!!!

Lock::Acquire -- wait until lock is free, then grab it
Lock::Release -- unlock, wake up anyone waiting in Acquire

Rules for using a lock:
 Always acquire before accessing shared data structure
 Always release after finishing with shared data.
 Lock is initially free.

Simple example: a synchronized list

AddToQueue() {

 lock.Acquire(); // lock before using shared data

 put item on queue; // ok to access shared data

 lock.Release(); // unlock after done with shared

// data

}

RemoveFromQueue() {

 lock.Acquire(); // lock before using shared data

 if something on queue // ok to access shared data

 remove it;

 lock.Release(); // unlock after done with shared

// data

 return item;

}

8.2.2 Condition variables

How do we change RemoveFromQueue to wait until something
is on the queue?

Logically, want to go to sleep inside of critical section, but if
hold lock when go to sleep, other threads won't be able to get
in to add things to the queue, to wake up the sleeping thread.

Karl
in Java:

public synchronized void AddToQueue(Object item){
 put item on queue;
}

Key idea with condition variables: make it possible to go to
sleep inside critical section, by atomically releasing lock at
same time we go to sleep

Condition variable: a queue of threads waiting for something
inside a critical section

Condition variables support three operations:

 Wait() -- release lock, go to sleep, re-acquire lock
Releasing lock and going to sleep is atomic

 Signal() -- wake up a waiter, if any

 Broadcast() -- wake up all waiters

Rule: must hold lock when doing condition variable operations.

A synchronized queue, using condition variables:

AddToQueue() {

 lock.Acquire();

 put item on queue;

 condition.signal();

 lock.Release();

}

RemoveFromQueue() {

 lock.Acquire();

 while nothing on queue

 condition.wait(&lock);// release lock; go to

// sleep; re-acquire lock

 remove item from queue;

Karl
in Java: (different meaning, but similar)

Object.wait()
Object.notify()
Object.notifyAll()

all recent implementations of monitors replace signal with notify.

Karl
This rule enforced by Java

Karl
public synchronized void AddToQueue(Object item) {
 add item to queue;
 notify();
}

Karl
public synchronized Object RemovFromQueue() {
 while (is_empty())
 try {wait(); } catch(InterruptedException ex) {};
 remove item from queue;
 return item;
}

Karl
From Solomon: processes.html:
Difference between monitors and Java classes:

First, instead of marking a whole class as monitor, you have to remember to mark each method as synchronized. Every object is potentially a monitor. Second, there are no explicit condition variables. In effect, every monitor has exactly one anonymous condition variable. Instead of writing c.wait() or c.notify(), where c is a condition variable, you simply write wait() or notify()

 lock.Release();

 return item;

}

8.2.3 Mesa vs. Hoare monitors

Need to be careful about the precise definition of signal and
wait.

Mesa-style: (Nachos, most real operating systems)

 Signaller keeps lock, processor

 Waiter simply put on ready queue, with no special priority.
 (in other words, waiter may have to wait for lock)

Hoare-style: (most textbooks)

 Signaller gives up lock, CPU to waiter; waiter runs
immediately

 Waiter gives lock, processor back to signaller when it exits
critical section or if it waits again.

Above code for synchronized queuing happens to work with
either style, but for many programs it matters which you are
using. With Hoare-style, can change "while" in
RemoveFromQueue to an "if", because the waiter only gets
woken up if item is on the list. With Mesa-style monitors,
waiter may need to wait again after being
woken up, because some other thread may have acquired the
lock, and removed the item, before the original waiting thread
gets to the front of the ready queue.

Karl
Java uses Mesa style

This means as a general principle, you almost always need to
check the condition after the wait, with Mesa-style monitors (in
other words, use a "while" instead of an "if").

8.3 Readers/Writers

8.3.1 Motivation

 Shared database (for example, bank balances, or airline seats)

 Two classes of users:
 Readers -- never modify database
 Writers -- read and modify database

Using a single lock on the database would be overly restrictive.
Want:
 many readers at same time
 only one writer at same time

8.3.2 Constraints

1. Readers can access database when no writers (Condition
okToRead)

2. Writers can access database when no readers or writers
(Condition okToWrite)

3. Only one thread manipulates state variables at a time.

8.3.3 Solution
Basic structure of solution

Reader

 wait until no writers

 access database

 check out -- wake up waiting writer

Writer

 wait until no readers or writers

 access database

 check out -- wake up waiting readers or writer

State variables:

 # of active readers -- AR = 0

 # of active writers -- AW = 0

 # of waiting readers -- WR = 0

 # of waiting writers -- WW = 0

 Condition okToRead = NIL

 Condition okToWrite = NIL

 Lock lock = FREE

Code:

Reader() {

 // first check self into system

 lock.Acquire();

 while ((AW + WW) > 0) { // check if safe to read

 // if any writers, wait

 WR++;

 okToRead.Wait(&lock);

 WR--;

 }

 AR++;

 lock.Release();

 Access DB

 // check self out of system

 lock.Acquire();

 AR--;

 if (AR == 0 && WW > 0)//if no other readers still

// active, wake up writer

 okToWrite.Signal(&lock);

 lock.Release();

}

Writer() { // symmetrical

 // check in

 lock.Acquire();

 while ((AW + AR) > 0) { // check if safe to write

// if any readers or writers,

wait

 WW++;

 okToWrite->Wait(&lock);

 WW--;

 }

 AW++;

 lock.Release();

 Access DB

 // check out

 lock.Acquire();

 AW--;

 if (WW > 0) // give priority to other writers

 okToWrite->Signal(&lock);

 else if (WR > 0)

 okToRead->Broadcast(&lock);

 lock.Release();

}

Questions:

 1. Can readers starve?

 2. Why does checkRead need a while?

8.4 Comparison between semaphores and monitors

Illustrate the differences by considering: can we build monitors
out of semaphores? After all, semaphores provide atomic
operations and queueing.

Does this work?

Wait() { semaphore->P(); }

Signal() { semaphore->V(); }

Condition variables only work inside of a lock. If try to use
semaphores inside of a lock, have to watch for deadlock.

Does this work?

Wait(Lock *lock) {

 lock->Release();

 semaphore->P();

 lock->Acquire();

}

Signal() {

 semaphore->V();

}

Condition variables have no history, but semaphores do have
history.

What if thread signals and no one is waiting?
 No op.
What if thread later waits?
 Thread waits.

What if thread V's and no one is waiting?
 Increment.

Karl
see Java code instead:OS 3/9

What if thread later does P?
 Decrement and continue.

In other words, P + V are commutative -- result is the same no
matter what order they occur. Condition variables are not
commutative. That's why they must be in a critical section --
need to access state variables to do their job.

Does this fix the problem?

Signal() {

 if semaphore queue is not empty

semaphore->V();

}

For one, not legal to look at contents of semaphore queue. But
also: race condition -- signaller can slip in after lock is released,
and before wait. Then waiter never wakes up!

Need to release lock and go to sleep atomically.

Is it possible to implement condition variables using
semaphores? Yes, but exercise left to the reader!

8.5 Summary
Monitors represent the logic of the program -- wait if
necessary, signal if change something so waiter might need to
wake up.

 lock

 while (need to wait)

 wait();

 unlock

 lock

 do something so no need to wait

 signal();

 unlock

