
Lecture 2: Concurrency: Threads, Address Spaces
and Processes

2.0 Main point:
What are threads?
How are they related to processes and address spaces?

2.1 Concurrency

Hardware: single CPU, I/O interrupts.
API: users think they have machine to themselves.

OS has to coordinate all the activity on a machine -- multiple
users, I/O interrupts, etc.

How can it keep all these things straight?

Answer: Decompose hard problem into simpler ones.  Instead
of dealing with everything going on at once, separate so deal
with one at a time.

2.2 Processes

Process: Operating system abstraction to represent what is
needed to run a single program (this is the traditional UNIX
definition)

Formally, a process is a sequential stream of execution in its
own address space.

2.2.1 Two parts to a process:

1. sequential execution:  No concurrency inside a process --
everything happens sequentially.



2. process state: everything that interacts with process.

    registers
    main memory
    files in UNIX

2.2.2 Process =? Program

A program  is C statements or commands (vi, ls)

main(){
...
}
A() {
...
}

PROGRAM

main(){
...
}
A() {
...
}

PROCESS

main
A

registers, PC

heap

stack

1. More to a process than just a program:

     program is just part of process state.

     I run ls; you run ls -- same program, different processes.

2. Less to a process than a program:

    A program can invoke more than one process to get the job
done

     cc starts up cpp, cc1, cc2, as (each are programs themselves)



2.2.3 Definitions

Uniprogramming: one process at a time (ex: MS/DOS,
Macintosh)

Easier for operating system builder: get rid of problem of
concurrency by defining it away.  For personal computers, idea
was: one user does only one thing at a time.

Harder for user: can't work while waiting for printer

Multiprogramming : more than one process at a time (UNIX,
OS/2)
(often called multitasking, but multitasking sometimes has
other meanings -- see below -- so not used in this course).

2.3 Threads

Thread : a sequential execution stream within a process
(concurrency) (Sometimes called: a "lightweight" process.)

Address space: all the state needed to run a program
(literally, all the addresses that can be touched by the
program).  Provide illusion that program is running on its own
machine (protection).

2.3.1 Why separate these concepts?

1. Discuss the "thread" part of a process, separately from the
"address space" part of a process.

2. Many situations where you want multiple threads per
address space.



Multithreading: a single program made up of a number of
different concurrent activities (sometimes called multitasking,
as in Ada, just to be confusing!)

2.3.2 Examples of multithreaded programs

1. Embedded systems: elevators, planes, medical systems,
wristwatches, etc.  Single program, concurrent operations.

2. Most modern OS kernels: internally concurrent because have
to deal with concurrent requests by multiple users.  But no
protection needed within kernel.

3. Network servers: user applications that get multiple requests
concurrently off the network.  Again, single program,
multiple concurrent operations (examples: file servers, Web
server, airline reservation system)

4. Parallel programming: split program into multiple threads to
make it run faster.  This is called multiprocessing .

   multiprogramming = multiple jobs or processes
   multiprocessing = multiple CPUs

Some multiprocessors are in fact uniprogrammed -- multiple
threads in one address space, but only run one program at a
time.

2.3.3 Thread State

What state does a thread have?
    Some state shared by all threads in a process/address space:

For example: contents of memory (global variables, heap),
file system



    Some state "private" to each thread -- each thread has its
own copy
    Program counter
    Registers
    Execution stack -- what is this?

Execution stack: where parameters, temporary variables,
return PC are kept, while called procedures are executing (for
example, where are A's variables kept, while B, C are
executing?)

A(int tmp) {
  B();
  printf(tmp);
}
B() {
  C();
}
C() {
  A(2);
}

A; tmp = 1

B

C

A; tmp = 2

Excecution stack

2.3.4 Address space state

Threads encapsulate concurrency; address spaces encapsulate
protection -- keep a buggy program from trashing everything
else on the system.

Address space state:
     Contents of main memory
     UNIX files

Address state is passive; thread is active



2.4 Classification

Real operating systems have either

     one or many address spaces
     one or many threads per address space

# of address spaces:

# of threads per
address space:

one m a n y

one MS/DOS, Macintosh traditional UNIX

m a n y embedded systems
Pilot

VMS, Mach, OS/2
Windows NT, Solaris,

HP-UX, ...

Examples:
1. MS/DOS -- one thread, one address space
2. traditional UNIX -- one thread per address space, many

address spaces
3. Mach, Microsoft NT, new UNIX (Solaris, HPUX) -- many

threads per address space, many address spaces
4. Embedded systems (Geoworks, VxWorks, etc.).  Also, Pilot

(the operating system on the first personal computer ever
built) -- many threads, one address space (idea was: no need
for protection if single user)

2.5 Summary

Processes have two parts: threads and address spaces.

Book talks about processes: when this concerns concurrency,
really talking about thread portion of a process; when this
concerns protection, really talking about address space portion
of a process.

Lecture 2 ended here


