
1

A review of Anderson’s lectures

• Extract key points

Review

• Why study operating systems?

• What is an operating system?

• Principles of operating system design

• History of operating systems

2

Why study OS?

• Abstraction: OS is a wizard, providing illusion
of infinite CPUs, infinite memory, single
worldwide computing, etc.

• System Design: tradeoffs between performance
and simplicity, crosscutting, putting
functionality in hardware vs. software, etc.

• How computers work: "look under the hood"
of computer systems

What is an Operating System?

• Definition: An operating system implements a
virtual machine that is (hopefully) easier to
program than the raw hardware:
– Application

» Virtual Machine Interface

– Operating System
» Physical Machine Interface

– Hardware

3

Just a software engineering
problem?

• In some sense, OS is just a software
engineering problem: how do you convert
what the hardware gives you into something
that the application programmers want?

Key questions in OS

• For any OS area (file systems, virtual
memory, networking, CPU scheduling),
begin by asking two questions:
– what’s the hardware interface? (the physical

reality)

– what’s the application interface? (the nicer
abstraction)

4

Same theme at higher levels

• what’s the programming language (e.g.
Java) interface? (the programming reality)

• what’s the application interface? (the nicer
abstraction)

Dual-mode operation

• when in the OS, can do anything (kernel-
mode)

• when in a user program, restricted to only
touching that program's memory (user-
mode)
– don’t need boundary between kernel and

application if system is dedicated to a
single application.

5

Portable operating system

• want OS to be portable, so put in a layer
that abstracts out differences between
different hardware architectures.

• OS
– portable OS layer

– machine dependent OS layer

Operating systems principles

• Meta-principle: OS design tradeoffs
change as technology changes.

6

History

• History Phase 1: hardware expensive,
humans cheap

• History, Phase 2: hardware cheap,
humans expensive

• History, Phase 3: hardware very cheap,
humans very e x p e n s i v e

Lecture 2: Concurrency:
Threads, Address Spaces

and Processes

• OS has to coordinate all the activity on a
machine -- multiple users, I/O interrupts, etc.

• How can it keep all these things straight?

• Answer: Decompose hard problem into simpler
ones. Instead of dealing with everything going on
at once, separate so deal with one at a time.

7

Processes

• Process: Operating system abstraction to
represent what is needed to run a single
program (this is the traditional UNIX
definition)

• Formally, a process is a sequential stream of
execution in its own address space.

Processes

• Two parts to a process:
– sequential execution: No concurrency inside a

process -- everything happens sequentially.

– process state: everything that interacts with
process.

• Process =? Program
– More to a process than just a program

– Less to a process than a program

8

Threads

• Thread: a sequential execution stream within a
process (concurrency)

• Sometimes called: a "lightweight" process.

• Address space: all the state needed to run a
program (literally, all the addresses that can be
touched by the program).

• Multithreading: a single program made up of a
number of different concurrent activities

Thread state

• Some state shared by all threads in a
process/address space: contents of memory
(global variables, heap), file system

• Some state "private" to each thread -- each
thread has its own program counter,
registers, execution stack

• Threads encapsulate concurrency; address
spaces encapsulate protection

9

Book

• Book talks about processes: when this
– concerns concurrency, really talking about

thread portion of a process; when this

– concerns protection, really talking about
address space portion of a process.

Lecture 3: Threads and
Dispatching

• Each thread has illusion of its own CPU
– Thread control block: one per thread execution state:

registers, program counter, pointer to stack
scheduling information, etc.

• Dispatching Loop (scheduler.cc)
– LOOP

– Run thread

– Save state (into thread control block)

– Choose new thread to run

– Load its state (into TCB) and loop

10

Running a thread

• Load its state (registers, PC, stackpointer)
into the CPU, and do a jump.

• How does dispatcher get control back? Two
ways:
– Internal events: IO, other thread, yield

– External events: Interrupts, timer

Choosing a thread to run

• Dispatcher keeps a list of ready threads --
how does it choose among them?
– Zero ready threads -- dispatcher just loops

– One ready thread -- easy.

– More than one ready thread:
• LIFO

• FIFO

• Priority queue

11

Thread states

• Each thread can be in one of three states:
– Running -- has the CPU

– Blocked -- waiting for I/O or synchronization
with another thread

– Ready to run -- on the ready list, waiting for the
CPU

Lecture 4: Independent vs.
cooperating threads

• Independent threads: No state shared with
other threads Deterministic -- input state
determines result, Reproducible, Scheduling
order doesn't matter

• Cooperating threads: Shared state, Non-
deterministic, Non-reproducible

12

Why allow cooperating
threads?

