
Lecture 10: Deadlock

10.0 Main Points:
Definition of deadlock
Conditions for its occurence
Solutions for breaking and avoiding deadlock

Solutions pose a dilemma:
 Simple solutions -- inefficient
 Complex solutions -- inefficient and unpleasant

10.1 Definitions

10.1.1 Resources
 Threads -- active
 Resources -- passive, things needed by thread to do its job
 (CPU, disk space, memory)

 Two kinds of resources:
 Preemptable -- can take it away (CPU)
 Non-preemptab le -- must leave with thread

 (disk space -- what would you think if I took space for
your files?)

Mutual exclusion -- a kind of resource

10.1.2 Starvation vs. Deadlock
Starvation -- thread waits indefinitely (for example, because
some other threads are using resource)

Deadlock -- circular waiting for resources

Deadlock implies starvation, but not vice versa

For example:

Thread A Thread B

x.P();

y.P();

y.P();

x.P();

Deadlock won't always happen with this code, but it might.

10.2 Conditions for deadlock

10.2.1 Motivation
Deadlock can happen with any kind of resource.
Deadlocks can occur with multiple resources. Means you can't
decompose the problem -- can't solve deadlock for each
resource independently.

For example:
 one thread grabs the memory it needs
 another grabs disk space
 another grabs the tape drive

 dach waits for the other to release.

Deadlock can occur whenever there is waiting.

Example: dining lawyers

Each lawyer needs two chopsticks to eat. Each grabs chopstick
on the right first.

What if all grab at the same time? Deadlock.

10.2.2 Conditions
Conditions for deadlock -- without all of these, can't have
deadlock:

1. Limited access (for example: mutex or bounded buffer)

2. No preemption (if someone has resource, can't take it away)

3. Multiple independent requests -- "wait while holding"

4. Circular chain of requests

Can draw graph to see if you have a circular chain:

Thread A

Thread B

XY

waiting for

owned by

owned by

waiting for

 Example of deadlock

10.3 Solutions to Deadlock

10.3.1 Detect deadlock and fix

scan graph

detect cycles

fix them // this is the hard part!

a) Shoot thread, force it to give up resources.
This isn't always possible -- for instance, with a mutex, can't
shoot a thread and leave world in a consistent state.

 b) Roll back actions of deadlocked threads (transactions)

Common technique in databases

10.3.2 Preventing deadlock

Need to get rid of one of the four conditions.
a) Infinite resources

 b) No sharing -- totally independent threads.

 c) Don't allow waiting -- how phone company avoids deadlock

d) Preempt resources
Example: Can preempt main memory by copying to disk

e) Make all threads request everything they'll need at
beginning

If you need 2 chopsticks, grab both at same time.

Problem is -- predicting future is hard, tend to over-estimate
resource needs (inefficient)

 Banker's algorithm: more efficient than reserving all
resources on startup

1. State maximum resource needs in advance
2. Allocate resources dynamically when resource is needed --

wait if granting request would leads to deadlock (request
can be granted if some sequential ordering of threads is
deadlock free)

Bankers algorithm allows the sum of maximum resource needs
of all current threads to be greater than the total resources, as

long as there is some way for all the threads to finish without
getting into deadlock.

For example, you can allow a thread to proceed if the total
available resources - # allocated >= max remaining that might
be needed by this thread.

Example of Banker's algorithm with dining lawyers: chopsticks
in middle of table.

Deadlock free if when try to grab fork, take it unless it's the
last one, and no one would have 2.

What if k-handed lawyers?

 Deadlock free if when try to grab fork: take it unless
it's the last one, and no one would have k
it's the next to the last, and no one would have k-1,
...

f) Make everyone use the same ordering in accessing resources.
 For example, all threads must grab semaphores in the same
orde r

(x.P; y.P)

 Typically, a combination of techniques!

