
Lecture 6: Implementing Mutual Exclusion

6.0 Main Point:
Hardware support for synchronization
Building higher-level synchronization programming
abstractions on top of the hardware support.

6.1 The Big Picture

Low level
atom ic
oper at ions
(har dwar e)

High level
atom ic
oper at ions
(API)

load / stor e

locks

in ter r up t d isab le test&set

sem aphor es m onitor s send&r eceive

concur r en t p r ogr am s

Relationship among synchronization abstractions

Too much milk example showed that implementing a
concurrent program directly with loads and stores would be
tricky and error-prone. Instead, a programmer is going to
want to use higher level operations, such as locks.

Today, how do we implement these higher level operations?

Next lecture, what higher-level primitives make it easiest to
write correct concurrent programs?

6.2 Ways of implementing locks

All require some level of hardware support

6.2.1 Atomic memory load and store

See too much milk lecture!

6.2.2 Directly implement locks and context switches in
h a r d w a r e

Implemented in the Intel 432. Makes hardware slow!

6.2.3 Disable interrupts (uniprocessor only)

Two ways for dispatcher to get control:
internal events -- thread does something to relinquish the CPU
external events -- interrrupts cause dispatcher to take CPU

a w a y

On a uniprocessor, an operation will be atomic as long as a
context switch does not occur in the middle of the operation.
Need to prevent both internal and external events. Preventing
internal events is easy.

Prevent external events by disabling interrupts, in effect,
telling the hardware to delay handling of external events until
after we're done with the atomic operation.

6.2.3.1 A flawed, but very simple solution

Why not do the following:

 Lock::Acquire() { disable interrupts;}

 Lock::Release() { enable interrupts;}

1. Need to support synchronization operations in user-level
code. Kernel can’t allow user code to get control with
interrupts disabled (might never give CPU back!).

2. Real-time systems need to guarantee how long it takes to
respond to interrupts, but critical sections can be arbitrarily
long. Thus, leave interrupts off for shortest time possible.

3. Simple solution might work for locks, but wouldn't work for
more complex primitives, such as semaphores or condition
variables.

6.2.3.2 Implementing locks by disabling interrupts

class Lock {

 int value = FREE;

}

Lock::Acquire() {

 Disable interrupts;

 while (value != FREE) {

 Enable interrupts; // allow interrupts

 Disable interrupts;

 }

 value = BUSY;

 Enable interrupts;

Lock::Release()

 Disable interrupts;

 value = FREE;

 Enable interrupts;

Why do we need to disable interrupts at all? Otherwise, one
thread could be trying to acquire the lock, and could get
interrupted between checking and setting the lock value, so
two threads could think that they both have the lock.

With disabling interrupts, the check and set operations occur
without any other thread having the chance to execute in the
middle.

Karl
T1:Lock free? yes
T2: Lock free? yes
T1: Value = busy
T2: Value = busy
both have lock

Why do we need to enable interrupts inside the loop in
Acquire? Otherwise, since interrupts are off, the lock holder
will never get a chance to run, to release the lock.

6.2.4 Atomic read-modify-write instructions

On a multiprocessor, interrupt disable doesn't provide
atomicity. It stops context switches from occuring on that CPU,
but it doesn't stop other CPUs from entering the critical section.

Instead, every modern processor architecture provides some
kind of atomic read-modify-write instruction. These
instructions atomically read a value from memory into a
register, and write a new value. The hardware is responsible
for implementing this correctly on both uniprocessors (not too
hard) and multiprocessors (requires special hooks in the
multiprocessor cache coherence strategy).

Unlike disabling interrupts, this can be used on both
uniprocessors and multiprocessors.

6.2.4.1 Examples of read-modify-write instructions:

test&set (most architectures) -- read value, write 1 back to
m e m o r y

exchange (x86) -- swaps value between register and memory
compare&swap (68000) -- read value, if value matches

register, do exchange
load linked and conditional store (R4000, Alpha) --

designed to fit better with load/store architecture. Read
value in one instruction, do some operations, when store
occurs, check if value has been modified in the meantime. If
not, ok. If it has changed, abort, and jump back to start.

6.2.4.2 Implementing locks with test&set

Test&set reads location, sets it to 1, and returns old value.

Initially, lock value = 0;

Lock::Acquire

 while (test&set(value) == 1) //while BUSY

 ;

Lock::Release

 value = 0;

If lock is free, test&set reads 0 and sets value to 1, so lock is
now busy. It returns 0, so Acquire completes. If lock is busy,
test&set reads 1 and sets value to 1 (no change), so lock stays
busy, and Acquire will loop.

6.3 Busy-waiting
Busy-waiting: thread consumes CPU cycles while it is waiting.

Both solutions above use busy-waiting. Not only is this
inefficient, it could cause problems if threads can have
different priorities. If the busy-waiting thread has higher
priority than the thread holding the lock, the timer will go off,
but (depending on the scheduling policy), the lower priority
thread might never run.

Also, for semaphores and monitors, if not for locks, waiting
thread may wait for an arbitrary length of time. Thus, even if
busy-waiting was OK for locks, it could be very inefficient for
implementing other primitives.

6.3.1 Locks using interrupt disable, without busy-waiting

Waiter gives up the processor so that Release can go forward
more quickly:

Lock::Acquire()

 Disable interrupts;

 if (value == BUSY) {

 put on queue of threads waiting for lock

 go to sleep

 } else {

 value = BUSY;

 }

 Enable interrupts;

 Lock::Release()

 Disable interrupts;

 if anyone on wait queue {

 take a waiting thread off

 put it on ready queue

 } else {

 value = FREE;

 }

 Enable interrupts;

When does Acquire re-enable interrupts in going to sleep?

Before putting the thread on the wait queue?
 Then Release can check queue, and not wake the thread up.

After putting the thread on the wait queue, but before going to
sleep?
 Then Release puts thread on the ready queue, but thread is
already on the ready queue! When thread wakes up, it will go
to sleep, missing the wakeup from Release.

To fix this, in Nachos, interrupts are disabled when you call
Thread::Sleep; it is the responsibility of the next thread to run
to re-enable interrupts.

When the sleeping thread wakes up, it returns from Sleep back
to Acquire. Interrupts are still disabled, so it's OK to check lock
value, and if it's free, grab the lock, and then turn on
interrupts .

Time

Thread A Thread B

.

.

.
disable
sleep

sleep return
enable
.
.
.
disable
sleep

sleep return
enable
.
.
.

switch

switch

Interrupt disable and enable pattern across context
s w i t c h e s

6.3.2 Locks using test&set, with minimal busy-waiting

How would we do implement locks with test&set, without
busy-waiting? Turns out you can’t, but you can minimize
busy-waiting. Idea: only busy-wait to atomically check lock
value; if lock is busy, give up CPU.

Lock::Acquire()

 while (test&set(guard))

;

 if (value != FREE) {

 put on queue of threads waiting for lock

 go to sleep & set guard to 0

 } else {

 value = BUSY;

 guard = 0;

 }

 Lock::Release()

 while (test&set(guard))

 ;

 if anyone on wait queue {

 take a waiting thread off

 put it on ready queue

 } else {

 value = FREE;

 }

 guard = 0;

6.4 Summary

Load/store, disabling and enabling interrupts, and atomic read-
modify-write instructions, are all ways that we can implement
higher level atomic operations.

