
Lecture 7: Semaphores and Bounded Buffer

7.0 Main Points:
Definition of semaphores
Example of use of semaphores

7.1 Motivation
Writing concurrent programs is hard because you need to
worry about multiple concurrent activities writing the same
memory; hard because ordering matters.

Synchronization is a way of coordinating multiple concurrent
activities that are using shared state. What are the right
synchronization abstractions, to make it easy to build correct
concurrent programs?

In this lecture and the next, present a couple ways of
structuring the sharing. Rules will seem a bit strange -- why
one definition, and not another? I have no good explanation
for that, except that I believe that if you use these definitions,
you will find writing correct code easier. For now, just take it
as a given. Use it for a while. Then if you can come up with a
better way of doing synchronization, be my guest!

7.1 Definition of Semaphores

Semaphores are a kind of generalized lock, first defined by
Dijkstra in the late 60's. Semaphores are the main
synchronization primitive used in UNIX.

Semaphores have a positive integer value, and support the
following two operations:

semaphore->P(): an atomic operation that waits for
semaphore to become positive, then decrements it by 1

Karl
ATOMIC P = Down, waits for positive, decrements by 1 V = Up, increments by 1, waking up any waiting P

semaphore->V(): an atomic operation that increments
semaphore by 1, waking up a waiting P, if any

Semaphores are like integers, except:

1. No negative values
2. Only operations are P and V -- can't read or write value,

except to set it initially
3. Operations must be atomic -- two P's that occur together

can't decrement the value below zero. Similarly, thread
going to sleep in P won't miss wakeup from V, even if they
both happen at about the same time.

Binary semaphore: instead of an integer value, has a boolean
value. P waits until value is 1, then sets it to 0. V sets value to
1, waking up a waiting P if any.

7.2 Two uses of semaphores

7.2.1 Mutual exclusion

When semaphores are used for mutual exclusion, the
semaphore has an initial value of 1, and P() is called before the
critical section, and V() is called after the critical section.

semaphore->P();

// critical section goes here

semaphore->V();

 7.2.1 Scheduling constraints

Semaphores can also be used to express generalized scheduling
constraints -- in other words, semaphores provide a way for a
thread to wait for something. Usually, in this case, the initial
value of the semaphore is 0, but not always!

Karl
ATOMIC P = Down, waits for positive, decrements by 1 V = Up, increments by 1, waking up any waiting P

Karl
ATOMIC P = Down, waits for positive, decrements by 1 V = Up, increments by 1, waking up any waiting P

For example, you can implement Thread::Join using
semaphores:

Initial value of semaphore = 0

Thread::Join calls P

Thread finish calls V

7.3 Producer-consumer with a bounded buffer

7.3.1 Problem definition
Producer puts things into a shared buffer, consumer takes
them out. Need synchronization for coordinating producer and
consumer.

Example: cpp | cc1 | cc2 | as (cpp produces bytes for cc1, which
consumes them, and in turn produces bytes for cc2 ...)

Don't want producer and consumer to have to operate in
lockstep, so put a fixed-size buffer between them; need to
synchronize access to this buffer. Producer needs to wait if
buffer is full; consumer needs to wait if buffer is empty.

Another example: Coke machine. Producer is delivery person;
consumers are students and faculty.

Solution uses semaphores for both mutex and scheduling.

7.3.2 Correctness constraints for solution

1) Consumer must wait for producer to fill buffers, if none full
(scheduling constraint)

Karl
ATOMIC P = Down, waits for positive, decrements by 1 V = Up, increments by 1, waking up any waiting P

2) Producer must wait for consumer to empty buffers, if all full
(scheduling constraint)

3) Only one thread can manipulate buffer queue at a time
(mutual exclusion)

Use a separate semaphore for each constraint; note semaphores
being used in multiple ways.

Semaphore fullBuffers; // consumer's constraint

// if 0, no coke in machine

Semaphore emptyBuffers;// producer's constraint

// if 0, nowhere to put more coke

Semaphore mutex; // mutual exclusion

7.3.3 Semaphore solution

Semaphore fullBuffers = 0 // initially, no coke!

Semaphore emptyBuffers = numBuffers;

// initially, number of empty slots

// semaphore used to count how many

// resources there are!

Semaphore mutex = 1; // no one using the machine

Producer() {

 emptyBuffers.P(); // check if there's space

// for more coke

 mutex.P(); // make sure no one else

// is using machine

 put 1 coke in machine

 mutex.V(); // ok for others to use machine

 fullBuffers.V(); // tell consumers there's now a

 } // coke in the machine

Consumer() {

 fullBuffers.P(); // check if there's a coke in

// the machine

 mutex.P(); // make sure no one else

// is using machine

 take 1 coke out;

 mutex.V(); // next person's turn

 emptyBuffers.V(); // tell producer we need more

Karl
see BoundedBuffer in Java:Solomon: processes.html

