
Lecture 5: Synchronization: Too Much Milk

5.0 Motivation

Person A Person B
3:00 Look in fridge. Out of milk.
3:05 Leave for store.
3:10 Arrive at store. Look in fridge. Out of milk.
3:15 Buy milk. Leave for store.
3:20 Arrive home, put milk away. Arrive at store.
3:25 Buy milk.
3:30 Arrive home, put milk away.

Oh no!

5.1 Definitions

Synchronization: using atomic operations to ensure
cooperation between threads

Mutual exclusion: ensuring that only one thread does a
particular thing at a time. One thread doing it excludes the
other, and vice versa.

Critical section: piece of code that only one thread can
execute at once. Only one thread at a time will get into the
section of code.

Lock: prevents someone from doing something.

1) Lock before entering critical section, before accessing shared
d a t a

2) unlock when leaving, after done accessing shared data
3) wait if locked

Key idea -- all synchronization involves waiting.

5.2 Too Much Milk: Solution #1

What are the correctness properties for the too much milk
problem?
 never more than one person buys
 someone buys if needed

Restrict ourselves to only use atomic load and store operations
as building blocks.

Basic idea of solution #1:
 1. Leave a note (kind of like "lock")
 2. Remove note (kind of like "unlock")
 3. don't buy if note (wait)

Solution #1:

 if (noMilk) {

 if (noNote){

leave Note;

buy milk;

remove note;

}

}

Why doesn't this work? Thread can get context switched after
checking milk and note, but before buying milk!

Our "solution" makes problem worse -- fails only occassionally.
Makes it really hard to debug. Remember, constraint has to be
satisfied, independent of what the dispatcher does -- timer can
go off, and context switch can happen at any time.

5.3 Too Much Milk Solution #2

Karl
T1: if noMilk
T1: if noNote
T2: if noMilk
T2: if noNote
both will buy milk

How about labelled notes? That way, we can leave the note
before checking the milk.

Solution #2:

 Thread A Thread B

leave note A

if (noNote B){

 if (noMilk)

 buy milk

 }

remove note A

leave note B

if (noNoteA){

 if (noMilk)

 buy milk

 }

remove note B

Possible for neither thread to buy milk; context switches at
exactly the wrong times can lead each to think the other is
going to buy.
Illustrates starvat ion : thread waits forever

5.4 Too Much Milk Solution #3

Solution #3:

 Thread A Thread B

leave note A

while (note B)// X

 do nothing; if

(noMilk)

 buy milk;

remove note A

leave note B

if (noNoteA){// Y

 if (noMilk)

 buy milk

 }

remove note B

Does this work? Yes. Can guarantee at X and Y that either
 (i) safe for me to buy
 (ii) other will buy, ok to quit

At Y: if noNote A, safe for B to buy (means A hasn't started yet)

Karl
A: leave note A
B: leave note B
B: if noNote A
A: if noNote B
B:remove note B
A:remove note A

THEY GO THIRSTY

Karl
At X: if nonote B, safe to buy
if note B, don't know. A hangs around. Either:
if B buys, done
if B doesn't buy, A will.

 if note A, A is either buying, or waiting for B to quit,
so ok for B to quit

At X: if nonote B, safe to buy
 if note B, don't know. A hangs around. Either:

if B buys, done
if B doesn't buy, A will.

5.5 Too Much Milk Summary

Solution #3 works, but it's really unsatisfactory:

1. really complicated -- even for this simple an example, hard
to convince yourself it really works

2. A's code different than B's -- what if lots of threads? Code
would have to be slightly different for each thread.

3. While A is waiting, it is consuming CPU time (busy-
wa i t ing)

There's a better way.
1. Have hardware provide better (higher-level) primitives than
atomic load and store. Examples in next lecture.

2. Build even higher-level programming abstractions on this
new hardware support. For example, why not use locks as an
atomic building block (how we do this in the next lecture):

 Lock::Acquire -- wait until lock is free, then grab it
 Lock::Release -- unlock, waking up a waiter if any

These must be atomic operations -- if two threads are waiting
for the lock, and both see it's free, only one grabs it!

With locks, the too much milk problem becomes really easy!

lock->Acquire();

if (nomilk)

 buy milk;

lock->Release();