• Why allow cooperating threads?
• Speedup
• Modularity chop large problem up into

simpler pieces

• Need:
– Atomic operation: operation always runs to

completion, or not at all. Indivisible, can't be
stopped in the middle.

Lecture 5: Synchronization:
Too Much Milk

• Synchronization: using atomic operations to ensure
cooperation between threads

• Mutual exclusion: ensuring that only one thread
does a particular thing at a time. One thread doing it
excludes the other, and vice versa.

• Critical section: piece of code that only one thread
can execute at once. Only one thread at a time will
get into the section of code.

13

Lecture 5

• Lock: prevents someone from doing something.
• Lock before entering critical section, before accessing shared

d a t a

• unlock when leaving, after done accessing shared data

• wait if locked

• Key idea -- all synchronization involves waiting.

Too Much Milk Summary

• Have hardware provide better (higher-level)
primitives than atomic load and store.

• Use locks as atomic building block and
solution becomes easy:
– lock->Acquire();

• if (nomilk) buy milk;

– lock->Release();

14

Lecture 6: Implementing
Mutual Exclusion

• High level atomic operations (API)
– locks, semaphores, monitors, send&receive

• Low level atomic operations (hardware)
– load/store, interrupt disable, test&set

Lecture 7: Semaphores and
Bounded Buffer

• Writing concurrent programs is hard because you
need to worry about multiple concurrent activities
writing the same memory; hard because ordering
matters.

• Synchronization is a way of coordinating multiple
concurrent activities that are using shared state.
What are the right synchronization abstractions, to
make it easy to build correct concurrent programs?

15

Definition of Semaphores

• Semaphores are a kind of generalized lock,
first defined by Dijkstra in the late 60's.
Semaphores are the main synchronization
primitive used in UNIX.

• ATOMIC operations
– P = Down, waits for positive, decrements by 1

– V = Up, increments by 1, waking up any
waiting P

Two uses of semaphores

• Mutual exclusion
– semaphore->P();

– // critical section goes here

– semaphore->V();

• Scheduling constraints
– semaphores provide a way for a thread to wait

for something.

16

Motivation for monitors

• Semaphores are a huge step up; But
problem with semaphores is that they are
dual purpose. Used for both mutex and
scheduling constraints.

• This makes the code hard to read, and hard
to get right.

Monitors

• Idea in monitors is to separate these
concerns:
– use locks for mutual exclusion and

– condition variables for scheduling constraints

• Monitor: a lock and zero or more condition
variables for managing concurrent access to
shared data

17

Lock

• Lock::Acquire -- wait until lock is free, then
grab it

• Lock::Release -- unlock, wake up anyone
waiting in Acquire

condition variables

• Key idea with condition variables: make it
possible to go to sleep inside critical
section, by atomically releasing lock at
same time we go to sleep

• Condition variable: a queue of threads
waiting for something inside a critical
section

18

Difference between monitors and
Java classes

• From Solomon: processes.html: First, instead of
marking a whole class as monitor, you have to
remember to mark each method as synchronized.
Every object is potentially a monitor. Second,
there are no explicit condition variables. In effect,
every monitor has exactly one anonymous
condition variable. Instead of writing c.wait() or
c.notify(), where c is a condition variable, you
simply write wait() or notify()

Synchronized Queue

• public synchronized void
AddToQueue(Object item) {

 // add item to queue;

 notify();

 }

19

Synchronized Queue

public synchronized Object

 RemovFromQueue() {

 while (is_empty())

 try {wait(); }

 catch(InterruptedException

 ex) {};

 //remove item from queue;

 return item;}

Summary Lecture 7

• Monitors represent the logic of the program
-- wait if necessary, signal if change
something so waiter might need to wake up.

20

Synchronization in Java

• Monitors

• Separate core behavior from
synchronization behavior

Basic behavior

public class GroundCounter {
 protected long count_;
 protected GroundCounter(long c){
 count_ = c;
 }
 protected long value_(){return count_;}
 protected void inc_() { ++ count_;}
 protected void dec_() { -- count_;}
}

21

Synchronization using
Subclassing

public class BoundedCounterC extends GroundCounter
 implements BoundedCounter {
 public BoundedCounterC() { super(MIN); }
 public synchronized long value() { return value_();}
 public synchronized void inc() {
 while (value_() >= MAX)
 try {wait();} catch(InterruptedException ex){};
 inc_(); notifyAll();}
 public sychronized void dec() {
 while (value_() <= MIN)
 try {wait();} catch(InterruptedException ex) {};
 dec_(); notifyAll();}
 }

BoundedCounter interface
public interface BoundedCounter {
 public static final long MIN = 0;
 public static final long MAX = 10;
 public long value();// invariant:
 // MIN <= value() <= MAX
 public void inc(); // only when value()<MAX
 public void dec(); // only when value()>MIN
}

22

Advantage of separation

• Less tangling: separation of concerns.

