A review of Anderson’s lectures

» Extract key points

Review

Why study operating systems?

What is an operating system?
Principles of operating system design
History of operating systems

Why study OS?

» Abstraction: OSisawizard, providing illusion
of infinite CPUs, infinite memory, single
worldwide computing, €tc.

» System Design: tradeoffs between performance
and simplicity, crosscutting, putting
functionality in hardware vs. software, €tc.

» How computerswork: "look under the hood"
of computer systems

What is an Operating System?

» Definition: An operating system implements a
virtual machine that is (hopefully) easier to
program than the raw hardware;

— Application

» Virtual Machine Interface
— Operating System

» Physical Machine Interface
— Hardware

Just a software engineering
problem?

* In some sense, OSisjust a software
engineering problem: how do you convert
what the hardware gives you into something
that the application programmers want?

Key questionsin OS

» For any OS area (file systems, virtual
memory, networking, CPU scheduling),
begin by asking two questions:

— what’ s the hardware interface? (the physical
reality)

— what’ s the application interface? (the nicer
abstraction)

Same theme at higher levels

» what's the programming language (e.g.
Java) interface? (the programming redlity)

» what's the application interface? (the nicer
abstraction)

Dual-mode oper ation

« when in the OS, can do anything (kernel-
mode)

» when in auser program, restricted to only
touching that program’'s memory (user-
mode)

—don’t need boundary between kernel and

application if system is dedicated to a
single application.

Portable operating system

» want OSto be portable, so put in alayer
that abstracts out differences between
different hardware architectures.

e OS

— portable OS layer
— machine dependent OS layer

Operating systems principles

» Meta-principle: OS design tradeoffs
change as technology changes.

History

» History Phase 1. hardwar e expensive,
humans cheap

» History, Phase 2: hardwar e cheap,
humans expensive

» History, Phase 3. hardware very cheap,
humansveryexpensive

Lecture 2: Concurrency:
Threads, Address Spaces
and Processes

» OS hasto coordinate all the activity on a
machine -- multiple users, I/O interrupts, etc.

» How can it keep all these things straight?

» Answer: Decompose hard problem into ssmpler
ones. Instead of dealing with everything going on
at once, separate so deal with one at atime.

Processes

» Process. Operating system abstraction to
represent what is needed to run asingle
program (thisisthe traditional UNIX
definition)

» Formally, aprocessis a sequentia stream of
execution in its own address space.

Processes

 Two partsto a process.
— sequential execution: No concurrency inside a
process -- everything happens sequentially.
— process state: everything that interacts with
process.
* Process=? Program
— Moreto a process than just a program
— Lessto a process than a program

Threads

Thread: asequential execution stream within a
process (concurrency)

Sometimes called: a"lightweight" process.

Address space: dl the state needed to run a
program (literally, all the addresses that can be
touched by the program).

Multithreading: asingle program made up of a
number of different concurrent activities

Thread state

» Some state shared by all threadsin a
process/address space: contents of memory
(global variables, heap), file system

» Some state "private" to each thread -- each
thread has its own program counter,
registers, execution stack

» Threads encapsulate concurrency; address
spaces encapsul ate protection

Book

» Book talks about processes. when this

— concerns concurrency, really talking about
thread portion of a process; when this

— concerns protection, really talking about
address space portion of a process.

L ecture 3: Threads and
Dispatching

» Each thread hasillusion of its own CPU

— Thread control block: one per thread execution state:
registers, program counter, pointer to stack
scheduling information, etc.

» Dispatching L oop (scheduler.cc)

— LOOP
— Run thread
— Save state (into thread control block)
— Choose new thread to run
— Load its state (into TCB) and loop

Running athread

o Load its state (registers, PC, stackpointer)
into the CPU, and do ajump.
» How does dispatcher get control back? Two
ways.
— Internal events: 10, other thread, yield
— External events: Interrupts, timer

Choosing athread torun

» Dispatcher keeps alist of ready threads --
how does it choose among them?
— Zero ready threads -- dispatcher just loops
— One ready thread -- easy.
— More than one ready thread:
* LIFO

* FIFO
* Priority queue

10

Thread states

 Each thread can be in one of three states:
— Running -- has the CPU
— Blocked -- waiting for 1/O or synchronization
with another thread
— Ready to run -- on the ready list, waiting for the
CPU

L ecture 4: Independent vs.
cooper ating threads

 Independent threads. No state shared with
other threads Deterministic -- input state
determines result, Reproducible, Scheduling
order doesn't matter

» Cooperating threads:. Shared state, Non-
deterministic, Non-reproducible

11

Why allow cooper ating
threads?

