
Lecture 4: Independent vs. cooperating threads

4.0 Main points
Why do we need to handle cooperating threads?
Atomic operations

4.1 Definitions
Independent threads:
 No state shared with other threads
 Deterministic -- input state determines result
 Reproducible
 Scheduling order doesn't matter

 Cooperating threads:
 Shared state
 Non-deterministic
 Non-reproducible

Non-reproducibility and non-determinism means that bugs can
be intermittent. This makes debugging really hard!

4.2 Why allow cooperating threads?

People cooperate; and computers model people's behavior, so
computers at some level have to cooperate!

1. Share resources/information
a. one computer, many users
b. one bank balance, many tellers
c. embedded systems (ex: robot control)

2. S p e e d u p
 a. overlap I/O and computation
 UNIX file system does read ahead

 b. multiprocessors -- chop up program into smaller pieces

3. Modular i ty
 chop large problem up into simpler pieces

 For example, to do typesetting: ref | grn | tbl | eqn | troff
 This makes the system easier to extend; you can write eqn
without changing troff

4.3 Some simple concurrent programs

Most of the time, threads are working on separate data, so
scheduling order doesn't matter:

Thread A Thread B

x = 1 y = 2

What about:

 initially, y = 12

x = y + 1 y = y * 2

What are the possible values for x after the above? What are
the posssible values of x below?

x = 1 x = 2

Can't say anything useful about a concurrent program without
knowing what are the underlying indivisible operations!

4.4 Atomic operations

Atomic operation: operation always runs to completion, or
not at all. Indivisible, can't be stopped in the middle.

On most machines, memory reference and assignment (load
and store) of words , are atomic.

Many instructions are not atomic. For example, on most 32-bit
architectures, double precision floating point store is not
atomic; it involves two separate memory operations.

4.5 A Larger Concurrent Program Example

Two threads, A and B, compete with each other; one tries to
increment a shared counter, the other tries to decrement the
counter.

For this example, assume that memory load and memory store
are atomic, but incrementing and decrementing are not atomic.

Thread A Thread B

i = 0

while (i < 10)

 i = i + 1;

print A wins

i = 0

while (i > -10)

 i = i - 1;

print B wins

Questions:
1. Who wins? Could be either.

2. Is it guaranteed that someone wins? Why not?

3. What if both threads have their own CPU, running in parallel
at exactly the same speed. Is it guaranteed that it goes on
forever?

In fact, if they start at the same time, with A 1/2 an instruction
ahead, B will win quickly.

Karl
Race condition: final result depends on who runs precisely whenA reads i:7= localA_iB reads i:7=localB_iB decrements i = 6A increments i =8decrement is lost

4. Could this happen on a uniprocessor?

Yes! Unlikely, but if you depend on it not happening, it will
happen, and your system will break and it will be very difficult
to figure out why.