• Can more easily use different synchronization
policy; can use synchronization policy with
other basic code.

• Avoids to mix variables used for
synchronization with variables used for basic
behavior.

Implementation rules

• For each condition that needs to be waited
on, write a guarded wait loop.

• Ensure that every method causing state
changes that affect the truth value of any
waited-for condition invokes notifyAll to
wake up any threads waiting for state
changes.

23

Waits

• While loop is essential: when an action is
resumed, the waiting task does not know
whether the condition is true: it must check
again. Avoid busy waits like:

protected void spinWaitUntilCond(){
 while (!cond_)
 Thread.currentThread().yield();
}

Notifications

• Good to start with blanket notifications
using notifyAll

• notifyAll is an expensive operation

• optimize later

24

Semaphores in Java
public final class CountingSemaphore {
 private int count_ = 0;
 public CountingSemaphore(int inC) {
 count_ = inC;}
 public void P() { // down
 while (count_ <= 0)
 try {wait();}
 catch (InterruptedException ex) {}
 --count_;}
 public void V() { // up
 ++count_; notify(); }
} From: Concurrent Programming in Java by Doug Lea

Readers and Writers

public abstract class RW {
 protected int activeReaders_ = 0; //threads executing read_
 protected int activeWriters_ = 0; //always zero or one
 protected int waitingReaders_ = 0; //threads not yet in read_
 protected int waitingWriters_ = 0; // same for write_

 protected abstract void read_(); //implement in subclasses
 protected abstract void write_();//implement in subclasses
 public void read(){beforeRead(); read_();afterRead();}
 public void write(){beforeWrite(); write_();afterWrite();}
 protected boolean allowReader() {
 return waitingWriters_ == 0 && activeWriters_ == 0;}
 protected boolean allowWriter() {
 return activeReaders_==0 && activeWriters_ == 0;}

From: Concurrent Programming in Java by Doug Lea

25

Readers and Writers
// continued: public abstract class RW {
 protected synchronized void beforeRead() {
 ++ waitingReaders_;
 while (!allowReader())
 try {wait();} catch (InterruptedException ex) {}
 -- waitingReaders_;
 ++ activeReaders_; }
 protected synchronized void afterRead() {
 --activeReaders_;
 notifyAll();}

Readers and Writers
// continued: public abstract class RW {
 protected synchronized void beforeWrite() {
 ++ waitingWriters_;
 while (!allowWriter())
 try {wait();} catch (InterruptedException ex) {}
 -- waitingWriters_;
 ++ activeWriters_; }
 protected synchronized void afterWrite() {
 --activeWriters_;
 notifyAll();}
}

26

Threads and locks

• Java associates a lock with every object. The
lock is used to allow only one thread at a time to
execute a region of protected code.

• The synchronized statement synchronized(e)
{b} (1) locks a lock associated with the object
returned by e and (2) after executing b, it
unlocks the same lock.

Threads and locks

• As a convenience, a method may be
synchronized. Such a method behaves as if
its method were synchronized in a
synchronized statement.

synchronized void f(){b} =

void f(){ synchronized(this) {b};}

27

Threads and locks

• Code in one synchronized method may make self-
calls to another synchronized method in the same
object without blocking.

• Similarly for calls on other objects for which the
current thread has obtained and not yet released a
lock.

• Synchronization is retained when calling an
unsynchronized method from a synchronized one.

Example

Class A{

 synchronized void f(){this.g();}

 synchronized void g(){…};

}

…

A a; a.f();

// The a-lock will be acquired
twice and released twice.

28

Threads and locks
• Only one thread at a time is permitted to lay claim

on a lock, and moreover a thread may acquire the
same lock multiple times and doesn’t relinquish
ownership of it until a matching number of unlock
actions have been performed.

• An unlock action by a thread T on a lock L may
occur only if the number of preceding unlock
actions by T on L is strictly less than the number
of preceding lock action by T on L. (unlock only
what it owns)

Threads and locks
• A notify invocation on an object results in the

following:
– If one exists, an arbitrarily chosen thread, say T, is

removed by the Java runtime system from the internal
wait queue associated with the target object.

– T must re-obtain the synchronization lock for the target
object which will always cause it to block at least until
the thread calling notify releases the lock.

– T is then resumed at the point of its wait.