Why allow cooper ating threads?

Speedup

Modularity chop large problem up into
simpler pieces

Need:

— Atomic oper ation: operation always runs to
completion, or not at all. Indivisible, can't be
stopped in the middle.

L ecture 5. Synchronization:
Too Much Milk

» Synchronization: using atomic operations to ensure
cooperation between threads

« Mutual exclusion: ensuring that only one thread
does a particular thing at atime. One thread doing it
excludes the other, and vice versa.

 Critical section: piece of code that only one thread
can execute at once. Only one thread at a time will
get into the section of code.

12

Lectureb

» Lock: prevents someone from doing something.
* Lock before entering critical section, before accessing shared

data
 unlock when leaving, after done accessing shared data
» wait if locked

» Key idea-- all synchronization involves waiting.

Too Much Milk Summary

» Have hardware provide better (higher-level)
primitives than atomic load and store.

» Uselocks as atomic building block and
solution becomes easy:

— lock->Acquire();
« if (nomilk) buy milk;

— lock->Release();

13

L ecture 6: Implementing
Mutual Exclusion

» High level atomic operations (AP)
— locks, semaphores, monitors, send& receive
» Low level atomic operations (hardware)
— load/store, interrupt disable, test& set

L ecture 7. Semaphores and
Bounded Buffer

» Writing concurrent programsis hard because you
need to worry about multiple concurrent activities
writing the same memory; hard because ordering
matters.

« Synchronization isaway of coordinating multiple
concurrent activities that are using shared state.
What are the right synchronization abstractions, to
make it easy to build correct concurrent programs?

14

Definition of Semaphores

» Semaphores are akind of generalized lock,
first defined by Dijkstrain the late 60's.
Semaphores are the main synchronization
primitive used in UNIX.

o ATOMIC operations
— P =Down, waits for positive, decrements by 1

—V = Up, increments by 1, waking up any
waiting P

Two uses of semaphores

« Mutual exclusion
— semaphore->P();
— [/ critical section goes here
— semaphore->V();

» Scheduling constraints

— semaphores provide away for athread to wait
for something.

15

M otivation for monitors

» Semaphores are a huge step up; But
problem with semaphores is that they are
dual purpose. Used for both mutex and
scheduling constraints.

» This makes the code hard to read, and hard
to get right.

Monitors

 |deain monitorsisto separate these
concerns:
— use locks for mutual exclusion and
— condition variables for scheduling constraints

* Monitor: alock and zero or more condition
variables for managing concurrent accessto
shared data

16

L ock

» Lock::Acquire-- wait until lock isfree, then
grab it

» Lock::Release -- unlock, wake up anyone
waiting in Acquire

condition variables

» Key ideawith condition variables. make it
possible to go to sleep inside critical
section, by atomically releasing lock at
same time we go to sleep

« Condition variable: aqueue of threads
waiting for something inside a critical
section

17

Difference between monitors and
Java classes

» From Solomon: processes.html: First, instead of
marking a whole class as monitor, you have to
remember to mark each method as synchronized.
Every object is potentially a monitor. Second,

there are no explicit condition variables. In effect,

every monitor has exactly one anonymous
condition variable. Instead of writing c.wait() or
c.notify(), where c isa condition variable, you
simply write wait() or notify()

Synchronized Queue

 public synchronized void
AddToQueue(Chj ect item

// add itemto queue;
notify();

18

Synchronized Queue

publ i c synchroni zed Obj ect

RenovFronfueue() {

while (is_enpty())

try {wait(); }
catch(I nterrupt edException
ex) {};

/'l remove item from queue;

return item}

Summary Lecture 7

» Monitors represent the logic of the program
-- wait iIf necessary, signal if change

something so waiter might need to wake up.

19

Synchronization in Java

 Monitors

» Separate core behavior from
synchronization behavior

Basic behavior

public class G oundCounter {
protected | ong count ;
prot ected G oundCounter(long c){
count _ = c;
}
protected long value (){return count_;}
protected void inc_() { ++ count _;}
protected void dec () { -- count_;}

20

Synchronization using
Subclassing

public class BoundedCount er C ext ends G oundCount er
i mpl enent s BoundedCount er {
publ i c BoundedCounterC() { super(MN); }
public synchronized | ong value() { return value_();}
public synchronized void inc() {
whil e (value_() >= MAX)
try {wait();} catch(lnterruptedException ex){};
inc_(); notifyAll();}
public sychroni zed void dec() {
while (value_() <= MN)
try {wait();} catch(lnterruptedException ex) {};
dec_(); notifyAl();}
}

BoundedCounter interface

public interface BoundedCounter {
public static final long MN = 0O;
public static final |ong MAX = 10;
public long value();// invariant:
[l MN <= value() <= MAX
public void inc(); // only when val ue()<MAX
public void dec(); // only when val ue()>M N

21

Advantage of separation

 Lesstangling: separation of concerns.

