
Lecture 3: Threads and Dispatching

3.0 Main Point:
Each thread has illusion of its own CPU, yet on a uniprocessor,
all threads share the same physical CPU. How does this work?

Two key concepts:
 1. thread control block
 2. dispatching loop

3.1 Per-thread state

Thread control block (in Nachos, Thread class
 one per thread
 execution state: registers, program counter, pointer to stack
 scheduling information
 etc. (add stuff as you find a need)

3.2 Dispatching Loop (scheduler.cc)

 LOOP

 Run thread

 Save state (into thread control block)

 Choose new thread to run

 Load its state (into TCB) and loop

3.2.1 Running a thread:

How do I run a thread? Load its state (registers, PC, stack
pointer) into the CPU, and do a jump.

How does dispatcher get control back? Two ways:

Internal events (Sleeping Beauty -- go to sleep and hope
Prince Charming will wake you)

1. Thread blocks on I/O (examples: for disk I/O, or in emacs to
wait for you to type at keyboard)

2. Thread blocks waiting for some other thread to do something

3. Yield -- give up CPU to someone else waiting

What if thread never did any I/O, never waited, and didn't
yield control? Dispatcher has to gain control back somehow.

External events

1. Interrupts -- type character, disk request finishes wakes up
dispatcher, so it can choose another thread to run

2. Timer -- like an alarm clock.

3.2.2 Choosing a thread to run

Dispatcher keeps a list of ready threads -- how does it choose
among them?

Zero ready threads -- dispatcher just loops

One ready thread -- easy.

More than one ready thread:

1. LIFO (last in, first out): put ready threads on front of the list,
and dispatcher takes threads from front. Results in
starvation.

2. FIFO (first in, first out): put ready threads on back of list,
pull them off from the front (this is what Nachos does)

 3. Priority queue -- give some threads better shot at CPU

Priority field in thread control block. Keep ready list sorted by
priority.

3.2.3 Thread states
Each thread can be in one of three states:

1. Running -- has the CPU
2. Blocked -- waiting for I/O or synchronization with another

t h r e a d
3. Ready to run -- on the ready list, waiting for the CPU

Running

Ready Blocked

I/O request

I/O complete

yield,
timer

scheduled

Thread State Diagram

3.2.4 Saving/restoring state (often called "context switch"):

What do you need to save/restore when the dispatcher
switches to a new thread?

Anything next thread may trash: PC, registers, change
execution stack

Want to treat each thread in isolation.

To take an example from the Nachos code, what if two threads
loop, each calling "Yield"? Yield calls Switch to switch to the
next thread, but once you start running the next thread, you
are on a different execution stack. Thus, Switch is called in one
thread's context, but returns in the other's!

 Thread T switching to Thread S
There is a real implementation of Switch in Nachos in switch.s;
of course, it's magical!

What if you make a mistake in implementing switch? For
instance, suppose you forget to save and restore register 4?
Get intermittent failures depending on exactly when context
switch occurred, and whether new thread was using r4.
Potentially, system will give wrong result, without any warning
(if program didn't notice that r4 got trashed).

Can you devise an exhaustive test to guarantee that switch
works? No!

3.2.5 Interrupts

Interrupts are a special kind of hardware-invoked context
switch:

I/O finishes or timer expires. Hardware

causes CPU to stop what it's doing, start

running interrupt handler.

Handler saves state of interrupted thread

Handler runs

Handler restores state of interrupted

thread (if time-slice, restore state of

new thread)

Return to normal execution in restored

state

3.3 Thread creation

Thread "fork" -- create a new thread

Thread fork implementation:

Allocate a new thread control block and

execution call stack

Initialize the thread control block and

stack, with initial register values and

the address of the first instruction to

run

Tell dispatcher that it can run the

thread (put thread on ready list).

Thread fork is not the same thing as UNIX "fork". UNIX fork
creates a new process , so it has to create a new address space,
in addition to a new thread.

Thread fork is very much like an asynchronous procedure call -
-it means, go do this work, where the calling thread does not
wait for the callee to complete. What if the calling thread
needs to wait?

Thread Join -- wait for a forked thread to finish.

Thus, a traditional procedure call is logically equivalent to
doing a fork then immediately doing a join.

This is a normal procedure call:

A() { B(); }

B() { }

The procedure A can also be implemented as:

A'() {

 Thread t = new Thread;

 t->Fork(B);

 t->Join();

}

3.4 Multiprocessing vs. Multiprogramming

A
B
C

Multiprocessing

Multiprogramming

A B C

A B C A B B

Dispatcher can choose to run each thread to completion, or
time-slice in big chunks, or time slice so that each thread
executes only one instruction at a time (simulating a
multiprocessor, where each CPU operates in lockstep).

If the dispatcher can do any of the above, programs must work
under all cases, for all interleavings.

So how can you know if your concurrent program works?
Whether all interleavings will work?