29

HW related viewgraphs

• UML class diagram

• Law of Demeter

File

SimpleFile CompoundFile

Link

FileName

fn

*

files

link

Hw 2, Part 1 UML class diagram
For representing file system
italics: abstract class

30

WebScript

Service

*

services

Url

String

TimeOut Repeat

Alternative

Concurrent

serv2

serv1serv

main

alternate

serv

Hw 2, part 2
UML class diagram
for representing input

timeout:
float

Directory
DirectoryEntry

INode FileName

Mode

RegularFile

*entries

inode
filename

Size
int i;

mode

Ident

Block

*
blocks

UNIX style directory structure

31

Directory
DirectoryEntry

INode FileName

Mode

RegularFile

*entries

inode
filename

Size
int i;

mode

Ident

Block

*
blocks

Maximum RegularFile size

Traversal: from Directory to RegularFile

Directory
DirectoryEntry_List

INode

Mode

RegularFile

*

entries

inode

Size
int i;

mode

Maximum RegularFile size: implementation structure

Vector
DirectoryEntry

Object

32

Law of Demeter Principle

• Each unit should only use a limited set of
other units: only units “closely” related to
the current unit.

• “Each unit should only talk to its friends.”
“Don’t talk to strangers.”

• Main Motivation: Control information
overload. We can only keep a limited set of
items in short-term memory.

Law of Demeter
FRIENDS

33

Application to OO

• Unit = method
– closely related =

• methods of class of this/self and other
argument classes

• methods of immediate part classes (classes that are
return types of methods of class of this/self)

• In the following we talk about this
application of the Law of Demeter Principle
to OO: example follows in a few slides.

Violations: Dataflow Diagram

A
B C

1:b 2:c

P Q

3:p()

4:q()

foo()

bar()

m

34

OO Following of LoD

A
B C

1:b c

P Q
3:p() q()

foo()

bar()

m

2:foo2()

4:bar2()

foo2

bar2

Strategy - Example

SortAlgorithm

+ sort()

H e a p S o r t

+ sort()

M e r g e S o rt

+ s o r t ()

Q u i c k S o r t

+ s o r t ()

S o r t L i s t

+ a d d E l e m e n t ()

+sorter

s o r t e r . s o r t ()

35

Lecture 9: Concurrency
Conclusion

• Every major operating system built since 1985
has provided threads -- Mach, OS/2, NT
(Microsoft), Solaris (new OS from SUN), OSF
(DEC Alphas). Why? Makes it easier to write
concurrent programs, from Web servers, to
databases, to embedded systems.

• Moral: threads are cheap, but they're not
free.

Lecture 10: Deadlock

• Necessary conditions:
– Limited access (for example: mutex or bounded

buffer)

– No preemption (if someone has resource, can't
take it away)

– Multiple independent requests -- "wait while
holding"

– Circular chain of requests

36

Solutions to Deadlock

• Detect deadlock and fix
• scan graph of threads and resources

• detect cycles

• fix them // this is the hard part!
– Shoot thread, force it to give up resources.

– Roll back actions of deadlocked threads
(transactions)

Solutions to Deadlock

• Preventing deadlock
– Need to get rid of one of the four conditions

– Banker's algorithm:(request can be granted if
some sequential ordering of threads is deadlock
free)

37

Lecture 11: CPU Scheduling

• Scheduling Policy Goals:
– Minimize response time

– Maximize throughput: operations (or jobs) per
second

– Fair: share CPU among users in some equitable
way

Scheduling Policies

• FIFO
• Round Robin
• STCF: shortest time to completion first.

• SRTCF: shortest remaining time to
completion first. Preemptive version of
STCF

• Multilevel feedback
• Lottery scheduling (for fairness)

38

Multilevel Feedback Queue

• A process can move between the various queues; aging can be
implemented this way.

• Multilevel-feedback-queue scheduler defined by the following
parameters:

– number of queues

– scheduling algorithm for each queue

– method used to determine when to upgrade a process

– method used to determine when to demote a process

– method used to determine which queue a process will enter when
that process needs service

Lecture 12: Protection: Kernel
and Address Spaces

• How is protection implemented?

• Hardware support:
– address translation

– dual mode operation: kernel vs. user mode

39

Lecture 13: Address
Translation

• Paging
• Allocate physical memory in terms of fixed

size chunks of memory, or pages.

• allows use of a bitmap.

• Operating system controls mapping: any
page of virtual memory can go anywhere in
physical memory.

Lecture 14: Caching and TLBs

• Cache: copy that can be accessed more
quickly than original. Idea is: make frequent
case efficient, infrequent path doesn't matter
as much. Caching is a fundamental concept
used in lots of places in computer systems.
It underlies many of the techniques that are
used today to make computers go fast

40

Caching

• Translation Buffer, Translation
Lookaside Buffer:
– hardware table of frequently used translations,

to avoid havingto go through page table lookup
in common case.