» Can more easily use different synchronization
policy; can use synchronization policy with
other basic code.

» Avoidsto mix variables used for
synchronization with variables used for basic
behavior.

|mplementation rules

» For each condition that needs to be waited
on, write aguarded wait loop.

» Ensure that every method causing state
changes that affect the truth value of any
waited-for condition invokes notifyAll to
wake up any threads waiting for state
changes.

22

Walits

» Whileloop isessential: when an action is
resumed, the waiting task does not know
whether the condition istrue: it must check
again. Avoid busy waitslike:

protected void spinWaituUntil Cond(){
while (!cond))
Thread. current Thread().yi el d();

Notifications

» Good to start with blanket notifications
using notifyAll

 notifyAll is an expensive operation

 optimize later

23

Semaphores in Java

public final class CountingSemaphore {

private int count_ = O;
publ i ¢ Counti ngSemaphore(int inC) {
count _ =1inGC}

public void P() { // down
whil e (count_ <= 0)
try {wait();}
catch (InterruptedException ex) {}
--count _;}
public void V() { // up
++count _; notify(); }

} From: Concurrent Programming in Java by Doug Lea

Readers and Writers

public abstract class RW{
protected int activeReaders_
protected int activeWiters_
protected int waitingReaders_
protected int waitingWiters_

0; //threads executing read_
0; //always zero or one

0; //threads not yet in read_
0; // sane for wite_

protected abstract void read_(); //inplement in subclasses
protected abstract void wite_();//inplenment in subclasses
public void read(){beforeRead(); read_();afterRead();}
public void wite(){beforeWite(); wite_();afterWite();}
protected bool ean al | owReader () {

return waitingWiters_ == 0 & activeWiters_ == 0;}
protected bool ean allowWiter() {
return activeReaders_==0 && activeWiters_ == 0;}

From: Concurrent Programming in Java by Doug Lea

Readers and Writers

/1 continued: public abstract class RW/{

protected synchroni zed voi d beforeRead() ({
++ wai ti ngReaders_;
while (!all owReader())

try {wait();} catch (InterruptedException ex) {}

-- wai tingReaders_;
++ activeReaders_; }

protected synchroni zed void afterRead() ({
--activeReaders_;
noti fyAll();}

Readers and Writers

/1 continued: public abstract class RW/{

protected synchroni zed void beforeWite() {
++ waitingWiters_;
while (lallowNiter())

try {wait();} catch (InterruptedException ex) {}

-- waitingWiters_;
++ activeWiters_; }

protected synchroni zed void afterWite() {
--activeWiters_;
noti fyAll();}

25

Threads and locks

 Javaassociates alock with every object. The
lock is used to allow only one thread at atimeto
execute aregion of protected code.

» The synchronized statement synchronized(e)
{b} (1) locks alock associated with the object
returned by e and (2) after executing b, it
unlocks the same lock.

Threads and locks

» Asaconvenience, a method may be
synchronized. Such a method behaves asiif
its method were synchronized in a
synchronized statement.

synchroni zed void f(){b} =

void f(){ synchronized(this) {b};}

26

Threads and locks

» Code in one synchronized method may make self-
calls to another synchronized method in the same
object without blocking.

» Similarly for calls on other objects for which the
current thread has obtained and not yet released a
lock.

» Synchronization is retained when calling an
unsynchronized method from a synchronized one.

Example

Gl ass A{
synchroni zed void f(){this.g();}
synchroni zed void g(){.};

}
Aa; a.f();
/'l The a-lock will be acquired

twi ce and rel eased tw ce.

27

Threads and locks

* Only onethread at atimeis permitted to lay claim
on alock, and moreover athread may acquire the
same lock multiple times and doesn’t relinquish
ownership of it until a matching number of unlock
actions have been performed.

* Anunlock action by athread T on alock L may
occur only if the number of preceding unlock
actions by T on L is strictly less than the number
of preceding lock action by T on L. (unlock only
what it owns)

Threads and locks

* A notify invocation on an object resultsin the
following:

— If one exists, an arbitrarily chosen thread, say T, is
removed by the Java runtime system from the internal
wait queue associated with the target object.

— T must re-obtain the synchronization lock for the target
object which will always cause it to block at least until
the thread calling notify releases the lock.

— T isthen resumed at the point of its wait.

28

HW related viewgraphs

 UML classdiagram

e Law

of Demeter

FileName

'fn\

Hw 2, Part 1 UML class diagram
For representing file system
italics: abstract class

y File

/

Link

NN

SimpleFile CompoundFile

29

Hw 2, part 2

) main UML class diagram
Service for representing input
services aternate
> \
N\
WebScript serv2
serv i
serv sarvi Alternative
timeout:
float
url TimeOut Repeat Concurrent
A
String

UNIX style directory structure

filename

*

blocks

Maximum RegularFile size

filename

*

blocks

Traversal: from Directory to RegularFile

Maximum RegularFile size: implementation structure

31

Law of Demeter Principle

« Each unit should only use a limited set of
other units: only units*“closely” related to
the current unit.

 “Each unit should only talk to its friends.”
“Don’t talk to strangers.”

 Main Motivation: Control information
overload. We can only keep alimited set of
items in short-term memory.

Law of Demeter
FRIENDS

32

Application to OO

* Unit = method

— closely related =
» methods of classof t hi s/ sel f and other
argument classes

» methods of immediate part classes (classes that are
return types of methods of classof t hi s/ sel f)

* In the following we talk about this
application of the Law of Demeter Principle
to OO: example followsin afew slides.

Violations. Dataflow Diagram

33

OO Following of LoD

foo2
1:b

bar2

3:p()

c foo()
B C
2:1002()
4Jxr29/’
bar ()
a0
P Q

Strategy - Example

+sorter|

SortAlgorithm
+ sort()

b

Lecture 9: Concurrency
Conclusion

« Every major operating system built since 1985
has provided threads -- Mach, OS/2, NT
(Microsoft), Solaris (new OS from SUN), OSF
(DEC Alphas). Why? Makes it easier to write
concurrent programs, from Web servers, to
databases, to embedded systems.

 Moral: threads are cheap, but they're not
free.

L ecture 10: Deadlock

» Necessary conditions;

— Limited access (for example: mutex or bounded
buffer)

— No preemption (if someone has resource, can't
take it away)

— Multiple independent requests -- "wait while
holding"

— Circular chain of requests

35

Solutionsto Deadlock

Detect deadlock and fix
scan graph of threads and resources
detect cycles

fix them // thisis the hard part!

— Shoot thread, force it to give up resources.

— Roll back actions of deadlocked threads
(transactions)

Solutionsto Deadlock

» Preventing deadlock
— Need to get rid of one of the four conditions

— Banker's algorithm:(request can be granted if
some sequential ordering of threads is deadlock
free)

36

Lecture 11: CPU Scheduling

» Scheduling Policy Goals:

— Minimizeresponse time

— Maximize throughput: operations (or jobs) per
second

— Fair: share CPU among usersin some equitable
way

Scheduling Policies

FIFO
Round Robin
ST CF: shortest time to completion first.

SRTCF: shortest remaining timeto
completion first. Preemptive version of
STCF

Multilevel feedback
L ottery scheduling (for fair ness)

37

Multilevel Feedback Queue

« A process can move between the various queues; aging can be
implemented this way.

« Multilevel-feedback-queue scheduler defined by the following
parameters:

— number of queues

— scheduling algorithm for each queue

— method used to determine when to upgrade a process
— method used to determine when to demote a process

— method used to determine which queue a process will enter when
that process needs service

L ecture 12: Protection: Kernd
and Address Spaces

* How is protection implemented?

» Hardware support:
— address trandation
— dual mode operation: kernel vs. user mode

38

L ecture 13: Address
Trandation

Paging

Allocate physical memory in terms of fixed
size chunks of memory, or pages.

allows use of a bitmap.

Operating system controls mapping: any
page of virtual memory can go anywherein
physical memory.

L ecture 14: Cachingand TLBs

» Cache: copy that can be accessed more
quickly than original. Ideais. make frequent
case efficient, infrequent path doesn't matter
as much. Caching is afundamental concept
used in lots of placesin computer systems.
It underlies many of the techniquesthat are
used today to make computers go fast

39

Caching

* Trandation Buffer, Trandation

L ookaside Buffer:

— hardware table of frequently used trandlations,
to avoid havingto go through page table lookup
in common case.

» Thrashing: cache contents tossed out even if
still needed

Writes

» Two options.