• Thrashing: cache contents tossed out even if
still needed

Writes

• Two options:
– write-through: update immediately sent

through to next level in memory hierarchy

– write-back: (delayed write-through) update
kept until item is replaced from cache, then sent
to next level.

41

Localities

• Temporal locality: will reference same
locations as accessed in the recent past

• Spatial locality: will reference locations
near those accessed in the recent past

• When does caching break down?
– Whenever programs don’t exhibit enough

spatial or temporal locality

Coordination aspect

• Review of AOP

• Summary of threads in Java

• COOL (COOrdination Language)
– Design decisions

– Implementation at Xerox PARC

42

the goal is a clear
separation of concerns

we want:
– natural decomposition

– concerns to be cleanly localized

– handling of them to be explicit

– in both design and implementation

achieving this requires...
• synergy among

– problem structure and

– design concepts and

– language mechanisms

“natural design”

“the program looks like the design”

43

What is an aspect?

• An aspect is a modular unit that cross-cuts
the structure of other modular units.

• An aspect is a unit that encapsulates state,
behavior and behavior enhancements to
other units.

Cross-cutting of components and
aspects
ordinary program

structure-shy
functionality

structure

synchronization

better program

Components

Aspect 1

Aspect 2

44

Aspect-Oriented Programming
components and aspect descriptions

weaver
(compile-
time)

Source Code
(tangled code)

High-level view,
implementation may
be different

Coordination aspect

• Put coordination code about thread
synchronization in one place.

• Threads are synchronized through methods.

• Method synchronization
– Exclusion sets

– Method managers

45

Problem with synchronization
code: it is tangled with

component code

class BoundedBuffer {

 Object[] array;

 int putPtr = 0, takePtr = 0;

 int usedSlots = 0;

 BoundedBuffer(int capacity){

 array = new Object[capacity];

 }

Tangling
synchronized void put(Object o) {
 while (usedSlots == array.length) {
 try { wait(); }
 catch (InterruptedException e) {};
 }
 array[putPtr] = o;
 putPtr = (putPtr +1) % array.length;
 if (usedSlots==0) notifyall();
 usedSlots++;
 // if (usedSlots++==0) notifyall();
}

46

Solution: tease apart basics and
synchronization

• write core behavior of buffer

• write coordinator which deals with
synchronization

• use weaver which combines them together

• simpler code
• replace synchronized, wait,
notify and notifyall by coordinators

With coordinator: basics

BoundedBuffer {
public void put (Object o) (@
 array[putPtr] = o;
 putPtr = (putPtr+1)%array.length;
 usedSlots++; @)
public Object take() (@
 Object old = array[takePtr];
 array[takePtr] = null;
 takePtr = (takePtr+1)%array.length;
 usedSlots--;
 return old; @)

47

Coordinator

coordinator BoundedBuffer {
 selfex put, take;
 mutex {put, take}
 condition empty=true, full=false;

exclusion sets

coordinator variables

Using Demeter/COOL, put into *.cool file

Coordinator

 put requires (!full) {
 on exit {empty=false;
 if (usedSlots==array.length)
 full=true; }}
 take requires (!empty) {
 on exit {full=false;
 if (usedSlots==0)
 empty=true; }}
}

method managers with requires clauses and entry/exit clauses

48

COOL Shapepublic class Shape {
 protected double x_ = 0.0;
 protected double y_ = 0.0;
 protected double width_ = 0.0;
 protected double height_ = 0.0;

 double x() { return x_(); }
 double y() { return y_(); }
 double width(){
 return width_();
 }
 double height(){
 return height_();
 }

 void adjustLocation() {
 x_ = longCalculation1();
 y_ = longCalculation2();
 }

 void adjustDimensions() {
 width_ = longCalculation3();
 height_ = longCalculation4();
 }
}

coordinator Shape {
 selfex {adjustLocation,
 adjustDimensions}
 mutex {adjustLocation,x}
 mutex {adjustLocation,y}
 mutex {adjustDimensions,
 width}
 mutex {adjustDimensions,
 height}
}

plain Java

Remaining Lectures

• See original notes

49

Some courses in Software
Engineering Track

• Adaptive Object-Oriented Software
Development (COM 3360)

• Object-Oriented Design (COM 3230,
Professor Lorenz)

• Component-Based Programming (COM
3240, Professor Lorenz)

The End

• Nothing lasts …

• Everything arises and passes away

Hoping to see you in COM3360