— write-through: update immediately sent
through to next level in memory hierarchy

— write-back: (delayed write-through) update
kept until item is replaced from cache, then sent
to next level.

40

Localities

» Temporal locality: will reference same
locations as accessed in the recent past

» Spatial locality: will reference locations
near those accessed in the recent past

» When does caching break down?

— Whenever programs don’t exhibit enough
gpatial or temporal locality

Coordination aspect

* Review of AOP
o Summary of threadsin Java

» COOL (COQrdination Language)
— Design decisions
— Implementation at Xerox PARC

41

the goal isaclear

separation of concerns (/“

we want:
— natural decomposition
— concerns to be cleanly localized
— handling of them to be explicit 4
— in both design and implementation

)

C%)@

¢

achieving this requires...
* synergy among

— problem structure and

— design concepts and

— language mechanisms

)

0\)

“natural design”

“the program looks like the design”

_ g

42

What is an aspect?

» An aspect isamodular unit that cross-cuts
the structure of other modular units.

» An aspect isaunit that encapsulates state,
behavior and behavior enhancements to
other units.

Cross-cutting of components and

asp.eCtS better program
ordinary program

Components

Aspect 1

Aspect 2

Aspect-Oriented Programming

components and aspect descriptions

High-level view,
implementation may
be different
o
weaver Source Code
(compile- (tangled code)
time) N

Coordination aspect

» Put coordination code about thread
synchronization in one place.

» Threads are synchronized through methods.

» Method synchronization
— Exclusion sets
— Method managers

Problem with synchronization
code: it istangled with
component code

cl ass BoundedBuffer {
bj ect[] array;
int putPtr = 0, takePtr = 0;
int usedSlots = 0;
BoundedBuf fer (i nt capacity){
array = new (bj ect[capacity];

}

Tangling

synchroni zed void put (QObject o) {
while (usedSlots == array.length) {
try { wait(); }
catch (InterruptedException e) {};
}
array[putPtr] = o;
putPtr = (putPtr +1) % array. | ength;
if (usedSlots==0) notifyall();
usedSl ot s++;
/1 if (usedSlots++==0) notifyall();

45

Solution: tease apart basics and
synchronization

e write core behavior of buffer

» write coordinator which deals with
synchronization

* use weaver which combines them together
» simpler code

» replacesynchroni zed, wait,
notifyandnotifyal | by coordinators

With coordinator: basics

BoundedBuf fer {

public void put (Qhject 0) (@
array[putPtr] = o;
putPtr = (putPtr+1)%rray. | ength;
usedSl ots++; @

public Object take() (@
bject old = array[takePtr];
array[takePtr] = null;
takePtr = (takePtr+1)%array.| ength;
usedSl ot s--;
return old; @

46

Usi ng Deneter/COCL, put into *.cool file

Coordinator

coor di nat or BoundedBuffer {
sel fex put, take; ™
mut ex {put, take} -~
condition enpty=true, full=false;

o

coordinator variables

exclusion sets

Coordinator

method managers with requires clauses and entry/exit clauses
put requires (!'full) {
on exit {enpty=fal se;
i f (usedSl ots==array.| ength)
full=true; }}
take requires (!'enpty) {
on exit {full=fal se;
i f (usedSl ot s==0)
enpty=true; }}

a7

pl ain Java

public class Shape {
protected double x_
protected double y_
protected double wi dth_

0.
0.

oo

0.0;

protected doubl e height_ = 0.0;

doubl e x() { return x_(); }
double y() { returny_(); }
doubl e wi dt h(){

return width_();

}
doubl e hei ght () {
return height_();

}
voi d adj ust Location() {
X_ = longCal cul ati onl();
y_ = longCal cul ati on2();
}
voi d adj ust Di nensi ons() {
wi dt h_ = longCal cul ati on3();
hei ght _ = I ongCal cul ati on4();
}

}

COOL Shape

coordi nat or Shape {

sel fex {adjustLocation,
adj ust Di mrensi ons}

mut ex {adj ustLocati on, x}

mut ex {adj ustLocation,y}

mut ex {adj ust Di nensi ons,
wi dt h}

mut ex {adj ust Di nensi ons,
hei ght }

Remaining Lectures

» Seeoriginal notes

48

Some courses in Software
Engineering Track
 Adaptive Object-Oriented Software
Development (COM 3360)

» Object-Oriented Design (COM 3230,
Professor Lorenz)

» Component-Based Programming (COM
3240, Professor Lorenz)

The End

Nothing lasts ...
Everything arises and passes away

Hoping to see you in COM 3360

49

